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Abstract 

Drought stress poses a critical threat to global crop yields and sustainable agriculture. The GASA genes are recognized 
for their pivotal role in stress tolerance and plant growth, but little is known about how they function in sunflowers. 
The investigation aimed to identify and elucidate the role of HaGASA genes in conferring sunflowers with drought 
tolerance. Twenty-seven different HaGASA gene family members were found in this study that were inconsistently 
located across eleven sunflower chromosomes. Phylogeny analysis revealed that the sunflower HaGASA genes were 
divided into five subgroups by comparing GASA genes with those from Arabidopsis, peanut, and soybean, with mem-
bers within each subgroup displaying similar conserved motifs and gene structures. In-silico evaluation of cis-regu-
latory elements indicated the existence of specific elements associated with stress-responsiveness being the most 
abundant, followed by hormone, light, and growth-responsive elements. Transcriptomic data from the NCBI database 
was utilized to assess the HaGASA genes expression profile in different sunflower varieties under drought condi-
tions. The HaGASA genes expression across ten sunflower genotypes under drought stress, revealed 14 differentially 
expressed HaGASA genes, implying their active role in the plant’s stress response. The expression in different organs 
revealed that HaGASA2, HaGASA11, HaGASA17, HaGASA19, HaGASA21 and HaGASA26 displayed maximum expres-
sion in the stem. Our findings implicate HaGASA genes in mediating sunflower growth maintenance and adaptation 
to abiotic stress, particularly drought. The findings, taken together, provided a basic understanding of the structure 
and potential functions of HaGASA genes, setting the framework for further functional investigations into their roles 
in drought stress mitigation and crop improvement strategies.
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Introduction
 Plants rely on a complex framework of genes to regu-
late various aspects of growth, development, and stress 
responses. This adaptability is partly attributed to small, 
cysteine-rich proteins. Cysteine-rich-peptide (CRP) 
is a class of proteins consisting of eight sub-families 
namely: Snakins, defensins, thionins, hevein-like pep-
tides, nonspecific lipid transfer proteins (LTPs), knottins, 
α-hairpinins, and cyclic peptide [1]. Several new classes 
of Cysteine-rich-peptide CRPs have been identified, 
which expands our understanding of their crucial roles 
in plant biology. These include impatiens balsamina Anti-
microbial Peptides (Ib-AMPs) known for their potent 
antibacterial properties against pathogens like Methicil-
lin-resistant Staphylococcus aureus (MRSA) [2]. Addi-
tionally Rapid Alkalinization Factor (RALF) play a crucial 
role in plant development and stress responses, regulat-
ing growth, development, and stress adaptation through 
receptor kinases and intercellular communication [3]. 
Epidermal Patterning Factor (EPF) and its associated 
EPF-Like (EPFL) are necessary for stomatal growth and 
patterning with conserved cysteine residues contribut-
ing to their stability and functioning [3–5]. Furthermore 
Maize Egg Apparatus (EA1) play a vital role in facilitat-
ing pollen tube guidance towards the ovule [6]. Recent 
research has also identified at least 23 cysteine-rich pep-
tides in Citrullus colocynthis, with eight novel peptides 
named citcol-1 to citcol-8 characterized for their struc-
tural features and potential bioactivities, including anti-
microbial functions [7].

CRP proteins represent a substantial family of genes, 
specifically classified under the GASA (Gibberellic 
Acid-Stimulated in Arabidopsis), GAST (Gibberellic 
Acid-Stimulated Transcripts), GASR (Gibberellic Acid-
Stimulated Regulators), and snakin subfamilies. These 
proteins are characterized by their relatively short amino 
acid sequences and low molecular weights, playing 
critical roles in various physiological processes [8–11] 
that are mostly controlled by gibberellins [12, 13]. The 
GASA domain is a highly conserved protein with three 
regions including an N-terminal that has a signal region 
of 18–29AA, an extremely varying, hydrophilic region 
of 7–31 AA at the middle part; and a C-terminus area 
of 60 AA consisting of 12 residues of cysteine that helps 
facilitate molecule’s biochemical stability [14]. The N-ter-
minal part is essential to interact with other proteins 
while the C-terminal likely plays a role in DNA binding 
site and transcriptional regulation [15]. The GASA gene 
was first identified in 1992 with the discovery of its ini-
tial member GAST1 in tomato [10]. Moreover, many 
researchers have also characterized GASA homologs in 
Arabidopsis (15 genes) [14], Rice (10 genes) [16], Apple 
(26 genes) [17], Cucumber (09 genes) [18], Cotton (38 

genes) [19], Peanut (40 genes) [20], Wheat (37 genes) 
[21], Soybean (37 genes) [22], Sorghum (12 genes) [23], 
Chinese cabbage (15 genes) [24], Potato (16 genes) [25], 
Citrus (18 genes) [26], Pine apple (15 genes) [27], Grape-
vine (14genes) [9] tobacco (18 genes) [28], Populus 
trichocarpa (15 genes) [29], Common bean (23 genes) 
[30], Tomato (17 genes) [31], Maize (10 genes) [32] and 
Strawberry (2 genes) [33].

The GASA proteins have been known to govern vari-
ous aspects of plant development and hormone regula-
tion. The AtGASA4 has been found to be involved in the 
light signaling pathway and promotes flowering time 
in the Arabidopsis, a model plant [14]. Furthermore, 
research on rice reveals the gene OsGSR1 stimulates 
BR, (brassinosteroids) production by actively regulat-
ing DIM/DWF1, a BR biosynthetic enzyme that converts 
24-methylenecholesterol to campesterol [34]. A trans-
genic Arabidopsis plant overexpressing a gibberellin-
responsive gene from beechnut reduced GA dependence 
for growth and improved seed germination and establish-
ment responses to salinity, oxidative, and heat stress [35]. 
The gene GsGASA1 is implicated in the inhibition of root 
growth under chronic cold stress, a process mediated by 
the accumulation of DELLA proteins [36]. The OsGASR9 
is potential in regulating grain size and yield via the GA 
pathway [37]. GASA proteins also confer resilience to 
various abiotic and biotic stresses in plants. For instance, 
SmGASA4 enhances plant resistance to drought, salinity, 
and paclobutrazol (PBZ) stress [38]. The SN1 gene serves 
as a defense mechanism against C. michiganensis subsp. 
sepedonicus [39]. A novel CaSN gene from the sankins 
family confers resistance in pepper against root-knot 
nematode infection [40].

Sunflower (Helianthus annuus L.) are economically 
most important oilseed crop grown throughout the world 
for their edible seeds and oil [41]. The extreme conditions 
such as drought, high salinity, Heat stress, and heavy 
metal stress in different crops substantially influence 
crop yield and quality [42, 43]. Drought is a key abiotic 
stress that greatly affects crop development and output 
by altering critical metabolic pathways and influenc-
ing various physiological and biochemical features [44]. 
Various genes in sunflower including the SAP gene fam-
ily [45], NAC transcription family [46],Dof gene family 
[47], MYB gene [48], have been analyzed in response to 
drought. Still, the GASA gene known for its involvement 
in regulating drought remains uncharacterized in Sun-
flower. This knowledge gap hinders our ability to exploit 
the potential of GASA genes for sunflower improvement. 
Our study aims to address this knowledge gap by thor-
oughly analyzing the GASA gene family in sunflower 
under drought conditions. The GASA gene family in the 
sunflower is characterized on a genome-wide scale and 
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analyzed expression analysis under drought in this study. 
We find out the evolutionary relationship of GASA genes 
and investigate the functional differentiation in the sun-
flower genome. This research will provide a basis for 
future functional studies for the development of drought-
tolerant varieties.

Materials and methods
Database hunting and retrieval of HaGASA sequences
The GASA domain query sequence was retrieved from 
the NCBI online database (https://​www.​ncbi.​nlm.​nih.​
gov/, 12 February 2024) using accession AAG23437.1 
[19]. PFAM, an online database was utilized to acquire 
the Hidden Markov Model profile (PF02704) for the 
GASA domain [18]. The query sequence was subjected 
to a BLAST search against the sunflower genome in the 
Phytozome v.13 (https://​phyto​zome-​next.​jgi.​doe.​gov/, 13 
February 2024) database to identify potential HaGASA 
genes (https://​phyto​zome-​next.​jgi.​doe.​gov/, 13 February 
2024). Twenty-seven sunflower GASA genes were vali-
dated using Motif-Finder (https://​www.​genome.​jp/​tools/​
motif/, 13 February 2024) to validate the existence of 
the conserved GASA domain within each gene sequence 
[49].

Determining physical & chemical characteristics 
and cellular localization of HaGASA genes
The characteristics like gravy, isoelectric point, protein 
length, and weight were determined using were deter-
mined through a web tool Protopram [50]. Further gene 
positioning traits including amino acids, direction, and 
start and end points were retrieved through Phytozome 
v.13 [51].

Localization of HaGASA genes in different organelles 
was predicted through Wolf Psort, a web tool (https://​
wolfp​sort.​hgc.​jp/, 14 February 2024) [52]. TBtools soft-
ware was utilized for creating a heatmap to visually 
represent the location of each gene in different cellular 
organelles [53].

Analysis of evolutionary relations, gene structure 
and conserved motifs of HaSASA genes
The peptide sequences from GASA genes in Arabidop-
sis, peanut, soybean, and sunflower were aligned using 
Mega11 software. To achieve statistical reliability, a 
neighbor-joining evolutionary tree was constructed with 
a bootstrap value of 1000 [54]. The tree was exported to 
iTol for improving visual presentation [55].

Genomic and CDS sequences of HaGASA were 
retrieved through Phytozome. The intron-exon architec-
ture of HaGASA genes was revealed through the Gene 
structure display serve (https://​gsds.​gao-​lab.​org/, 18 
February 2024) using genomic and CDS sequences [56]. 

Conserved motifs analysis was performed using meme 
suit (https://​meme-​suite.​org/​meme/​tools/​meme, 18 Feb-
ruary 2024) by analyzing 15 motifs [57]. The motifs were 
visually represented through an “advanced gene structure 
view” setup in TBtools using a conserved domain file, 
meme suit, and phylogeny file [58].

Chromosomal localization, duplication and collinearity 
analysis
Data on the location of The HaGASA genes positioning 
data was retrieved from the Phytozome. TBtools soft-
ware was subsequently employed to build a graphic rep-
resentation of the sunflower chromosomes, illustrating 
the precise genomic locations of the HaGASA genes [59]. 
Ka and Ks values were calculated using the ka-ks calcula-
tor function in TBtools [60].

The one-step MCScan function of TBtools was used 
to observe collinear relations by comparing the genomes 
of sunflower, peanut, soybean, and Arabidopsis [61]. A 
map showing syntenic relations was created using the 
advanced circos function in TBtools [62].

Prediction of Cis‑Regulatory Elements (CREs)
1500 bps upstream sequence starting from the initia-
tion codon was taken to analyze the promoter region of 
each HaGASA gene [63]. CREs present in these specific 
regions were predicted through PlantCare an online 
database (https://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​
plant​care/​html/, 3 March 2024) [64]. CREs were divided 
into different classes and a heatmap was created using 
TBtools [65].

HaGASA genes enrichment analysis
The HaGASA genes underwent ontology analysis using 
a web tool Shiny GO 0.80 (http://​bioin​forma​tics.​sdsta​
te.​edu/​go/, 7 March 2024) to estimate their potential 
involvement in specific biological processes and cellular 
components [66]. The enrichment level was calculated by 
applying a 0.01 p value [67].

Determination of microRNAs targeted sites
An online database PmiREN (http://​www.​pmiren.​com/, 
8 March 2024) was utilized to retrieve miRNA datasets 
of sunflower [68]. The CDS sequence of all HaGASA was 
searched using psRNA Target (https://​plant​grn.​noble.​
org/​psRNA​Target/​analy​sis?​funct​ion=3, 8 March 2024) to 
find miRNAs targeting HaGASA genes [69].

HaGASA genes transcriptomic analysis
The expression profile of HaGASA genes in sunflower 
varieties SF-01, SF-02, SF-03, SF-04, SF-05, SF-06, 
SF-07, SF-08, SF-09, and SF-10 were extracted from 
the publically accessible database NCBI GEO database 
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(https://​www.​ncbi.​nlm.​nih.​gov/​geo/, 2 April 2024) to 
investigate the drought stress response of the GASA 
gene family. Ten diverse sunflower genotypes under-
went exposure to controlled drought stress conditions 
during the vegetative phase to evaluate the transcrip-
tional responsiveness of HaGASA genes. Leaf tissues 
were excited from both control and water-stressed 
individuals of each genotype and used for transcrip-
tome profiling to elucidate the expression patterns 
of HaGASA genes in response to drought stress [70]. 
Two-way ANOVA was applied to check the significant 
expression of HaGASA genes. Variation in the expres-
sion level of HaGASA genes was analyzed in five dif-
ferent tissues including stem, root, axil, leaf and flower 
[71]. To achieve statistical reliability, the experiment 
included three replicates. The RNA sequencing data 
from specific tissues were especially evaluated during 
the plant flowering phase.

Results
HaGASA genes identification, subcellular localization & 
physicochemical properties
To identify GASA genes in the sunflower, the sequence 
of the GASA domain was blasted against the sunflower 
genome using Phytozome. A total of 27 genes were 
identified that were further analyzed to remove non-
redundant proteins (Table  1). All of the genes were 
confirmed to contain the GASA domain. The twenty-
seven proteins identified as GASA in the sunflower 
consisted of HaGASA1-HaGASA27.

The HaGASA genes encoded proteins that ranged 
from 88 to 431 amino acids (AA), of which HaGASA23 
contained a maximum number of 431 AA. The molec-
ular weights span from 9.6 to 27.5 kDa, with HaGASA9 
displaying the highest molecular mass. The HaGASA 
genes isoelectric point shown ranges from 6.6 to 9.6, 
all of these genes are considered to be unstable as 
the value is lower than 40. All HaGASA genes except 
HaGASA1, HaGASA3, and HaGASA5 contained 
negative gravy values. HaGASA genes HaGASA1, 
HaGASA3, and HaGASA5 are hydrophobic, while the 
others are hydrophilic. The GRAVY score is essential 
for determining the hydropathy of each protein and is 
required for a thorough investigation of physicochemi-
cal properties.

Subcellular localization of HaGASA genes was ana-
lyzed to predict the role of genes based on location. 
All HaGASA genes depicted extracellular localization 
followed by plasma membrane and nucleus. Wolfpsort 
was further utilized to predict the number of genes 
localized in various organelles based on the amino acid 
composition of each gene (Fig. 1).

Exploration of evolutionary relationships, structures, 
and comparative motifs ofHaGASA genes
Phylogeny connections of GASA genes in the sun-
flower were revealed through Mega11 software [72]. 
A tree was constructed encompassing 120 GASA pro-
teins from four different species (15 AtGASA genes 
from Arabidopsis, 37 GmGASA genes from soybean, 
41 AhGASA genes from peanut, and 27 HaGASA genes 
from sunflower) (Fig. 2). Arabidopsis GASA genes were 
used as a reference to classify the tree, which is divided 
into five sub-groups. Group three was the largest, con-
taining seven HaGASA genes, while group four was the 
smallest, with only four HaGASA genes. Specifically, 
the tree included eight HaGASA genes in the 1st group, 
four in the 2nd group, four in the 3rd group, four in the 
4th group, and seven in the 5th group.

The evolutionary history of a gene family can be veri-
fied based on the architecture of exons and introns of 
that gene [73]. The pattern of exons and introns can 
be used as a mark for studying the evolution of a gene. 
The analysis revealed that exons and introns division 
depicted consistency with the evolutionary tree of 
HaGASA genes. The exon number of HaGASA genes 
varied from 2 to 4, and HaGASA10 and HaGASA25 
contained maximum exons (Fig. 3).

The presence of conserved motifs can be further 
utilized to classify a gene family. Ten motifs of 15–50 
amino acids were analyzed in each gene using MEME 
[74]. Motifs 1, 2, and 3 were universally present in 
all HaGASA genes, Motif 4 was found in all except 
HaGASA18, Motif 8 was exclusive to HaGASA13, 
HaGASA21, and HaGASA25, and Motif 9 was detected 
only in HaGASA2 and HaGASA21 (Fig. 4).

Chromosomal mapping of HaGASA genes
Chromosomal mapping revealed that all HaGASA 
genes were located on 11 different chromosomes of 
sunflower (Fig. 5). Chromosomes 2, 3, 5, 7, 8, 9, 10, 12, 
14, 15 and 17 contained all HaGASA genes. The highest 
number of HaGASA genes (nine) were mapped to chro-
mosome 14, with chromosomes 7 and 10 each harbor-
ing four genes, chromosome 9 containing three genes, 
and the remaining chromosomes each hosting a single 
gene.

Collinearity and duplication analysis of HaGASA genes
Multiple synteny plot was created to reveal the evolu-
tionary relation of HaGASA genes with other species 
like Arabidopsis, peanut, and soybean (Fig. 6). Colline-
arity analysis revealed that multiple copies of HaGASA 
genes were present in other species, with eight copies 
found in the Arachis hypogaea genome, eight copies 
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in the Glycine max genome, and a single copy in the 
Arabidopsis thaliana genome.

The HaGASA gene duplication events were predicted by 
ka and ks estimation using TBtools. Where Ka counts the 
rate of non-syn substitutions per nonsynonymous site, Ks 
counts the proportion of synonymous substitutions per 
synonymous site [75, 76]. Selective pressure on HaGASA 
genes is indicated by the Ka/Ks ratio, which compares the 
number of non-syn to synonymous substitutions. The 
Ka/Ks value ranged from 0.06 (HaGASA6_HaGASA19 
pair) to 0.58 (HaGASA2_HaGASA3 pair) across the 
eight paralogous pairs of HaGASA genes (Fig.  7). All 
paralogous HaGASA proteins in the sunflower had Ka/
Ks ratios lower than 1. This data implies the probability 
of low functional convergence in the duplication process, 
possibly because of the predominance of purifying selec-
tion. The date of eight paralogous HaGASA genes varied 
from 3.8 (HaGASA1-HaGASA16) to 34.3 (HaGASA13-
HaGASA22) million years ago. The HaGASA13-
HaGASA22 gene was considered to be the most primitive.

Gene enrichment analysis
The HaGASA gene functioning was further comprehen-
sively understood using gene enrichment. The HaGASA 
genes were further classified into biological processes 
and cellular components (Fig. 8). In the biological process 
category, the genes were predominantly involved in vari-
ous processes mostly gibberellic-acid related pathways. 
Most of the genes were enriched in extracellular regions 

based on the cellular component category. The analysis 
can be utilized to predict diverse functions of HaGASA 
genes in cellular metabolisms.

Analysis of CREs of HaGASA genes
Each gene’s transcriptional expression is highly influ-
enced by specific elements present in the promoter 
regions at the binding sites of that gene [77]. There-
fore, these specific CREs were in-silico evaluated for 
speculating gene function [78]. The CREs present in 
HaGASA genes were divided into four categories based 
on specific functions. The HaGASA genes contained 
maximum stress-responsive CREs (53%) following 
hormone-responsive (23%), light-responsive (16%) and 
growth-responsive elements (8%) (Fig. 9). Ten CREs asso-
ciated with stress responses, including LTR, ARE, GC-
motif, DRE core, Box 4, MYB, MYC, STRE, WRE3, and 
W box, were identified in HaGASA genes, with MYC, 
MYB, and Box 4 being the most frequent. Within the hor-
mone-responsive category, ten cis-regulatory elements 
(ABRE, AuxRR-core, ERE, GARE-motif, P-box, TCA, 
TCA-element, TCT-motif, TGA-element, and TGACG-
motif ) were analyzed, revealing that the ERE motif was 
the most prevalent. Thirteen elements (ACE, AE-box, 
ATCT-motif, AT1-motif, 3-AF1 binding site, Box II, 
G-box, GA-motif, GATA-motif, GT1-motif, I-box, Gap-
box, and MRE) have been analyzed in the light-respon-
sive category, with the G-box and GT1-motif emerging as 
the most abundant. Eight elements (AAGAA-motif, CCG​

Fig. 1  Subcellular localization of HaGASA genes in different cellular organelles
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TCC​-box, CAT-box, HD-Zip, 3GCN4_motif, MSA-like, 
O2-site, and RY-element) have been assessed, with the 
AAGAA motif being the most dominant.

Prediction of targeted MiRNA sites
Since miRNAs play a crucial role in regulating gene 
expression, genome-wide research is focused on identify-
ing potential miRNA targets [79]. Precise prediction and 
confirmation of miRNA targets can expose the molecu-
lar mechanisms behind different diseases and guide the 
creation of specific treatment methods [80]. The miRNAs 
targeting HaGASA genes showed lengths spanning 19 
to 22 nucleotides. Twelve miRNAs were found that tar-
geted HaGASA10, HaGASA19, HaGASA21, HaGASA23, 
and HaGASA26 genes (Table  1S). Four miRNAs tar-
geted HaGASA10, one miRNA targeted HaGASA19, one 
miRNA targeted HaGASA21, three miRNAs targeted 
HaGASA23 and three miRNAs targeted HaGASA26.

Transcriptomic analysis
RNA seq analysis of HaGASA genes in response to drought
Ten genotypes of the sunflower were utilized in that 
experiment to observe genetic variation under irri-
gated and water deficit conditions. Based on RNA-seq 
analysis of ten genotypes, the HaGASA2, HaGASA5, 
HaGASA6, HaGASA7, HaGASA10, HaGASA11, 
HaGASA12, HaGASA16, HaGASA17, HaGASA18, 
HaGASA19, HaGASA20, HaGASA21 and HaGASA24 
genes depicted significant variation in expression 
in response to drought (Fig.  10). The expression of 
HaGASA2, HaGASA10, and HaGASA11 genes was 
significantly up-regulated, reflecting a prominent role 
in drought tolerance mechanisms. Conversely, sig-
nificant down-regulation was identified in HaGASA6, 
HaGASA17, HaGASA18, HaGASA21, and HaGASA24, 
revealing their crucial significance as homeobox genes 
in maintaining optimal growth.

Fig. 2  Evolutionary tree of GASA genes from Arabidopsis, sunflower, peanut and soybean
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Transcriptomic analysis of HaGASA genes in various tissues
The HaGASA gene’s transcriptomic expression was 
analyzed in distinct tissues. Nine genes (HaGASA2, 
HaGASA8, HaGASA10, HaGASA11, HaGASA14, 
HaGASA17, HaGASA19, HaGASA21 and HaGASA26) 
out of 27 HaGASA genes depicted significant varia-
tion in expression in five distinct tissues (Fig.  11). The 
HaGASA1, HaGASA12, HaGASA16, and HaGASA25 
depicted zero expression in all different organs. Tissue-
specific expression analysis revealed that HaGASA2, 
HaGASA11, HaGASA17, HaGASA19, HaGASA21, and 
HaGASA26 exhibited peak expression levels in stem tis-
sue. Conversely, HaGASA8, HaGASA10, and HaGASA14 
demonstrated maximal expression in flower, axil, and leaf 
tissues, respectively.

Discussion
In nature, plants are frequently exposed to multiple 
stressors, resulting in special and erratic circumstances 
[81]. Acute times of water scarcity have had detrimen-
tal effects on plant production and productivity in many 
parts of the world [82, 83]. Plants must adapt their meta-
bolic and signaling responses to meet the unique physi-
ological and developmental demands imposed by the 

array of these stresses. This involves modifications to 
photosynthesis, control over hormonal signaling path-
ways, molecular mechanism activation and antioxidant 
augmentation [84, 85]. A variety of stimuli, including 
drought stress, abscisic acid (ABA), reactive oxygen spe-
cies (ROS), darkness, and high CO2 concentrations in the 
surrounding air, can cause stomatal closure by inducing 
guard cells to release osmotic ions [86, 87]. The genes 
of the GASA family are crucial for the development of 
plants and reactions to the environment [88, 89]. Numer-
ous functional investigations have shown that the GASA 
genes are critical in regulating plant growth, develop-
ment, antibacterial activity, and pathogen defense mech-
anisms [39, 90]. Considering the lack of research on the 
involvement of these genes in sunflower stress tolerance, 
a comprehensive genome-wide identification of GASA 
genes has been undertaken to address the research gap.

The study systematically analyzed physiochemical fea-
tures of the HaGASA protein family in the sunflower, 
like molecular weight, isoelectric point, grand average of 
hydropathy, and number of exons and intron (Table  1). 
The identified GASA genes exhibited relatively low 
molecular weight compared to other drought-related 
gene families such as CCO and SAP [45, 91]. All the genes 

Fig. 3  Arrangement of coding and non-coding sequence of HaGASA genes
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were found to be unevenly present on specific chromo-
somes of the sunflower, like Populus trichocarpa and 
the potato, while GASA genes are consistently present 
on all chromosomes in Arabidopsis [12, 25, 29]. Most 
of the HaGASA proteins showed hydrophilicity, reflect-
ing their negative GRAVY (Grand Average of Hydro-
pathicity). This implies a strong attraction for water and 
the existence of net electrical charges over multiple pH 

levels [92]. All HaGASA genes were found to encode 
stable proteins, as each had an instability index below 
40, which is the threshold for protein stability [93]. The 
location of HaGASA genes inside the cell was observed 
to predict cellular function based on the functioning of 
different organelles [94]. 88% of HaGASA genes were 
identified extracellularly, with 12% located in the nuclear 
and plasma membranes. Current in  vivo research have 

Fig. 4  Conserved motifs of HaGASA genes

Fig. 5  Localization of HaGASA genes on the chromosomes of sunflower
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revealed that GASA proteins are predominantly detected 
in extracellular spaces and cell walls [36, 95].

Comparing the GASA gene between various crops can 
be utilized to study the evolutionary connection of the 
HaGASA gene family [96]. The genes existing in simi-
lar clades can be speculated to perform the same func-
tion [97]. This can be utilized to predict the functioning 
of a less-studied gene through a highly-studied gene 
[98]. Therefore, functional genomics might be assisted by 
evaluating phylogeny connections [99]. A phylogenetic 
study was carried out, employing GASA gene sequences 
from Arabidopsis thaliana (AtGASA), Arachis hypogaea 
(AhGASA), Glycine max (GmGASA), and H. annuus 
(HaGASA).(Fig.  2). The HaGASA gene family was sys-
tematically divided into five different subgroups, dem-
onstrating that genes located within the same clade are 
closely evolutionarily related. The HaGASA genes have 
functional resemblance with their AtGASA, AhGASA, 
and GmGASA counterparts in the same clades [20].

Previous research has revealed that the coding and 
non-coding sequences organization within a gene can 
be used to predict its evolutionary relationships with 
other genes [100, 101]. The majority of HaGASA genes 
comprised 2 to 4 conserved exons, while varied from 
1 to 4 in Citrus clementina [26]. The GASA genes that 
shared similar exon-introns clustered within the same 
clade, indicating a close evolutionary link and a com-
mon ancestral origin (Fig.  3). The conserved motifs 
were evaluated which showed that motifs 1, 2 and 3 
were common in all HaGASA genes while motif 9 was 
uniquely present in HaGASA2 and HaGASA21(Fig. 4). 
This similarity increases the likelihood that these genes 
exhibit functional similarities depending on their con-
served motif. The consistent existence of such motifs 
indicates they are crucial for controlling or operating 
genes [102]. This suggests these motifs primarily con-
tribute to the HaGASA gene’s behavior and regulation.

Fig. 6  Multiple synteny plot of sunflower, peanut, Arabidopsis and soybean depicting HaGASA collinear genes

Fig. 7  Estimated times of gene duplication for various paralogous pairs of HaGASA genes derived from Ks and Ka values
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The evolution of a gene can be speculated via compar-
ing the genomes of different species through comparative 
syntenic mapping [103]. A comparative genomic analysis 
was conducted among sunflower, Arabidopsis, peanut, 
and soybean to identify and characterize collinear blocks 
(Fig.  6). A high number of HaGASA genes copies were 
found in the genomes of the soybean and the peanut while 
Arabidopsis contained just a single copy of the HaGASA 
genes. This reveals that these crops might evolved through 
a common ancestor compared to arabidopsis. Gene 
expansion because of mutations and other environmental 
factors might cause the variation of HaGASA genes in the 
genomes of different species [104, 105].

The Ka/Ks ratio reveals crucial information on the 
selective pressures governing amino acid substitutions 
[106]. A Ka/Ks ratio below one signifies purifying selec-
tion that eliminates harmful mutations, whereas a ratio 

greater than one indicates positive selection which favors 
favorable mutations and drives adaptive evolution [107]. 
The Ka/Ks of HaGASA paralogous gene pairs ranged 
from 0.06 to 0.58, which is below one which indicates 
that during the process of evolution. All the gene pairs 
have undergone strong purification and positive selection 
took place at some sites (Fig. 7) [108].

A gene’s transcriptional expression is highly depend-
ent on the upstream promoter region of that gene [109, 
110]. The promoter region of a protein contains ele-
ments that are specified for performing a specific func-
tion to handle various factors including plant growth 
and stress response [111, 112]. The analysis of HaGASA 
promoters depicted a vast array of elements that were 
responsive to light, growth, hormones and stress (Fig. 9). 
The HaGASA genes displayed a high density of cis-
acting elements predominantly associated with stress 

Fig. 8  Gene enrichment chart of HaGASA genes where GO biological process is indicated by red bars and GO cellular component is represented 
by blue bars



Page 12 of 17Ullah et al. BMC Genomics          (2024) 25:954 

responsiveness, followed by those linked to hormonal 
signals, light, and growth-related processes. This pattern 
suggests that HaGASA genes may play a pivotal role in 
modulating responses to both biotic and abiotic stresses. 
These findings align with the observed behavior of GASA 
genes in Citrus clementina [26]. The HaGASA genes con-
tained fewer growth-responsive elements and numerous 
hormone-responsive elements, may be more potentially 
involved in stress responses, and may participate in vari-
ous hormonal signaling pathways.

A gene’s transcriptional response is highly controlled 
by miRNAs targeting that gene [113]. The miRNAs are 
highly targeted in regulating particular biological func-
tions [114]. Our research identified twelve microRNAs 
targeting five HaGASA genes. Such miRNAs func-
tion by inhibiting cleavage and translation processes, 
hence controlling gene expression Each miRNA targets 
an individual specific gene and multiple miRNAs may 
converge on a single target gene, potentially exerting 
a synergistic effect on its regulation [115–117]. Some 
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microRNAs can inhibit the translation of their target 
genes, the primary mechanism of action for most miR-
NAs involves inducing the cleavage of messenger RNA. 
In our study, all discovered microRNAs downregulate 

gene expression by mRNA cleavage, predominantly 
lowering mRNA levels through degradation pathways, 
which leads to decreased protein output like the CCO 
gene in sunflower [91].

Fig. 10  Heatmap showing expression of HaGASA genes in ten genotypes of sunflower in response to drought

Fig. 11  Expression of nine HaGASA genes in five different organs of sunflower
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Among abiotic stresses, water scarcity is considered 
the most detrimental to plant development via inhibiting 
transpiration due to stomatal closure, ultimately leading 
to a significant reduction in yield [118, 119]. Transcrip-
tomic data of ten sunflower genotypes (GSE145709) 
depicting the expression of HaGASA genes under water 
stress was utilized to identify potential HaGASA genes 
that show responsiveness to drought condition. The 
genes HaGASA2, HaGASA10 and HaGASA11 significant 
upregulation in response to drought, might be predicted 
to be involved in maintaining plant’s various pathways 
through producing ABA [120] (Fig. 10). These genes can 
be can be further utilized in breeding projects to develop 
drought-resistant varieties of sunflower.

The biological function of a gene in plants can be pre-
dicted through its expression pattern in various organs 
[121, 122]. Transcriptomic analysis of HaGASA genes 
(GSE221055) was performed in five different organs 
to HaGASA genes activity in various plant organs cor-
responding to specific functions (Fig.  11). Certain 
HaGASA genes exhibit peak expression levels in the 
stem and leaf tissues, suggesting their critical involve-
ment in regulating and sustaining various processes 
of plant’s vegetative growth [123, 124]. The HaGASA8 
gene is most highly expressed in floral tissues, indicat-
ing a potential role in floral structure maintenance and 
development. The comprehensive investigation of the 
HaGASA gene family reveals their potential function 
in regulating both development processes and adaptive 
responses to drought.

Conclusion
Twenty-seven GASA genes were identified in the sun-
flower genome through in-silico analysis that were clas-
sified into five subgroups based on evolutionary analysis. 
The HaGASA genes were inconsistently present on the 
sunflower chromosomes. CREs responsive to stress, light, 
hormones and growth were identified in the promoters of 
HaGASA genes. Fourteen out of 27 HaGASA genes were 
found to be responsive to drought. HaGASA2, HaGASA11, 
HaGASA17, HaGASA19, HaGASA21 and HaGASA26 
depicted high expression in the stem that might be involved 
in maintaining the growth of the sunflower. This research 
can be utilized as a foundation for further function 
research.
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