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Traditional epidemiological studies of disease in animal populations often focus on 
directly transmitted pathogens. One reason pathogens with complex lifecycles are 
understudied could be due to challenges associated with detection in vectors and 
the environment. Ecological niche modeling (ENM) is a methodological approach that 
overcomes some of the detection challenges often seen with vector or environmentally 
dependent pathogens. We test this approach using a unique dataset of two pathogens 
in wild felids across North America: Toxoplasma gondii and Bartonella spp. in bobcats 
(Lynx rufus) and puma (Puma concolor). We found three main patterns. First, T. gon-
dii showed a broader use of environmental conditions than did Bartonella spp. Also, 
ecological niche models, and Normalized Difference Vegetation Index satellite imagery, 
were useful even when applied to wide-ranging hosts. Finally, ENM results from one 
region could be applied to other regions, thus transferring information across different 
landscapes. With this research, we detail the uncertainty of epidemiological risk models 
across novel environments, thereby advancing tools available for epidemiological deci-
sion-making. We propose that ENM could be a valuable tool for enabling understanding 
of transmission risk, contributing to more focused prevention and control options for 
infectious diseases.

Keywords: Bartonella spp., environmental transmission, Lynx rufus, niche, Puma concolor, Toxoplasma gondii

inTrODUcTiOn

Traditional epidemiological studies of disease in animal populations are dominated by intraspe-
cific transmission of contact-dependent (directly transmitted) parasites or pathogens (1, 2). 
However, many important parasites have complex life cycles that include vectors or environmental 
stages, and we often know much less about these types of parasites (3). For parasites or pathogens 
transmitted via vectors or the environment, it is especially important to understand not only the 
relationships between the host and pathogen, but also the environmental niche—the environ-
mental conditions in which the pathogen persists in the long term (4). In practice, understanding 
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the environmental niche of many pathogens can be difficult to 
achieve due to challenges associated with detecting pathogens 
in vectors and the environment (e.g., sparsely distributed 
pathogens in vectors, in soil, on plant matter, or in water). As 
an alternative, capturing and sampling wildlife hosts is more 
effective. Innovative methodological approaches that overcome 
some of these environmental challenges are therefore needed 
and would be valuable for enabling understanding of transmis-
sion risk, thereby contributing to more focused prevention and 
control options.

Current approaches to map pathogens often include con-
ducting a cluster analysis and spatial interpolations of disease 
cases in a specific area, thereby creating a tentative risk map 
for pathogen exposure (5, 6). However, a limitation of these 
classic approaches is the questionable value for forecasting risk 
in novel areas beyond those with ongoing surveillance. That is 
to say, geographic interpolations and cluster analyses do not 
consider environmental features and only reflect the sampling 
effort (7). Environmental (or ecological) niche modeling 
(ENM) is the practice of reconstructing a species’ environmen-
tal determinants (8). These methods can be useful in creating 
predictive maps that can forecast pathogen presence in novel 
regions (9). Ecological niche modeling is established for species 
distribution modeling and is gaining attraction in the field of 
veterinary epidemiology (7).

Recent research has demonstrated the utility of ENM to 
predict disease in distant novel areas (8), but it remains rare for 
these predictive models to be validated using independent data, 
which is particularly true for models of pathogens in wildlife. 
We tackle this problem using a unique dataset of two pathogens, 
Toxoplasma gondii and Bartonella spp., isolated from wild felids 
across North America. Specifically, we analyzed samples from 
bobcats (Lynx rufus) and puma (Puma concolor), two secre-
tive carnivores that are widespread in North America and are 
adaptable to a wide array of habitats where they are exposed to 
pathogens acquired from their environment (10–12). T. gondii 
is an intracellular protozoan parasite found in warm-blooded 
animals, including birds and mammals, and is transmitted via 
consumption of sporulated oocysts in feces, water, and soil or 
bradyzoites in tissues of prey species (13); in these wild felids, 
T. gondii is likely transmitted via consumption of infected prey 
such as rodents, lagomorphs, and cervids (10). The Bartonella 
genus includes gram negative anaerobic facultative intracellular 
bacteria species that cause an array of diseases affecting mam-
mals; contact with arthropod vectors, particularly fleas, is the 
primary route of transmission of Bartonella henselae, Bartonella 
koehlerae, and Bartonella clarridgeiae (hereafter Bartonella spp.) 
(14, 15). Both, T. gondii and Bartonella spp., require other organ-
isms to persist; thus, here we define them as micro-parasites or 
simply parasites (7).

This study has two primary tasks. First, we evaluate if ENM 
can characterize the potential distribution of parasites with 
complex lifecycles found in felid host species. This is particu-
larly important when there is limited knowledge about the 
environmental niche of the pathogens, such as in this study. 
Second, we examine if ENM results from one region can be 
applied to other novel regions. We emphasize important 

novelties from this study: (i) this study utilizes remote sens-
ing data that captures the habitat heterogeneity across study 
sites with high detail; (ii) this environmental heterogeneity is 
explicitly incorporated into risk maps produced by ENM; and 
(iii) we detail the uncertainty of epidemiological risk models 
across novel environments, thereby advancing epidemiological 
decision-making tools.

MaTerials anD MeThODs

Our dataset included 467 felids serologically positive for 
T.  gondii and/or Bartonella spp. from Florida, Colorado, 
and California. Of these exposed felids, 328 were positive to  
T. gondii parasites and 234 to Bartonella spp.; occurrence 
records contained each animal’s capture location and exposure 
status (16). These data were coupled with landscape informa-
tion from satellite imagery to develop ENMs and create a risk 
map for each pathogen.

Occurrences
Occurrences of T. gondii and Bartonella spp. were recorded 
in ongoing research featuring an unusually large collection 
of wild felid serosurvey data from three different study areas: 
Florida, Colorado, and California (10, 12, 17, 18). The study 
areas were chosen as part of a previous study to represent a 
range of sites important for puma and bobcat conservation 
and were also representative of a wide degree of anthropogenic 
impacts (i.e., habitat fragmentation, urbanization, and agri-
culture) across North America. The Californian study region 
is a highly urbanized landscape characterized by a warm dry 
Mediterranean climate with vegetation communities domi-
nated by coastal California sage scrub, chaparral, riparian and 
coastal oak woodlands, and annual grasslands. Colorado region 
was delimited by two polygons resembling sampling in rural 
and exurban areas with cold semi-arid climates and vegetation 
characterized by coniferous woodlands and forests primarily 
interspersed with aspens. The two regions in Colorado rep-
resent an area proximate to human development and a more 
natural area with agricultural surroundings. The Florida region 
is a mixture of urban, exurban, and agricultural areas spanning 
humid subtropical and tropical savanna climates with vegeta-
tion communities consisting of pine flatwoods, south Florida 
rockland, cypress domes and strands, dwarf cypress, prairies, 
mixed hardwood swamps, hardwood hammocks, freshwater 
swamps, and mangroves.

At each region, individual felids were captured, their location 
recorded, and samples for pathogen screening were collected 
according to protocols previously described (10, 12, 18). Wild 
felids were anesthetized using various tranquilizers/sedatives 
(19, 20), sampled, and released. Thoracic fluid was collected from 
hunter-killed animals instead of serum for a subset of bobcats 
from Colorado (11). Blood and serum samples were initially 
stored in ethylenediaminetetraacetic acid and serum-separating 
tubes. Samples were either refrigerated at 4°C or kept on ice 
until return from the field where they were temporarily frozen at 
−20°C, and later transferred to −80°C until screening for patho-
gen exposure. All procedures were performed after appropriate 
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Institutional Animal Care and Use Committee approvals were 
obtained.

Exposure to T. gondii and Bartonella spp. in puma (P. con-
color) and bobcats (L. rufus) was estimated by measuring serum 
antibodies at the Specialized Infectious Disease Laboratory 
(Colorado State University) according to protocols previously 
described (10, 12). Serological samples were considered positive 
for T. gondii if they were positive to IgM or IgG. Samples were 
considered positive to Bartonella spp. if immunofluorescence 
antibody assay (IFA) tests detecting antibodies against B. henselae 
and B. clarridgeiae were positive (21–23); this was also confirmed 
independently by performing PCR on matched blood samples 
(12). For each study area and species, samples were generally col-
lected over a 2- to 3-year intensive study period, and cumulatively 
the majority of samples across all sites were collected between 
2001 and 2012 (12, 16). Puma and bobcat from Florida were 
not tested for Bartonella spp. (12). For the purpose of reducing 
overfit of models to the data, duplicate pathogen records from the 
same location (i.e., those from different individuals captured at 
the same location, but both exposed to the same pathogen) were 
restricted to single occurrence records for analyses.

Model calibration area
The area selected for ENM calibration has a direct effect on the 
model results (24), resulting in models area-dependent. Thus, 
the calibration area must hypothesize the occurrence potential 
and the sampling effort of the organism in question (25). Based 
on Poo-Muñoz et al. (26), we used the average distance among 
available occurrences for T. gondii and Bartonella spp. to generate 
a buffer around occurrences in each region. The buffered area was 
used as model calibration region (26), assuming that this region 
provided a proxy of the landscape conditions contained across 
the sampled areas (8). Total areas considered for each selected 
regions are as follow: ~52,500 km2 for terrestrial area of California, 
~105,400 km2 for Colorado divided in two polygons (Figure 1 
left: ~64,700 km2 and right: ~40,700 km2), and ~43,000 km2 for 
terrestrial areas of Florida (Figure 1).

environmental Variables
Capturing fine-scale features of the landscape to understand the 
occurrence of pathogens is challenging and usually restricted 
to small study areas (27). A valuable alternative to landscape 
characterization is the use of satellite-derived remote sensing 
imagery. All objects emit radiation, at different intensities and 
wavelengths (28). This radiation can be characterized using 
satellite imagery from, for example, the MODerate-resolution 
Imaging Spectroradiometer sensor in the Terra satellite (29). 
These images offer low cost broad spatial coverage environmental 
information in the form of vegetation indexes (27), such as the 
Normalized Difference Vegetation Index (NDVI). The NDVI has 
proven representative of photosynthetic activity, biomass, net 
primary production, soil features, precipitations and humidity, 
and terrestrial landscapes in general. Thus, NDVI values have 
been associated with the distributional ecology and population 
dynamics of plants, invertebrates, birds, amphibians, ungulates, 
primates, carnivores, rodents, and reptiles in natural ecosystems; 

NDVI also provides information on changes in land use and soil 
humidity (27, 30).

Normalized Difference Vegetation Index data collected at 
250 m spatial resolution at 16-day composites during 2005 in 
raster format were available from the Global Land Cover Facility 
(29). The resulting 21 original NDVI layers were reduced in 
number and collinearity via a principal component analysis 
(PCA) using ArcGIS 10.3 (31). We obtained new uncorrelated 
principal components (PC) with their respective descriptive 
values (e.g., correlation coefficients, eigenvalues, and eigenvec-
tors). For the niche modeling procedure, we selected the PC 
summarizing at least 90% of the overall variance to capture a 
considerable amount of information from the original NDVI 
variables. The first three components were then utilized as axes 
to generate a three-dimensional environmental space as a proxy 
of Hutchinson’s duality to extract the environmental informa-
tion of the geography (32) and were used to display occurrences 
in environmental terms. This environmental space was devel-
oped using NicheA 3.0 software (33), available at http://nichea.
sourceforge.net/.

ecological niche Modeling
We used Maxent 3.3.3k to generate the ecological niche models. 
Maxent is a machine learning tool developed to forecast species 
distributions with incomplete data (34). Maxent estimates the 
most uniform distribution of species occurrences compared with 
the available environmental background in the study area given 
constraints derived from the environmental data (35). Maxent 
also uses a regularization coefficient to increase or reduce the fit 
of the models to the available data, with a default value of 1 (36). 
We tested 20 regularization coefficients to find the best fit for our 
model. We used Akaike information criterion values corrected 
by sample sizes (AICc) to discriminate among models (37). 
This evaluation was developed using ENMTools 1.4.4 software 
(38). Specific settings in the final Maxent model included 100 
bootstrap replicates with random seed and logistic output. The 
average of replicates in continuous format was converted to a 
binary format using a threshold value of E = 5%; this threshold 
aims to remove 5% of the calibration occurrences with the lowest 
logistic value (8).

Occurrence data were split into the three buffered study 
regions (i.e., California, Colorado, and Florida). Models were 
calibrated with all the occurrences in two regions, models were 
then transferred (neither clamping nor extrapolation allowed 
in Maxent) to the remaining region (39), and were then evalu-
ated with the occurrences from such region (40). For example, 
we calibrated models using occurrence data for T. gondii from 
two regions (e.g., California and Florida) and evaluated predic-
tions with occurrence data in the third region (e.g., Colorado). 
For Bartonella spp., due to the lack of occurrence records in 
Florida, we used one site (i.e., Colorado) to predict the other 
(i.e., California) and vice versa. This split configuration assured 
a fair evaluation of the models by using data independent from 
that used during model calibration. Maxent predictions were 
tested between the three study regions using partial receiver 
operating characteristic (Partial ROC) (41), a metric developed 
for ecological niche models to assess the correct prediction 
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FigUre 1 | Study areas and environmental variables employed in this study. Model calibration areas were defined in California (a), Colorado (B), and Florida  
(c) based on a buffer zone estimated from the average distance among occurrences. Left: occurrences for Toxoplasma gondii (yellow points), Bartonella spp. (blue 
points), and co-infections (red points) are displayed on a surface resembling landscape vegetation in the form of Normalized Difference Vegetation Index (NDVI) data. 
Right: original NDVI data were transformed to uncorrelated variables via principal component analysis. The variability across the study areas is summarized in 
principal components 1, 2, and 3, represented by the colors red, green, and blue, respectively.
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of independent evaluation occurrences and the proportion of 
area predicted suitable, against a null model (42). Partial ROC 
analyses were conducted using the Partial ROC metric (41, 43); 

parameters included 5% of omission, α < 0.05, 50% of random 
occurrences used for model testing, and 100 bootstrap itera-
tions (41). Partial ROC estimates area under the curve (AUC) 
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FigUre 2 | Distribution of Toxoplasma gondii and Bartonella spp. in a three-dimensional representation of the environmental space. All the available occurrences of 
T. gondii (green polyhedron) and Bartonella spp. (pink polyhedron) were displayed based on environmental values (gray points) available in California, Colorado, and 
Florida. Axes (red arrows) were constructed using principal components (PC) 1 (X axis), PC 2 (Y axis), and PC 3 (Z axis), which are the same variables represented in 
the right side of Figure 1. (a) View of the occupied niches based on PC 1 and 2. (B) View of niches based on PC 1 and 3. (c) View of niches using PC 2 and 3.  
(D) Three-dimensional view of species distributions based on PC 1, 2, and 3.
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ratio values ranging between 0 and 2, with values above 1 (null 
model) resembling predictions better than by random expecta-
tions that are considered statistically significant (42).

resUlTs

Environmental variables showed heterogeneous landscapes in 
spatial terms and collinearity among NDVI variables in tem-
poral terms (Figure  1; Table S1 in Supplementary Material). 
For example, NDVI values in the summer (e.g., Julian days 
193 and 209 in July in Table S1) showed low correlation with 
greenness with data from winter (e.g., days 1 and 17 in January 
in Table S1 in Supplementary Material). However, consecu-
tive 16-day NDVI comparisons showed high correlation (e.g., 
Julian days 1 and 17, 17 and 33, and so on), with correlation 
coefficients ranging between 0.74 and 0.83 for comparisons 
between consecutive 21 layers (Table S1 in Supplementary 
Material). The first ten PC accumulated 90.77% of the overall 
information contained in the original 21 NDVI variables and 
were used for modeling (Table S2 in Supplementary Material). 

The first three components showed high environmental vari-
ability inside and between study areas, contained most of the 
information (80.37%) from the NDVI variables (Tables S2 and 
S3 in Supplementary Material), and showed differences in veg-
etation cover composition in California, Colorado, and Florida 
(Figure 1, right). Further, these three components were used to 
display the distribution of species in a three-dimensional virtual 
representation of the environmental space (Figure 2); here, the 
environmental distribution of both T. gondii and Bartonella spp. 
showed high overlap, despite the broader use of environmental 
conditions by T. gondii (Figure 2).

In all, 328 samples were positive for T. gondii, including 129 
bobcats and 199 pumas across California, Colorado, and Florida 
(Figure  1). Two hundred thirty-four samples were positive for 
Bartonella spp. in 196 bobcats and 38 pumas from California and 
Colorado (Figure 1; Table 1). Models were calibrated using 291 
single occurrence records for T. gondii and 189 occurrences for 
Bartonella spp. Models for both species required regularization 
coefficients other than the default value of 1 to have the best fit 
and lowest AICc: T. gondii required a regularization coefficient 
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TaBle 1 | Positive cases by host (bobcat and puma), parasite (Toxoplasma 
gondii and Bartonella spp.), and region.

infection host california colorado Florida Total

T. gondii Bobcat 51 10 5 66
Puma 69 82 16 167
Total 120 92 21 233

Bartonella spp. Bobcat 102 31 N/A 133
Puma 5 1 N/A 6
Total 107 32 N/A 139

Co-infections Bobcat 46 17 N/A 63
Puma 22 10 N/A 32
Total 68 27 N/A 95

Samples from Florida were not tested for Bartonella spp.
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of 1.2, while the Bartonella spp. model required a regularization 
coefficient of 1.3 (Table S4 in Supplementary Material). Once cali-
brated, model evaluations showed that predictions between states 
were significantly better than a random model (AUC ratios above 1, 
p < 0.05) when data of T. gondii from California and Colorado 
were used to predict the location of this parasite in Florida (mean 
AUC ratio = 1.056, SD = 0.044), from Colorado and Florida to 
California (mean AUC ratio = 1.089, SD = 0.066), and when data 
from California and Florida were used to predict occurrences 
in Colorado (mean AUC ratio = 1.247, SD = 0.085) (Figure S1 
in Supplementary Material). Bartonella spp. models calibrated  
in California were significantly predictive of the occurrence of 
this parasite in Colorado with AUC ratios above 1; similarly, 
models calibrated in Colorado significantly predicted Bartonella 
spp. in California (mean AUC ratio  =  1.107, SD  =  0.029)  
(Figure S1 in Supplementary Material).

The T. gondii model identified suitable areas for this parasite, 
but also showed heterogeneity in uncertainty estimations across 
areas (i.e., predictions ranged from low uncertainty to high 
uncertainty in each area), with SD ranging between 8.13 × 10−6 
(lowest) to 0.42 (highest; Figure 3). Binary models for T. gondii 
showed high proportion of suitability mainly in California 
(43.7% of the area) as compared with Colorado (35.8%) and 
Florida (20.5%); these predictions came with some variation in 
certainty (Figure 3A). Models also predicted isolated and limited 
suitability for both regions in Colorado, also with some variation 
evident in uncertainty, although these models were more confi-
dent in the places where T. gondii is unlikely to occur (Figure 3B). 
Florida showed wide suitability for this parasite across all the 
study areas (but with high uncertainty in suitability), except for 
consistent unsuitable predictions in Lake Okeechobee region 
(Figure 3C). Models for Bartonella spp. had a similar variation 
in predictions of suitable areas of pathogen occurrence, and 
uncertainty in predictions (SD ranging from 2.77 × 10−6 to 0.39; 
Figure 4). Our Bartonella spp. models predicted extensive suit-
ability throughout California, with high certainty in unsuitable 
areas for Bartonella spp. occurrence (Figure  4A). It is notable 
that the area of uncertainty for Bartonella spp. in California was 
greater than for T. gondii (see Figures 3A vs. 4A). In Colorado, 
models predicted low Bartonella spp. suitability in the study area 
to the west with high certainty, but higher suitability to the east 
(Figure 4B). Even when no pathogen records were available to 

us for Bartonella spp. in Florida, our model predicted suitable 
conditions in specific sites across this region (Figure  4C) and 
with less uncertainty than T. gondii. In general terms, however, 
Bartonella spp. was predicted to be less widespread, as compared 
with T. gondii in Colorado and Florida.

DiscUssiOn

Here, we illustrate the utility of a cutting-edge analytical tool that 
can be used to advance the understanding of the epidemiology 
of pathogens with complex lifecycles. Our modeling framework 
attempted to reconstruct the occupied niche of the parasites in 
question [sensu (8)]—the subset of the environmental space 
occupied by the species in the area studied. That is to say, the 
host species included in the study have broad home ranges 
[puma  ~48.6  km2, bobcat  ~30.7  km2 (44)] and occur through 
the Americas from Canada to Patagonia (puma) or across North 
America (bobcats), a typical characteristic of Felidae (45, 46). 
Thus, our representation of patterns of suitable areas for parasites 
is a high-resolution site and time specific reconstruction of risk. 
We found that although exposure to both T. gondii and Bartonella 
spp. was generally widespread in the study areas (Figure  1),  
T. gondii showed a broader distribution across environmental 
conditions than did Bartonella spp. (Figure  2), suggesting a 
broader niche for T. gondii. Although Bartonella spp. was not 
tested in the Florida samples, our niche model experiments 
suggest suitability in diverse areas of this state. We found that 
our models were most accurate in predicting areas where these 
parasites were least likely to occur. Specifically, the uncertainty, 
expressed as variability found in our Maxent predictions was the 
smallest for areas predicted unsuitable for T. gondii and Bartonella 
spp. (Figures 3 and 4).

Ecological niche models, and NDVI satellite imagery, proved to 
be useful to characterize the potential distribution of the selected 
pathogens at the landscape level, generating distribution maps 
for T. gondii and Bartonella spp. from exposure in wild felids. 
NDVI captures with high accuracy information of soil features, 
temperature conditions, and changes of humidity and precipita-
tions as expressed in the structure of local vegetation (27); thus, 
allowing to capture the environmental signature of Bartonella-
positive reservoirs associated with increments on precipitation, 
as is the case for some Bartonella species (47, 48). Environmental 
variables showed collinearity, and thus, using PC instead of the 
original NDVI variables mitigated Maxent overfit by reducing 
correlation and number of parameters employed by the model. 
The PCA allowed us to capture landscape variation, which was 
evident when the first three PC were displayed for each study 
area (Figure 1, right), suggesting that NDVI is a powerful tool for 
epidemiological studies aiming to forecast disease transmission 
risk at a habitat level (i.e., 250 m spatial resolution).

We had predictive success when applying ENM from one 
region to other, even though there were marked environmental 
differences among regions (Figure 1). Nevertheless, although all 
predictions among regions were significant, not all of our sites 
were equal in predictive abilities (Figure S1 in Supplementary 
Material). This highlights the key role that environment similar-
ity can play between calibration and projection areas in Maxent. 
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FigUre 3 | Ecological niche model of Toxoplasma gondii. Binary maps of T. gondii suitability (red) were developed for areas in California (a), Colorado (B), and 
Florida [(c); left panel]. Uncertainty estimations based on the suitability differences among models (right panel) show areas of low (cyan) and high (pink) uncertainty 
as follows: California (a) from 3.31 × 10−5 to 0.42, Colorado (B) from 9.96 × 10−6 to 0.32, and Florida (c) from 8.13 × 10−6 to 0.3.
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Potentially this supports the idea that Maxent predictions are 
more consistently suited for transference to similar environmental 
conditions (39). Further, we also show that NDVI environmental 
data are robust for reconstructing the environmental conditions 
suitable for pathogens, similar to more routine approaches using 
climate variables.

ENM applied to environmental dependent pathogens 
facilitates the identification of habitats of risk where collection 
of information has been lacking maybe due to limited sampling 
effort or other factors related to the detection of pathogens. It 
implies an advancement in understanding the distribution of 
pathogens beyond the use of data of their vectors or reservoirs. 
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FigUre 4 | Ecological niche model of Bartonella spp. Binary maps of Bartonella spp. suitability (red) were developed for areas in California (a), Colorado (B), and 
Florida [(c); left panel]. Uncertainty estimations based on the suitability differences among models (right panel) show areas of low (cyan) and high (pink) uncertainty 
as follows: California (a) from 5.77 × 10−6 to 0.37, Colorado (B) from 2.75 × 10−6 to 0.39, and Florida (c) from 8.59 × 10−6 to 0.39.
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For example, T. gondii oocysts can be viable in the environment 
for up to 18  months (49), or potentially more importantly for 
these large felids, in their prey (rodents, lagomorphs, and cer-
vids). Bartonella spp. easily survive in fleas whose abundance is 
associated with increasing humidity (50), and with microclimate 

conditions indirectly represented by NDVI, which could deter-
mine the distribution of Bartonella spp. between wildlife and 
domestic reservoirs (10). The ENM framework used here, includ-
ing freely available vegetation data, with the presence-background 
Maxent algorithm, has the potential to be used to explore other 
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environmental dependent pathogens. Our suitability maps of  
T. gondii and Bartonella spp. suggest that risk may exist in broad 
areas in the three states studied. Potential transmission may occur 
in the areas predicted suitable if hosts, the pathogen, and the vec-
tors converge (Figures 3 and 4).

Despite the evident benefits, our approach is a simplification 
of two complex parasite systems. We based our interpretation of 
the pathogens’ niche from infected wild felids (i.e., bobcats and 
puma) in their sylvatic habitats, but may be missing other pieces 
of the epidemiological triangle. For instance, the distribution of 
intermediate hosts for T. gondii (such as rodents, lagomorphs, and 
cervids) (13) was not included in our models, nor was the presence 
of domestic cats (another definitive host) owing to insufficient 
data across all study areas. For Bartonella spp., we did not account 
for presence of vectors (e.g., fleas) (10), and thus, even when we 
anticipate suitable conditions for the parasite occurrence, suitable 
conditions for vectors could limit the occurrence of Bartonella spp. 
in certain areas. Moreover, we modeled Bartonella spp. at genus 
level under the assumption of niche conservatism, which proposes 
that species phylogenetically close will share ecological niche 
characteristics, and that intraspecific differentiation of niches is 
challenging (51, 52). Although our diagnostics tests have proven 
effective for these wild felids, there could exist a small number 
of false-positive and false-negative results, we assumed that this 
proportion would not change the general patterns of the findings.

Ecological niche models of both parasite species based on hosts 
from wild areas revealed that our models were a proxy of the sylvatic 
cycle of both parasites; however, these pathogens might also occur 
in urban areas, which are not often frequented by puma or bobcats. 
T. gondii can also occur in urban environments given its adaptabil-
ity and host generalization as a result of its broad ecological niche 
(53). Nonetheless, Lélu et al. (54) suggest T. gondii is likely to be less 
prevalent in urban areas owing to reduced transmission through the 
food chain, a conclusion supported by our work in these study areas 
where domestic cats are restricted to urban areas, wild felids avoid 
urban areas, and T. gondii has a higher prevalence in wild felids 
(12). Conversely, our previous research shows a strong positive 
relationship between urbanization and exposure to Bartonella spp. 
(12), suggesting that these bacteria persist in stable homogeneous 
urban landscapes. Future research should include the urban com-
ponent in the distribution of T. gondii and Bartonella spp. parasites 
for a broader characterization of the ecological potential of both 
parasites in natural and impervious surfaces in North America.

Previous studies have demonstrated niches of pathogens inde-
pendent of potential reservoir distributions (55), thus showing 

that the modeling of pathogens-only provides accurate forecasts 
of disease transmission risk. These cutting-edge available tools 
of disease modeling are worthy of exploration to generate 
further fine-scale hypotheses to advance our knowledge of the 
environmental component of infectious disease transmission 
chains (9). Although the occurrences of the two pathogens were 
explored in wildlife, they are also zoonotic, so the results of this 
study have implications for human, as well as domestic and other 
wild animals’ health. NDVI and longitudinal epidemiological 
studies can help address questions not only about the prevalence 
of Bartonella spp. and T. gondii in the environment, but also can 
allow us to identify suitable habitats for their presence, and in 
turn, forecast into the future as these methods can incorporate the 
effects of land use change to understand the ecology of infectious 
diseases, particularly environmentally dependent forms, before 
outbreaks occur.
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