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Abstract: Impairment in the hypothalamic-pituitary-adrenal (HPA) axis and cortisol pathway may
be major contributing factors to the common pathogenesis of major depressive disorders (MDD) and
type 2 diabetes (T2D). A significant player in the neuroendocrine HPA axis and cortisol response is the
glucocorticoid receptor (GR), which is encoded by the nuclear receptor subfamily 3 group C member
(NR3C1) gene. Variants in the NR3C1 gene have been reported in patients with MDD and obesity
and found to confer reduced risk for quantitative metabolic traits and T2D in Cushing syndrome;
variants have not been reported in T2D and MDD-T2D comorbid patients. We studied 212 original
Italian families with a rich family history for T2D and tested 24 single nucleotide polymorphisms
(SNPs) in the NR3C1 gene for linkage to and linkage disequilibrium (LD) with T2D and MDD across
different inheritance models. We identified a total of 6 novel SNPs significantly linked/in LD to/with
T2D (rs6196, rs10482633, rs13186836, rs13184611, rs10482681 and rs258751) and 1 SNP (rs10482668)
significantly linked to/in LD with both T2D and MDD. These findings expand understanding of the
role that NR3C1 variants play in modulating the risk of T2D-MDD comorbidity. Replication and
functional studies are needed to confirm these findings.

Keywords: nuclear receptor subfamily 3 group C member; NR3C1; glucocorticoid receptor; GR;
major depressive disorder; MDD; type 2 diabetes; T2D; cortisol; hypothalamic-pituitary-adrenal axis;
HPA axis; comorbid; comorbidity; mental-metabolic

1. Introduction

Major depressive disorder (MDD) and type 2 diabetes (T2D) are two common complex
multifactorial disorders that share several genetic and environmental risk factors such as
hypercortisolism and related genes’ risk variants within the stress response and neuroen-
docrine hypothalamic-pituitary-adrenal axis (HPA) [1]. Stress hyperactivates the HPA axis
by triggering the secretion of the hypothalamic corticotropin-releasing hormone (CRH).
CRH stimulates the anterior pituitary to release the adrenocorticotropin hormone (ACTH),
which causes the adrenal secretion of cortisol [2]. Depression is associated with increased
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cortisol levels [3], and hypercortisolism contributes to serotonin dysfunction and mood dis-
turbances [4] as well as to hyperglycemia and insulin resistance [5–7], which are precursors
of T2D [8]. Impairment in the cortisol pathway may be a major contributing factor to the
common pathogenesis of MDD and T2D [9]. A significant player in the cortisol pathway is
the glucocorticoid receptor (GR), which is expressed ubiquitously and mediates the HPA
axis negative feedback at the hypothalamus and pituitary level [10], and which is encoded
by the NR3C1 gene [11]. Epigenetic changes of the NR3C1 gene affect coping style and de-
pression vulnerability [12–14]. Variants in the NR3C1 gene have been reported to contribute
to: the risk for MDD [15]; antidepressants response [16]; metabolic traits or phenotypes,
such as insulin resistance [17]; reduced risk for T2D in Cushing syndrome [18]; reduced
risk for quantitative metabolic traits (e.g., fasting plasma glucose, glycated hemoglobin),
in subjects stratified for the metabolic ineffective cortisone, a cortisol metabolite [19]; and
increased risk for T2D in adults with decreased birth length [20]. Of note, activation of the
glucocorticoid receptor in mice by 17-hydroxyprogestrone and dexamethasone mediates
hyperglycemia/insulin resistance [21] and depression-like state [22] respectively. To our
knowledge, no prior study has reported a positive risk role for the qualitative familial
T2D and MDD phenotypes. We thus hypothesized that the NR3C1 gene might underlie
the MDD-T2D comorbidity and aimed at investigating whether NR3C1 variants might
predispose to familial T2D, MDD, and/or MDD-T2D comorbidity in affected families.

2. Results

We identified in our cohort of 212 Italian families novel linkage, linkage disequilibrium
(LD, i.e., linkage + association), and association of NR3C1-variants to both T2D and T2D-
MDD comorbidity. Of 24 studied variants in the NR3C1 gene, 6 independent single
nucleotide polymorphisms (SNPs) were significantly linked to/in LD or associated with
T2D (rs6196, rs10482633, rs13186836, rs13184611, rs10482681, and rs258751), and 1 SNP
(rs10482668) significantly linked to/in LD or associated with both T2D and MDD (p < 0.05).
(Figure 1). The SNPs were statistically significant across different models: for T2D: D1
(rs6196, rs10482681, rs10482668, rs13186836, and rs13184611), D2 (rs10482681, rs10482668,
rs10482633, rs13186836, and rs13184611), R1 (rs258751 and rs10482668), R2 (rs258751 and
rs10482668); for MDD: D1 and R1 (rs10482668); and the latter rs10482669 resulted comorbid
for MDD-T2D (Table 1).

Table 1. Risk single nucleotide polymorphisms in NR3C1 gene linked/in linkage disequilibrium
to/with major depressive disorder and/or type 2 diabetes.

Disease Model 1 SNP Position Ref Alt Risk
Allele Consequence LD Block Reported in MDD

or T2D?

MDD D1, R1 rs10482668 143313762 T A T Intronic Independent Novel

T2D

D1 rs6196 143281925 A G A Synonymous Independent Yes (MDD) [23]
R1, R2 rs258751 143282715 G A G Synonymous Independent Novel

D2 rs10482681 143299858 A C C Intronic Independent Novel
D1, D2,
R1, R2 rs10482668 143313762 T A T Intronic Independent Novel

D1, D2 rs10482633 143370968 T G G Intronic Independent Novel
D1, D2 rs13186836 143418420 T C C Intronic NA Novel
D1, D2 rs13184611 143422369 C T T Intronic NA Novel

Legend: 1 Models: D1: dominant, complete penetrance, D2: dominant, incomplete penetrance, R1: recessive, com-
plete penetrance, R2: recessive, incomplete penetrance. The comorbid SNP is highlighted in bold. Abbreviations:
SNP, single nucleotide polymorphism; LD, linkage disequilibrium; MDD, major depressive disorder, T2D, type
2 diabetes.
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Figure 1. Major depressive disorder and type 2 diabetes NR3C1 risk single nucleotide polymor-
phisms linkage and linkage disequilibrium analysis results. Legend: For each significant risk single 
nucleotide polymorphism (SNP) in the NR3C1 gene, we present the –log10(P) as a function of each 
test statistic (Linkage, Linkage Disequilibrium (LD)|Linkage, LD|NoLinkage, Linkage|LD, and LD 
+ Linkage) and label the inheritance model: D1: dominant, complete penetrance, D2: dominant, in-
complete penetrance, R1: recessive, complete penetrance, R2: recessive, incomplete penetrance. For 
each single nucleotide polymorphism (SNP), we present the most significant test statistics (under-
lined) across the significant models. The bolded SNP is comorbid for major depressive disorder and 
type 2 diabetes. 

3. Discussion 
Cortisol is a pleiotropic glucocorticoid that upon binding to its widely distributed 

GR, mediates the adaptive, physiologic, or pathologic responses to chronic stress, such as 
mood changes and hyperglycemia [24–27]. Genes encoding components throughout the 
HPA can therefore be considered candidate genes for mood disorders (e.g., depression) 
and metabolic abnormalities (e.g., type 2 diabetes). We have previously reported that the 
CRHR2 [28] and the melanocortin receptor genes (MC1R-MC5R) [29] are linked to and 
associated with the comorbidity of T2D and MDD. In this study, we extended this linkage 
and association to the glucocorticoid receptor gene (NR3C1), which is an important com-
ponent of the cortisol pathway. We have reported finding six NR3C1 variants that are 
significantly linked/in LD to/with T2D and one variant significantly linked/in LD to/with 
both MDD and T2D across different inheritance models. Except for rs6196, these variants 
are novel, and have not previously been reported with either MDD and/or T2D. Of note, 
the risk allele (A) of the T2D-risk rs6196 variant in our study was previously reported in 
a haplotype in Caucasian patients with MDD [23], but this association was not consistent 
in other studies from both similar [30–32] and different ethnicities [33], probably due to 
different sampled sizes. Of note, heterozygous genotypes including the same T2D-risk 
variant (rs6196, allele A) were previously found to be associated with metabolic syndrome 
[34]. Moreover, in low-birth weight children, those with a haplotype carrying the risk al-
lele A and 1 cm of decreased length at birth had higher predisposition for impaired 

Figure 1. Major depressive disorder and type 2 diabetes NR3C1 risk single nucleotide polymor-
phisms linkage and linkage disequilibrium analysis results. Legend: For each significant risk single
nucleotide polymorphism (SNP) in the NR3C1 gene, we present the –log10(P) as a function of each
test statistic (Linkage, Linkage Disequilibrium (LD)|Linkage, LD|NoLinkage, Linkage|LD, and
LD + Linkage) and label the inheritance model: D1: dominant, complete penetrance, D2: dominant,
incomplete penetrance, R1: recessive, complete penetrance, R2: recessive, incomplete penetrance. For
each single nucleotide polymorphism (SNP), we present the most significant test statistics (under-
lined) across the significant models. The bolded SNP is comorbid for major depressive disorder and
type 2 diabetes.

3. Discussion

Cortisol is a pleiotropic glucocorticoid that upon binding to its widely distributed GR,
mediates the adaptive, physiologic, or pathologic responses to chronic stress, such as mood
changes and hyperglycemia [24–27]. Genes encoding components throughout the HPA can
therefore be considered candidate genes for mood disorders (e.g., depression) and metabolic
abnormalities (e.g., type 2 diabetes). We have previously reported that the CRHR2 [28] and
the melanocortin receptor genes (MC1R-MC5R) [29] are linked to and associated with the
comorbidity of T2D and MDD. In this study, we extended this linkage and association to
the glucocorticoid receptor gene (NR3C1), which is an important component of the cortisol
pathway. We have reported finding six NR3C1 variants that are significantly linked/in LD
to/with T2D and one variant significantly linked/in LD to/with both MDD and T2D across
different inheritance models. Except for rs6196, these variants are novel, and have not
previously been reported with either MDD and/or T2D. Of note, the risk allele (A) of the
T2D-risk rs6196 variant in our study was previously reported in a haplotype in Caucasian
patients with MDD [23], but this association was not consistent in other studies from both
similar [30–32] and different ethnicities [33], probably due to different sampled sizes. Of
note, heterozygous genotypes including the same T2D-risk variant (rs6196, allele A) were
previously found to be associated with metabolic syndrome [34]. Moreover, in low-birth
weight children, those with a haplotype carrying the risk allele A and 1 cm of decreased
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length at birth had higher predisposition for impaired glucose tolerance or T2D later in
life [20]. As glucose intolerance and metabolic syndrome are, respectively, a pre-diabetes
and T2D associated phenotypes, the above-mentioned findings are consistent with the
results from our study. Of interest, a study reported that the NR3C1 variant was associated
with reduced risk of T2D in patients with Cushing syndrome [18].

The mechanism by which these variants modulate the risk of T2D and/or MDD
could not be fully determined. In fact, our in silico analysis (splicing [SpliceAI] [35],
transcription-factor binding [SNPnexus] [36], SNP function prediction [37], regulatory
potential [RegulomeDB] [38], and miRNA binding [mirSNP] [39]) predicted no functional
impact on the GR protein. However, upon subsequent analysis, in the Italian Tuscany
population, the two T2D-risk variants rs6196 and rs10482633 were in significant LD with the
NR3C1-variant rs41423247 (D’ = 0.9, p < 0.0001 and D’ = 1, p < 0.0001, respectively), which
is known to be associated with MDD [40], pregnancy-related hyperglycemia [41], metabolic
syndrome [34,42], and obesity and impaired glucose tolerance [34], thereby highlighting
the potential role of NR3C1 and its reported genetic variants in the mental-metabolic comor-
bidity. If the variants in our study are found to be associated with structural or functional
impairment of NR3C1 and defective binding to circulating cortisol, it could potentially
explain the MDD-related [4] and T2D-related [5–7] traits associated with hypercortisolism.
One plausible explanation might be the loss of negative feedback inhibition mediated by
NR3C1 at the level of the hypothalamus and pituitary gland. This might result in chronic
hyperactive hypercortisolism and the consequential damaging effects that it may cause. It
also is possible that the risk role played by the genetic variations detected in our study is
indirectly mediated by the presence of LD with other nearby variants; however, functional
studies are needed to fully elucidate such mechanisms.

4. Materials and Methods

We recruited 212 families originating from the Italian peninsula ascertained for T2D
and rich family history of T2D. The families were also afflicted with several cases of MDD,
diagnosed according to DSM-IV criteria. Given that the families are three-generation
Italians, that uncertain paternity cases as well as adopted cases and identical twins were
excluded, and especially that the families derive from the gene pool of a peninsular pop-
ulation, the chance of identifying genetic markers in linkage and LD (i.e., linkage + as-
sociation) for the ascertained phenotypes is high. We genotyped 24 SNPs within the
NR3C1 gene using microarray. We first excluded genotyping and Mendelian errors us-
ing PLINK [43]. We then analyzed the SNPs for 2-point parametric testing (for T2D and
MDD) using Pseudomarker [44], which is a powerful tool for joint exploration of linkage
and LD. Two-point analysis entails testing each SNP individually against the putative
disease locus. We tested the SNPs for parametric linkage to and/or LD with T2D and
MDD across the following models: dominant with complete penetrance (D1), dominant
with incomplete penetrance (D2), recessive with complete penetrance (R1), and reces-
sive with incomplete penetrance (R2), p-values <0.05 were considered significant. To
evaluate the presence of LD blocks (correlation of r2 ≥ 0.9) among the risk variants, we
analyzed the LD matrix of the Tuscany Italian population derived from the 1000 Genomes
Project (https://www.internationalgenome.org/data-portal/population/TSI (accessed on
28 September 2021)) [45]. This analysis allows the identification of potential risk variants
within the same LD block and provides information regarding the gene components confer-
ring linkage or LD for each disorder or their comorbidity. If there are no LD blocks present
among the risk variants, the variants will be defined as “independent”, thus contributing
to the phenotype under study independently from each other as well as being potentially
subject to recombination reciprocally from each other.

5. Conclusions

We report novel linkage, linkage + association, and association of the NR3C1 gene to
T2D and T2D-MDD comorbidity. Our results expand the understanding of the role that
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NR3C1 variants play in modulating the risk of T2D-MDD comorbidity. Replication and
functional studies are needed to confirm these findings.
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