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The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and
successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from
multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as
filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize
linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as
simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore,
a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve
the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite
Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from “BCI Competition
III Dataset IVa” and “BCI Competition IV Database 2a.”The results show that our proposed three methods yield higher accuracies
compared with prevailing approaches such as CSP and CSSP.

1. Introduction

With the development of the simpler brain rhythm sampling
technique and powerful low-cost computer equipment over
the past two decades, a noninvasive brain-computer interface
(BCI) called electroencephalography (EEG) has attracted
more andmore attention than other BCIs such asmagnetoen-
cephalography (MEG), functional magnetic resonance imag-
ing (fMRI), and near infrared spectroscopy (NIRS). Among
various EEG signals, certain neurophysiological patterns can
be recognized to determine the user’s intentions such as
visual evoked potentials (VEPs), P300 evoked potentials, slow
cortical potentials (SCPs), and sensorimotor rhythms. EEG
brings hope to patients with amyotrophic lateral sclerosis,
brainstem stroke, and spinal cord injury [1]. Motor imagery
(MI), which is known as the mental rehearsal of a motor
act without real body movement execution, represents a new
approach to access the motor system for rehabilitation at
all stages of the stroke recovery. People with severe motor
disabilities can use EEG-BCI to realize the communication

and control and even to restore their motor disabilities [2, 3].
Therefore, an increasing number of researchers are working
on MI-BCI for stroke patient rehabilitation [4, 5].

MI-BCI concentrates on sensorimotor 𝜇- or 𝛽-rhythms
that has the phenomenon known as event-related synchro-
nization (ERS) or event-related desynchronization (ERD).
However, the MI pattern recognition is still a challenge
due to the low signal-to-noise ratio, highly subject-specific
data, and low processing speed. For these reasons, more and
more digital signal processing (DSP) methods and machine
learning algorithms are applied to the MI-BCI analysis.
Unlike static signals such as images and semantics, the EEG
signals are dynamic that lie in a spatiotemporal feature space.
Thus a large variety of feature extraction algorithms are
proposed, including power spectral density (PSD) values [6,
7], autoregressive (AR) parameters [8, 9], and time-frequency
features [10]. For MI-BCI pattern recognition, there are
mainly three types of methods: autoregressive components
(AR) [11], wavelet transform (WT) [12, 13], and CSP [14,
15]. Because of effectiveness and simplicity in extracting
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spatial features, CSP becomes one of the most popular and
successful solutions for MI-BCI analysis according to the
winners’ methods analysis of “BCI Competition III Dataset
IVa” [16, 17] and “BCI Competition IV Database 2a” [18, 19].
Therefore, many researchers devote theirselves to improving
the original CSP method for better performances, such as
common spatiospectral pattern (CSSP) [20], common sparse
spectral spatial pattern (CSSSP) [21], subband common spa-
tial pattern (SBCSP) [22], filter bank common spatial pattern
(FBCSP) [23], wavelet common spatial pattern (WCSP) [24],
and separable common spatiospectral patterns (SCSSP) [25].
Most of these improved CSP methods fuse spectral and
spatial characteristics in the spatiospectral feature space and
finally achieve success by comparison experiments.

Despite its effectiveness in extracting features of MI-BCI,
CSP needs a lot of preprocessing and postprocessing such
as filtering, demean, and spatiospectral feature fusion, which
influence the classification accuracy easily. In this paper, we
utilize linear dynamical systems (LDSs) for processing EEG
signals in MI-BCI. Although LDSs succeed in the field of
control, to the best of our knowledge, this model has barely
been tried in the feature extraction of EEG analysis so far.
ComparedwithCSPmethod, LDSs have the following advan-
tages: first, LDS can simultaneously generate spatiospectral
dual-feature matrix; second, there is no need to preprocess
or postprocess signals, and the raw data can be directly fed
into the model; third, it is easy to use and of low cost; last, the
extracted features from the LDS are much more effective for
classification.

Furthermore, we apply low-rank matrix decomposition
approaches [26–28] that have the ability to learn represen-
tational matrix even in presence of corrupted data. The
noise of the data can be get rid of, hence to improve the
robustness. However, there are two ways for the EEG low-
rank decomposition. One aims at the EEG raw data; the other
aims at features extracted fromLDSs, which is proposed by us
and called low-rank LDSs (LR-LDSs).

This paper mainly has the following contributions. (1)
We utilize LDSs for MI-EEG feature extraction to solve
the MI pattern recognition problem. (2) Low-rank matrix
decomposition method is applied to improve the robustness
for the raw data analysis. (3) We propose LR-LDSs on finite
Grassmannian feature space. (4) Plenty of comparison exper-
iments demonstrate the effectiveness of these approaches.

The rest of this paper is organized as follows. Section 2
provides LDSs model to realize the feature extraction of EEG
signals. Section 3 presents low-rank matrix decomposition
method for the EEG raw data analysis. Section 4 introduces
LR-LDSs method. Then, the proper classification algorithm
is explained in Section 5. Section 6 compares the three
proposedmethods (LDSs, LR+CSP, and LR-LDSs) with other
state-of-the-art algorithms in different databases. Finally, the
summary and conclusion are presented in Section 7.

2. LDSs Modeling

LDSs, also known as linear Gaussian state-space models,
have been used successfully in modeling and controlling
dynamical systems. In recent few years, more and more

problems extending to computer vision [29, 30], speech
recognition [31], and tactile perception [32] have been solved
by LDSs model. EEG signals are sequences of brain electron
sampling that have typical dynamic textures. We present
the features of EEG dynamic textures by LDSs modeling
and apply machine learning (ML) algorithms to capture
the essence of dynamic textures for feature extraction and
classification.

Let {𝑌(𝑡)}𝑡=1,...,𝜏, 𝑌(𝑡) ∈ 𝑅𝑚 be a sequence of 𝜏 EEG
signal sample at each instant of time 𝑡. If there is a set of 𝑛
spatial filters 𝜑𝛼 : 𝑅 → 𝑅𝑚, 𝛼 = 1, . . . , 𝑛, we have 𝑥(𝑡) =∑𝑘𝑖=1 𝐴 𝑖𝑥(𝑡 − 𝑖) + 𝐵V(𝑡) with 𝐴 𝑖 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×𝑛V , inde-
pendent and identically distributed realization item V(𝑡) ∈𝑅𝑛V and suppose that sequence of observed variables 𝑌(𝑡)
can be represented approximately by function of dimensional
hidden state 𝑥(𝑡), 𝑦(𝑡) = 𝜑(𝑥(𝑡)) + 𝜔(𝑡), where 𝜔(𝑡) ∈𝑅𝑚 is an independent and identically distributed sequence
drawn from a known distribution resulting in a positive
measured sequence. We redefine the hidden state of 𝑥(𝑡) to
be [𝑥(𝑡)𝑇 𝑥(𝑡 − 1)𝑇 ⋅ ⋅ ⋅ 𝑥(𝑡 − 𝑘)𝑇]𝑇 and consider a linear
dynamic system as an autoregressive moving average process
without firm input distribution:

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵V (𝑡) ,
𝑦 (𝑡) = 𝜑 (𝑥 (𝑡)) + 𝜔 (𝑡) ,

𝑥 (0) = 𝑥0
(1)

with V(𝑡), 𝜑(𝑥(𝑡)) distribution unknown, however.
In order to solve the above problem, we can regard it as a

white and zero-meanGaussian noise linear dynamical system
and propose a simplified and closed-form solution:

𝑥 (𝑡 + 1) = 𝐴𝑥 (𝑡) + 𝐵V (𝑡) V (𝑡) ∼ 𝑁 (0, 𝑄) ,
𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝜔 (𝑡) + 𝑦 𝜔 (𝑡) ∼ 𝑁 (0, 𝑅) ,

𝑥 (0) = 𝑥0,
(2)

where 𝐴 ∈ 𝑅𝑛×𝑛 is the transition matrix that describes
the dynamics property, 𝐶 ∈ 𝑅𝑚×𝑛 is the measurement
matrix that describes the spatial appearance, 𝑦 ∈ 𝑅𝑚 is the
mean of 𝑦(𝑡), and V(𝑡) and 𝜔(𝑡) are noise components. We
should estimate the model parameters 𝐴,𝐶,𝑄, 𝑅 from the
measurements 𝑦(𝑡), . . . , 𝑦(𝜏) and transform them into the
maximum-likelihood solution:

�̂� (𝜏) , �̂� (𝜏) , �̂� (𝜏) , �̂� (𝜏)
= argmax
𝐴,𝐶,𝑄,𝑅

𝑝 (𝑦 (1) , . . . , 𝑦 (𝜏)) , (3)

and, however, optimal solutions of this problem bring com-
putational complexity.

We apply matrix decomposition to simplify the com-
putation by the closed-form solution. The singular value
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decomposition (SVD) solution is the best estimate of 𝐶 in
Frobenius function:

�̂� (𝜏) , �̂� (𝜏) = argmin
𝐶,𝑋

‖𝑊 (𝜏)‖𝐹
subject to 𝑌 (𝜏) = 𝐶𝑋 (𝜏) + 𝑊 (𝜏) ;

𝐶𝑇𝐶 = 𝐼.
(4)

Let𝑌 = 𝑈Σ𝑉𝑇, and we get the parameter estimation of �̂�,�̂�:

�̂� = 𝑈,
�̂� = Σ𝑉𝑇, (5)

where �̂� = [𝑋(1), 𝑋(2), . . . , 𝑋(𝜏)]. �̂� can be determined by
Frobenius:

�̂� (𝜏) = argmin
𝐴

𝑋2 (𝜏) − 𝐴𝑋1 (𝜏 − 1)𝐹 , (6)

where 𝑋2(𝜏) = [𝑋(2), 𝑋(3), . . . , 𝑋(𝜏)]. So the solution is in
closed-form using the state estimated

�̂� (𝜏) = [𝑋 (:, 2) 𝑋 (:, 3) ⋅ ⋅ ⋅ 𝑋 (:, 𝜏)]
∗ [𝑋 (:, 1) 𝑋 (:, 2) ⋅ ⋅ ⋅ 𝑋 (:, 𝜏 − 1)]† , (7)

where † denotes matrix pseudoinverse.
We can obtain the result [𝐴,𝐶], a couple of spatiotem-

poral feature matrix. The MATLAB program of LDSs can
be found in Supplementary Material algorithm 1 available
online at http://dx.doi.org/10.1155/2016/2637603.

3. Low-Rank Matrix Decomposition

EEG signals have poor quality because they are usually
recorded by electrodes placed on the scalp in a noninvasive
manner that has to cross the scalp, skull, and many other
layers. Therefore, they are moreover severely affected by
background noise generated either inside the brain or exter-
nally over the scalp. Low-rank (LR) matrix decomposition
can often capture the global information by reconstructing
the top few singular values and the corresponding singular
vectors. This method is widely applied in the field of image
denoising and face recognition (FR). Concretely, low-rank
(LR)matrix recovery seeks to decompose a datamatrix𝑋 into𝐴 + 𝐸, where 𝐴 is a low-rank matrix and 𝐸 is the associated
sparse error. Candès et al. [33] propose to relax the original
problem into the following tractable formulation:

min
𝐴,𝐸

‖𝐴‖∗ + 𝛼 ‖𝐸‖1
s.t. 𝑋 = 𝐴 + 𝐸, (8)

where the nuclear norm ‖𝐴‖∗ (the sum of the singular values)
approximates the rank of 𝐴 and the 𝑙1-norm ‖𝐸‖1 is sparse
constraint.

Then, Zhang and Li [34] decompose each image into
common component, condition component, and a sparse

residual. Siyahjani et al. [35] introduce the invariant com-
ponents to the sparse representation and low-rank matrix
decomposition approaches and successfully apply to solve
computer vision problems. They add orthogonal constraint
to assume that invariant and variant components are linear
independent. Therefore, we decompose EEG signals as a
combination of three components: resting state component,
motor imagery component represented by low-rank matrix,
and a sparse residual. However, in practice, it needs some
digital signal processing (DSP), that is, wavelet transform
or discrete Fourier transform before decomposition. Particu-
larly, raw time-domain signals without any preprocessing are
not suitable for low-rank matrix decomposition directly. The
training dataset 𝑋 can be decomposed by 𝑋 fl 𝐴 + 𝐵 + 𝐸,
where 𝐴 ∈ 𝑅𝑚×𝑛 is a low-rank matrix and collects event-
related EEG signal components, 𝐵 ∈ 𝑅𝑚×𝑛 approximates
invariant and denotes resting state signal components that
are sampled by subjects without any motor imagery, and 𝐸 ∈𝑅𝑚×𝑛 is the matrix of sparse noise.Therefore, training dataset
can be decomposed as the following formulation:

𝑋 fl 𝐴 + 𝐵 + 𝐸. (9)

On ideal condition, each sampling channel of subject’s
brain EEG signals in resting state is similar. In other words,
sum of each different 𝐴 raw is minimum. 𝐵 should add
common constraint as the following formulation:

∑
𝑖 ̸=𝑗

𝐵𝑖 − 𝐵𝑗2𝐹 . (10)

We propose optimization problem formulation as

min
𝐴,𝐵,𝐸

‖𝐴‖∗ + 𝛼 ‖𝐸‖1 + 𝛽∑
𝑖 ̸=𝑗

𝐵𝑖 − 𝐵𝑗2𝐹
s.t. 𝑋 = 𝐴 + 𝐵 + 𝐸.

(11)

Then, augmented Lagrange multiplier (ALM) [36]
method is utilized to solve the above problem. The
augmented Lagrangian function 𝐿(𝐴, 𝐵, 𝐸, 𝜆) is given
by

𝐿 (𝐴, 𝐵, 𝐸, 𝜆) = ‖𝐴‖∗ + 𝛼 ‖𝐸‖1 + 𝛽∑
𝑖 ̸=𝑗

𝐵𝑖 − 𝐵𝑗2𝐹
+ ⟨𝜆,𝑋 − 𝐴 − 𝐵 − 𝐸⟩
+ 𝜇2 ‖𝑋 − 𝐴 − 𝐵 − 𝐸‖2𝐹 ,

(12)

where 𝜇 is a positive scalar and 𝜆 is a Lagrange multi-
plier matrix. We employ an inexact ALM (IALM) method
described in Algorithm 1 to solve this problem, where 𝐽(𝑋) =
max(lansvd(𝑋), 𝛼−1‖𝑋‖𝐹) in the initialization 𝜆0 = 𝑋/𝐽(𝑋)
and lansvd(⋅) computes the largest singular value.

When low-rank matrix 𝐴 denoting event-related EEG
signal components are generated, we can utilize some feature
extractionmethods such asCSP andCSSP to classifyMI-BCI.
In other words, low-rank matrix decomposition method in
this section can be considered as a preprocessing part before
feature extraction and classification.

http://dx.doi.org/10.1155/2016/2637603
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Input: Observation matrix 𝑋, 𝜆, penalty weights 𝛼, 𝛽
(1) 𝜆0 = 𝑋/𝐽(𝑋); 𝜇0 > 0; 𝜌 > 1; 𝑘 = 0.
(2) while not converged do
(3) // Lines (4)–(12) solve (𝐴𝑘, 𝐵𝑘, 𝐸𝑘) = argmin𝐴,𝐵,𝐸 𝐿(𝐴, 𝐵, 𝐸, 𝜆𝑘, 𝜇𝑘)
(4) 𝑗 = 0; 𝐴0𝑘 = 𝐴𝑘; 𝐵0𝑘 = 𝐵𝑘; 𝐸0𝑘 = 𝐸𝑘
(5) while not converged do
(6) // Line (7)-(8) solves 𝐴𝑘+1 = argmin𝐴 𝐿(𝐴, 𝐵𝑘, 𝐸𝑘, 𝜆𝑘, 𝜇𝑘)
(7) (𝑈, 𝑆, 𝑉) = svd(𝑋 − 𝐵𝑘+1 − 𝐸𝑘+1 + 𝜆𝑘/𝜇𝑘)
(8) 𝐴𝑗+1

𝑘
= 𝑈𝑆𝜇𝑘−1 [𝑆]𝑉𝑇

(9) // Line (10) solves 𝐵𝑘+1 = argmin𝐵 𝐿(𝐴𝑘+1, 𝐵, 𝐸𝑘, 𝜆𝑘, 𝜇𝑘)
(10) 𝐸𝑗+1

𝑘
= 𝑆𝛼𝜇𝑘−1 [𝑋 − 𝐴𝑗+1

𝑘
− 𝐵𝑗
𝑘
+ 𝜆𝑘/𝜇𝑘]

(11) Update 𝐵𝑗+1
𝑘

by solving 𝐸𝑘+1 = argmin𝐸 𝐿(𝐴𝑘+1, 𝐵𝑘+1, 𝐸, 𝜆𝑘, 𝜇𝑘)
(12) 𝑗 ← 𝑗 + 1
(13) end while
(14) 𝐴𝑘+1 = 𝐴𝑗+1

𝑘
, 𝐵𝑘+1 = 𝐵𝑗+1

𝑘
, 𝐸𝑘+1 = 𝐸𝑗+1

𝑘

(15) 𝜇𝑘+1 = 𝜌𝜇𝑘, 𝜆𝑘+1 = 𝜆𝑘 + 𝜇𝑘(𝑋 − 𝐴𝑘+1 − 𝐵𝑘+1 − 𝐸𝑘+1)
(16) 𝑘 ← 𝑘 + 1
(17) end while
Output: (𝐴𝑘, 𝐵𝑘, 𝐸𝑘).
Algorithm 1: Low-rank decomposition via the inexact ALMmethod.

4. LR-LDSs on Finite Grassmannian

Beginning at an initial state 𝑥1, the expected observation
sequence generated by a time-invariant model 𝑀 = (𝐴, 𝐶)
is obtained as 𝐸[𝑦1, 𝑦2, 𝑦1, . . .] = [𝐶𝑇, (𝐶𝐴)𝑇, (𝐶𝐴2)𝑇, . . .]𝑇𝑥1
that lies in the column space of the extended observabil-
ity matrix given by 𝑂𝑇∞ = [𝐶𝑇, (𝐶𝐴)𝑇, (𝐶𝐴2)𝑇, . . .]𝑇 ∈𝑅∞×𝑛. LDSs can apply the extended observability subspace
O as descriptor, but it is hard to calculate. Turaga et al.
[37, 38] approximate the extended observability by tak-
ing the 𝐿-order observability matrix; that is, 𝑂(𝑛, 𝐿) =[𝐶𝑇, (𝐶𝐴)𝑇, . . . , (𝐶𝐴𝐿−1)𝑇]𝑇. In this way, an LDS model can
be alternately identified as an 𝑛-dimensional subspace of𝑅𝐿𝑚.

Given a database of EEG, we can estimate LDSs model
and calculate the finite observability matrix that span sub-
space as a point on the Riemannian manifold. Then, based
on low-rank and sparse matrix decomposition, observability
matrix 𝑂 can be decomposed into 𝐷 + 𝐸 as the following
formulation:

min
𝐷,𝐸

‖𝐷‖∗ + 𝛼 ‖𝐸‖1
s.t. 𝑂 = 𝐷 + 𝐸, (13)

where 𝐷 is a low-rank matrix and 𝐸 is the associated sparse
error.

The inexact ALM method can be also used to solve
the optimization problem like Algorithm 1. The output 𝐷
represents low-rank descriptor for LDSs and can be employed
for the classification of EEG trails.

5. Classification Algorithm

We extract features by the above LDSs model and get two
feature matrices 𝐴 and 𝐶. Unfortunately, 𝐴 and 𝐶 have dif-
ferent modal properties and dimensionalities. So they cannot

be represented directly by a feature vector. Riemannian geom-
etry metric for the space of LDSs is hard to determine and
needs to satisfy several constraints. Common classifiers such
as Nearest Neighbors (NNs), Linear Discriminant Analysis
(LDA), and Support Vector Machines (SVM) cannot classify
features in matrix form. The feature matrix must be mapped
to vector space. We use Martin Distance [39, 40], which is
based on the principal angles between two subspaces of the
extended observability matrices, as kernel to present distance
of different LDS feature matrix. It can be defined as

𝐷2 (Θ𝑎, Θ𝑏) = −2 𝑛∑
𝑖=1

log 𝜆𝑖, (14)

where Θ𝑎 = {𝐶𝑎, 𝐴𝑎}, Θ𝑏 = {𝐶𝑏, 𝐴𝑏}. 𝜆𝑖 is the eigenvalue
solving as the following equation:

[ 0 O𝑎𝑏

(O𝑎𝑏)𝑇 0 ][𝑥
𝑦] = 𝜆[O𝑎𝑎 0

0 O𝑏𝑏
][𝑥

𝑦]
s.t. 𝑥𝑇O𝑎𝑎𝑥 = 1, 𝑦𝑇O𝑏𝑏𝑦 = 1,

(15)

where the extended observability matrices O𝑎 =[𝐶𝑇𝑎 , 𝐴𝑇𝑎𝐶𝑇𝑎 , . . . , (𝐴𝑇𝑎)𝑛𝐶𝑇𝑎 ], O𝑏 = [𝐶𝑇𝑏 , 𝐴𝑇𝑏𝐶𝑇𝑏 , . . . , (𝐴𝑇𝑏)𝑛𝐶𝑇𝑏 ],
O𝑎𝑏 = (O𝑎)𝑇O𝑏. Algorithm 2 in Supplementary Material
presents Martin Distance function programed by MATLAB.

We can classify EEG signals by comparing Martin Dis-
tance between training data and testing data. Nearest two
samples mean that they may be of the same class. So
the forecast label and predict accuracy can be calculated.
Algorithm 3 in Supplementary Material is the classification
method of KNN.

Considering LR-LDSs methods generating 𝐴 on Finite
Grassmannian, unlike two feature matrices (𝐴,𝐶) by LDSs,
Euclidean Distance and Mahalanobis Distance can describe
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Table 1: Experimental accuracy results (%) obtained from each subject in BCI Competition III Dataset IVa for CSP, CSSP, and our proposed
algorithm (LDS).

Subject aa al av aw ay Mean
CSP 71.43 94.64 61.22 89.28 73.02 77.918
CSSP 77.68 96.43 63.27 90.63 79.37 81.476
LDSs 78.57 96.43 64.29 90.18 79.76 81.846
LR+CSP 77.68 96.43 63.78 90.18 79.76 81.566
LR-LDSs 79.46 98.21 63.78 90.18 80.56 82.438

the distance between two feature spaces of EEG trails after
LR-LDS. They are simple, efficient, and common for mea-
suring distance between two points. In order to improve the
accuracy of classification, we can also employmetric learning
methods using the label information to learn a new metric
or pseudometric such as neighborhood components analysis
and large margin nearest neighbor.

6. Experimental Evaluation

From the above sections, we propose three methods for
EEG pattern recognition: LDSs, LR+CSP, and LR-LDSs. Two
datasets of motor imagery EEG including BCI Competition
III Dataset IVa and BCI Competition IVDatabase 2a are used
to evaluate our three methods compared with other state-of-
the-art algorithms such as CSP andCSSP. All experiments are
carried out with MATLAB on Intel Core i7, 2.90-GHz CPU
with 8GB RAM.

6.1. BCI Competition III Dataset IVa. Dataset IVa is recorded
from five healthy subjects, labeled as “aa,” “al,” “av,” “aw,”
and “ay,” with visual cues indicated for 3.5 s performing
right hand and foot motor imagery. The EEG signal has 118
channels andmarkers that indicate the timepoints of 280 cues
for each subject, band-pass filtered between 0.05 and 200Hz,
and downsampled to 100Hz.

Before feature extracting for comparison experiment, the
raw data needs some preprocessing. Firstly, we extract a
time segment located from 0.5 to 3 s and employ FastICA
to remove artifacts arising from eye and muscle movements.
Secondly, we chose 21 channels over the motor cortex (CP6,
CP4, CP2, C6, C4, C2, FC6, FC4, FC2, CPZ, CZ, FCZ, CP1,
CP3, CP5, C1, C3, C5, FC1, FC3, and FC5) that related to
motor imagery.

In order to improve the performance of CSP and CSSP,
we apply Butterworth filter for EEG signals filtering within
a specific frequency band between 8 and 30Hz, which
encompasses both the alpha rhythm (8–13Hz) and the beta
rhythm (14–30Hz) that relate to motor imagery. Then, we
program MATLAB code to get spatial filter parameters and
feature vectors by variance. Finally, a LDA classifier is used to
find a separating hyperplane of the feature vectors.

In LDSs model, the value of a hidden parameter describ-
ing dimension of Riemannian feature space is closely related
to final accuracy.We chose the highest accuracy performance
subject “al” and the lowest accuracy performance subject
“av” to show the relationship between hidden parameter and
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Figure 1: The relationship between hidden parameter and accuracy
for LDSs. We choose “al” and “av,” which are the highest and
lowest accuracy performance, respectively, to show the relationship
between hidden parameter and accuracy.

classification accuracy. The result of experiment is presented
in Figure 1, which indicates that the accuracy tends to increase
when the value of hidden parameter augments approximately
and the highest accuracy happens near hidden parameter
value of 16.

Then five methods including CSP, CSSP, LDSs, LR+CSP,
and LR-LDSs are compared with each other. The results are
listed in Table 1.

From Table 1, the bold figures present the best perfor-
mance results. LR-LDSs are in the majority. The last row
shows that the mean of LR-LDS classification accuracy is
much better than CSP and a little higher than the others.
Comparing with CSP and LR+CSP, LR method is very effi-
cient and useful to improve accuracy. LDSs related methods
outperform CSP and CSSP due to their both spatial and
temporal features extraction.

6.2. BCI Competition IV Database 2a. Database 2a consists
of EEG data from 9 subjects. There are four different motor
imagery tasks including movement of the left hand, right
hand, both feet, and tongue. At the beginning of each trial,
a fixation cross and a short acoustic warning tone appear.
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Table 2: Experimental accuracy results (%) obtained from each subject in BCI Competition IV Database 2a for CSP, CSSP LDSs, LR+CSP,
and LR-LDSs methods.

Subject A01E A02E A03E A04E A05E A06E A07E A08E A09E Mean
CSP 90.27 53.13 91.67 71.18 61.11 64.24 79.86 91.32 92.36 77.24
CSSP 90.97 56.94 92.01 72.92 61.81 65.28 79.86 93.06 92.71 78.40
LDSs 91.67 55.56 93.06 74.31 62.50 70.83 80.56 93.75 93.06 79.48
LR+CSP 92.01 58.68 95.14 74.65 61.81 65.28 81.25 94.44 93.40 79.63
LR-LDSs 92.01 59.02 94.44 75.35 63.19 69.44 81.25 95.14 93.06 80.32

After two seconds the subject is cued by an arrow pointing to
either the left, right, down, or up that denote the movement
of left hand, right hand, foot, or tongue for 1.25 s. Then the
subjects carry out the motor imagery task for about 3 s. The
BCI signals are sampled by 25 channels including 22 EEG
channels and 3 EOG channels with 250Hz and bandpass-
filtered between 0.5Hz and 100Hz.

Different from dataset IVa, database 2a is a multiclas-
sification problem. However, LDA is a two-class classifier.
Therefore, we choose𝐾-NN algorithms for CSP, CSSP, LDSs,
LR+CSP, and LR-LDSs methods uniformly. Table 2 describes
the classification accuracies results of five above concerned
methods. Similar to the results of BCI Competition III
Dataset IVa, the mean accuracies of LDSs, LR+CSP, and LR-
LDSs are higher than CSP and CSSP methods. Furthermore,
LR-LDSs method abstains the best performance.

7. Conclusion

CSP has gained much success in the past MI-BCI research.
However, it is reported that CSP is only a spatial filter
and sensitive to frequency band. It needs prior knowledge
to choose channels and frequency bands. Without prepro-
cessing, the result of classification accuracy may be poor.
LDSs can overcome these problems by extracting both spatial
and temporal features simultaneously to improve the clas-
sification performance. Furthermore, we utilize a low-rank
matrix decomposition approach to get rid of noise and resting
state component in order to improve the robustness of the
system. Then LR+CSP and LR-LDSs methods are proposed.
Comparison experiments are demonstrated on two datasets.
The major contribution of our work is realization of LDSs
model and LR algorithm forMI-BCI pattern recognition.The
proposed LR-LDSs methods achieve a better performance
than CSP and CSSP.
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