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Abstract: Spinal cord injury (SCI) interferes with the normal function of the autonomic nervous
system by blocking circuits between the sensory and motor nerves. Although many studies focus
on functional recovery after neurological injury, effective neuroregeneration is still being explored.
Recently, extracellular vesicles such as exosomes have emerged as cell-free therapeutic agents owing
to their ability of cell-to-cell communication. In particular, exosomes released from mesenchymal
stem cells (MSCs) have the potential for tissue regeneration and exhibit therapeutic effectiveness in
neurological disorders. In this study, we isolated exosomes from human epidural adipose tissue-
derived MSCs (hEpi AD–MSCs) using the tangential flow filtration method. The isolated exosomes
were analyzed for size, concentration, shape, and major surface markers using nanoparticle tracking
analysis, transmission electron microscopy, and flow cytometry. To evaluate their effect on SCI
recovery, hEpi AD–MSC exosomes were injected intravenously in SCI-induced rats. hEpi AD–MSC
exosomes improved the locomotor function of SCI-induced rats. The results of histopathological and
cytokine assays showed that hEpi AD–MSC exosomes regulated inflammatory response. Genetic
profiling of the rat spinal cord tissues revealed changes in the expression of inflammation-related
genes after exosome administration. Collectively, hEpi AD–MSC exosomes are effective in restoring
spinal functions by reducing the inflammatory response.

Keywords: spinal cord injury; mesenchymal stem cells; exosomes; extracellular vesicles

1. Introduction

Spinal cord injury (SCI) represents the loss of sensory, motor, autonomous sympathetic
nerves, neuropathic pain, and bowel/bladder dysfunction and is caused by traffic accidents,
violence, falls, and sports activities [1,2]. According to a recent study, the incidence of SCI
was 0.93 million, with an average of 91,556 new cases of SCI in the United States [3,4]. Loss
of function due to SCI depends on the exact anatomical location of the injury and the extent
of the damage. SCI is a disease for which there is currently no effective treatment. There-
fore, the answer can be found through cell-based therapy or scaffold-based therapeutic
strategies and these combinations [5]. This approach allowed researchers to demonstrate
that inflammation was lower, spinal cord cavity size was smaller, and axon growth was

Biomedicines 2022, 10, 678. https://doi.org/10.3390/biomedicines10030678 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10030678
https://doi.org/10.3390/biomedicines10030678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-9971-2443
https://orcid.org/0000-0002-8441-0802
https://doi.org/10.3390/biomedicines10030678
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10030678?type=check_update&version=2


Biomedicines 2022, 10, 678 2 of 16

higher in animal studies [6]. SCI studies have been performed in various animal species,
including rats, mice, rabbits, and dogs. The processes occurring in the damaged spinal cord
can be divided into four stages: acute, subacute, intermediate, and chronic stages [5]. Rats
are most commonly used as spinal cord injury models [7]. In addition, contusion, transec-
tion, and compression models are used to damage the rat’s spinal cord. The compression
method damages the spinal cord using a device that applies constant pressure such as clip,
calibrated forceps, balloon compression, and spinal cord strapping [7–10]. This is a suitable
method for studying secondary injury mechanisms and is recommended for translational
research and cell transplantation [7,8,11,12]. Compression injuries are commonly used in
SCI rat models because they occur in a manner similar to how SCI occurs in humans.

Exosomes are extracellular vesicles having a bilayer lipid membrane structure, with a
diameter of approximately 50–200 nm. Extracellular vesicles are derived from cells and
biological fluids, and in particular, exosomes contain mRNA, miRNA, DNA, lipids, proteins,
and metabolites, which are secreted through multivesicular bodies and have cell-specific
characteristics [13–15]. Exosomes are critical mediators of cell-to-cell communication and
deliver genetic material derived from the cells of origin. Stem-cell-derived exosomes have
become new therapeutic agents, as they have healing and repairing capabilities [16–19]. As
exosomes are safe as cell-free therapeutic agents, clinical trials using exosomes in diseases
such as diabetes, chronic liver disease, and ischemic stroke have been reported [20]. Genetic
materials in exosomes can have application in effective clinical liquid biopsy by diagnosing
cancer or other diseases and predicting prognosis [21]. Exosomes, as a promising delivery
strategy targeting the central nervous system (CNS), can cross the blood–brain barrier, a
natural barrier [22].

In this study, mesenchymal stem cells (MSCs) were isolated from epidural fat through
posterior decompression surgery of the lumbar spine. Exosomes were isolated from human
epidural adipose tissue-derived mesenchymal stem cells (hEpi AD–MSCs) using the tan-
gential flow filtration method, and the exosomes were analyzed using transmission electron
microscopy (TEM), flow cytometry, and nanoparticle tracking analysis (NTA). The SCI
model was established in Sprague Dawley (SD) rats using the compression method, and
the exosomes were administered intravenously. Recovery from SCI was observed using
the Basso, Beattie, and Bresnahan (BBB) locomotor scale method for four weeks after ad-
ministration. Subsequently, histological analysis was conducted, and inflammation-related
markers such as cytokines were analyzed in the serum and spinal cord tissues. mRNA
sequencing was conducted to confirm the changes caused by hEpi AD–MSC exosomes. Our
findings suggest that hEpi AD–MSC exosomes alleviated inflammatory responses and are
effective therapeutic agents for SCI and diseases/conditions requiring tissue regeneration.

2. Materials and Methods
2.1. SCI Animal Model

All animal experimental procedures were approved by the Institutional Animal Care
and Use Committee of the NDIC Co., Ltd. (IACUC; Approval No. P201103; approved
date: 10 February 2020; Hwaseong, Gyeonggi-do, Korea), and all protocols were in accor-
dance with the approved guidelines. In this study, 7-week-old female SD rats, weighing
approximately 220 g, were used (Orientbio, Seongnam-si, Gyeonggi-do, Korea). Female
rats are preferred in the SCI model because of their ease of bladder emptying and the low
risk of urinary tract infections [23–26]. The animals were acclimatized for one week in
an animal facility under controlled temperature and humidity. In total, 24 SD rats were
randomly divided into 4 groups (n = 6 per group). In the negative control group, the spinal
cord was not damaged. In the vehicle group as a positive control, SCI was performed and
0.2 mL phosphate-buffered saline (PBS) was injected intravenously. In the Low-Exo group,
SCI was performed and a low dose of exosomes (1 × 109 particles in 0.2 mL PBS) was
simultaneously injected intravenously, and the same amount was administered again after
3 days. The High-Exo group was subjected to SCI and intravenous injection of exosomes
at a high dose (5 × 109 particles in 0.2 mL phosphate-buffered saline) at the same time
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intervals. The SCI model was established as described in a previous study [27]. Briefly,
the rats were anesthetized using isoflurane (Foran, JW Pharmaceutical, Seoul, Korea). The
spinal cord was exposed vertebral column T8-T10, and the T9 spine segment was carefully
removed. A 50 g clip–compression injury was performed at the T9. Without interruption of
the dura mater or damage to adjacent dorsal and ventral roots, the clip was closed around
the cord for 20 s. Behavior tests were conducted using the BBB locomotor scale method
before injury (score of 21 points) and on days 3, 7, 14, 21, and 28 after injury. Rats from each
group were sacrificed on day 28. Then, spinal cord tissue and serum were collected. For
analysis, three spinal cord tissues from each group were fixed in 10% formaldehyde, and
the other three spinal cord tissues were frozen for RNA isolation.

2.2. Cell Culture and Characterization

This study was approved by the Institutional Review Board of Yeungnam Univer-
sity Medical Center in Daegu, Korea (IRB No. 2017-07-032), and informed consent was
obtained from all the patients. hEpi AD–MSCs were isolated from human epidural fat
as previously described [28,29]. The cells were cultured in Dulbecco’s modified Eagle’s
medium supplemented with 1.0 g/L glucose (DMEM; Gibco, Carlsbad, CA, USA) con-
taining 10% exosome-free fetal bovine serum (FBS; Gibco, Carlsbad, CA, USA) and 1%
penicillin–streptomycin (P/S; Gibco, Carlsbad, CA, USA) and incubated at 37 ◦C with
5% CO2. hEpi AD–MSCs at passage 5 to passage 10 were used for further experiments.
The expression of stem cell markers on these cells was determined by flow cytometry
(FACS; Galios, Beckman Coulter, Brea, CA, USA) using the CD73-PE (BioLegend, San
Diego, CA, USA, 344004), CD90-PE (BioLegend, 555596), CD105-PE (Bio-Rad, Hercules,
CA, USA, MCA1557), CD14-PE (Bio-Rad, MCA1568), CD34-FITC (BioLegend, 343504), and
CD45-FITC (BioLegend, 555482) antibodies.

2.3. Isolation and Identification of Exosomes

Exosomes were isolated from the culture medium containing hEpi AD–MSCs. After
the cells reached 80% confluence, the medium was collected every 2 d, until 180 mL
medium was obtained, which was centrifuged at 300× g for 10 min to discard cellular
debris. The supernatant was filtered using the tangential flow filtration system (TFF
system; Pall Corporation, Port Washington, NY, USA). The feed flow rate was set at
120 rpm. The cell culture medium was concentrated to 3 mL (60 times) using the TFF
system. Expression of exosome surface markers was determined by bead-based flow
cytometry (FACS; Galios, Beckman Coulter, Brea, CA, USA) using antibodies against
CD63 (BioLegend, 353003) and CD81 (BioLegend, 349,505) as previously described [30]. To
analyze exosome surface-specific markers, exosomes were mixed with 4% aldehyde/sulfate
latex beads (Thermo Fisher Scientific, Rockford, IL, USA). Transmission electron microscopy
(TEM; HT7700, Hitachi, Japan) was used to observe morphological characteristics of the
exosomes. Exosomes were adsorbed on a formvar carbon-coated copper grid (Ted Pella
Inc., Redding, CA, USA), fixed with 2% paraformaldehyde for 10 min, and then dried.
Particle size distribution and concentration were determined by NTA (Nanosight NS300,
Malvern Panalytical, Worcestershire, UK) following the manufacturer’s instructions.

2.4. Histopathological Analysis

The spinal cord tissues were collected from SCI-induced rats for histological analysis
on day 28 (n = 3 per group). The tissues were fixed in 10% neutral-buffered formalin,
embedded in paraffin, and sectioned (thickness: 4 µm). Hematoxylin and eosin staining of
the sections was conducted using Dako CoverStainer (Agilent, Santa Clara, CA, USA). The
following antibodies were used for immunohistochemistry analysis: anti-ionized calcium-
binding adapter molecule 1 (Iba-1) (Abcam, Cambridge, UK) and anti-glial fibrillary acidic
protein (GFAP) (Abcam) to determine neuroinflammation. All stained slides were scanned
using a Pannoramic SCAN II (3DHISTECH Kft., Budapest, Hungary). Photomicrographs
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were captured using CaseViewer software 2.5 (3DHISTECH Kft.). The signal was quantified
using the ImageJ software (NIH, Bethesda, MD, USA).

2.5. Quantitative Polymerase Chain Reaction (qPCR)

Total mRNA was isolated from the spinal cord tissues using RNeasy Mini Kit (Qiagen,
Hilden, Germany). The spinal cord tissue was about 10 mm in size and is near the T9 site
(n = 3 per group). cDNA was reverse-transcribed using Transcriptor First Strand cDNA
Synthesis Kit (Roche, Basel, Switzerland) according to the manufacturer’s instructions.
Then, qPCR was carried out using LightCycler 480 SYBR Green I Master (Roche) and
analyzed on LightCycler 480 system (Roche). The primer sequences of genes encoding
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), brain-derived neurotrophic factor
(BDNF), and vascular endothelial growth factor (VEGF) are listed in Table 1. The relative
expression levels of BDNF and VEGF were calculated according to the 2−∆∆Ct method.

Table 1. Primer sequences list.

Forward Reverse Product Size

BDNF TGGAAAGGGTGAAACAAAGTG TAATGTTGTCAAACGGCACAA 183 bp
VEGF GAGGAAAGGGAAAGGGTCAAA CACAGTGAACGCTCCAGGATT 69 bp

GAPDH TACCAGGGCTGCCTTCTCTT GATCTCGCTCCTGGAAGATG 191 bp

2.6. Cytokine Assay

Rat serum was collected at 28 days after the spinal cord injury and stored at −20 ◦C
for the analysis of cytokines (n = 6 per group). Cytokines were detected using Quantibody
Rat Cytokine Array (Raybiotech, Norcross, GA, USA) according to the manufacturer’s
instructions. The signals were detected using a laser scanner (Innoscan; Innopsys Inc.,
Carbonne, France) at Cy3 wavelength. Data were analyzed using Mapix software, version
8.2.7 (Innopsys Inc.).

2.7. mRNA Sequencing

The isolated RNAs were prepared by pooling for each group for sequencing
(n = 3 per group). Quantification of the isolated RNA was performed using ND-2000
spectrophotometer (Thermo Inc., Wilmington, DE, USA), and RNA quality was assessed
using Agilent 2100 bioanalyzer in combination with RNA 6000 nanochip (Agilent Technolo-
gies, Amstelveen, The Netherlands). For control and test RNAs, the library was constructed
using a QuantSeq 3′ mRNA-Seq Library Prep Kit (Lexogen Inc., Vienna, Austria) according
to the manufacturer’s instructions. Briefly, total RNA (500 ng) was extracted, an oligo-dT
primer containing an illumine-compatible sequence at its 5′ end was hybridized to the RNA,
and reverse transcription was performed. After degradation of the RNA template, second-
strand synthesis was initiated by random primers containing an Illumina-compatible linker
sequence at the 5′ end. High-throughput sequencing was conducted using NextSeq500 (Illu-
mina Inc., San Diego, CA, USA). Data analysis was performed using the Bowtie 2 software
(Langmead and Salzberg, 2012). Differentially expressed genes were determined based on
counts from unique and multiple alignments using coverage in bedtools (Quinlan AR2010,
Salt Lake City, UT, USA). The read count data were processed based on the TMM + CPM
normalization method using edgeR in the Bioconductor R package (R Development Core
Team2020, Vienna, Austria). For gene ontology (GO) analysis, gene classification was
based on searches conducted by DAVID Functional Annotation Bioinformatics Microarray
Analysis version 6.8 (https://david.abcc.ncifcrf.gov/, accessed on 3 November 2021).

2.8. Statistical Analysis

Data are presented as the mean ± standard deviation (SD). Statistically significant dif-
ferences were analyzed using one-way ANOVA, followed by Tukey’s multiple comparison

https://david.abcc.ncifcrf.gov/
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test using the GraphPad Prism software version 9.3.0 (GraphPad Software, San Diego, CA,
USA). Statistical significance was set at p < 0.05.

3. Results
3.1. Isolation and Characterization of hEpi AD–MSC s

hEpi AD–MSCs were isolated from human epidural fat tissue during posterior decom-
pression surgery of the lumbar spine [29]. According to the criteria for identifying MSCs
set by the International Society for Cellular Therapy (ISCT), MSCs adhere to plastic and
express specific cell surface markers. The isolated hEpi AD–MSCs were cultured in plastic
cell culture dishes and adhered to the bottom of a spindle-shaped morphology (Figure 1a).
In addition, hEpi AD–MSCs expressed surface markers CD105, CD73, and CD90, but they
did not express CD45, CD34, and CD14 (Figure 1b). hEpi AD–MSCs were cultured until
passage 5 to passage 10 to isolate their exosomes from the culture medium.
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3.2. Isolation and Characterization of Human Epidural AD–MSC Exosomes 

The exosomes were isolated from the hEpi AD–MSC culture medium. To isolate 

exosomes from the culture medium, filtration was performed using TFF. After filtration 

to a specific size under constant pressure and fluid velocity, the extracellular vesicles 

remained in the concentrated medium. To eliminate the microparticles, the concentrated 

Figure 1. Characterization of human epidural adipose tissue-derived mesenchymal stem cells (hEpi
AD–MSCs): (a) representative image of passage 5 of human epidural AD–MSCs; (b) expression of
positive markers (CD105, CD90, and CD73) of human AD–MSCs analyzed by flow cytometry (upper).
Expression of negative markers (CD45, CD34, and CD14) of human AD–MSCs analyzed by flow
cytometry (below). The horizontal axis represents the fluorescence intensity (FL1 = FITC, FL2 = PE),
and the vertical axis indicates the cell count.

3.2. Isolation and Characterization of Human Epidural AD–MSC Exosomes

The exosomes were isolated from the hEpi AD–MSC culture medium. To isolate
exosomes from the culture medium, filtration was performed using TFF. After filtration to a
specific size under constant pressure and fluid velocity, the extracellular vesicles remained
in the concentrated medium. To eliminate the microparticles, the concentrated medium
was centrifuged. Approximately 3 mL of hEpi AD–MSC exosomes were isolated from the
supernatant. The isolated exosomes were characterized. Exosomes are small membrane-
bound lipid vesicles with diameters ranging from 50 to 200 nm. Microscopy-based methods
such as scanning electron microscopy (SEM), transmission electron microscopy (TEM),
and cryoelectron microscopy (Cryo-EM) can reveal exosomes at high resolution [31]. The
isolated hEpi AD–MSC exosomes were visualized by TEM (Figure 2a). NTA, a particle
tracking method, was used to determine the size distribution and concentration of exo-
somes. The isolated hEpi AD–MSC exosomes had an average diameter of 145.8 nm and a
concentration of 2.5 × 1010 particles/mL (Figure 2b). Exosomes contain proteins derived
from cellular membranes and intracellular organelles. Exosome membrane proteins such as
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tetraspanins CD63 and CD81 were analyzed using bead-based flow cytometry (Figure 2c).
Collectively, nanoparticles with an average size of 145.8 nm cup-shaped were positive for
CD63 and CD81. Therefore, this study showed that human epidural AD–MSC exosomes
have typical characteristics of exosomes.
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Figure 2. Isolated exosomes from hEpi AD–MSCs: (a) representative TEM images of hEpi AD–MSC
exosomes; (b) the isolated exosomes were analyzed for particle number and size by nanoparticle
tracking analysis (NTA); (c) the surface positive markers CD63 and CD81 (tetraspanins) expression in
exosomes was analyzed by flow cytometry.

3.3. hEpi AD–MSC Exosomes Improved SCI in a Rat Model

To investigate whether hEpi AD–MSC exosomes ameliorate SCI symptoms, we eval-
uated the effects of hEpi AD–MSC exosomes in a rat model. We used SCI-induced SD
rats that were injured at the T9 site using a compression clip and injected hEpi AD–MSC
exosomes at low and high concentrations via the tail vein. Three days later, the same
amount of hEpi AD–MSC exosomes were intravenously injected again. The control group
underwent only laminectomy, and the vehicle group was not administered exosomes; BBB
locomotor evaluation was performed on days 0, 3, 7, 14, 21, and 28 after SCI (Figure 3a).
The BBB locomotor assessment is scored on a scale of 0–21 representing sequential stages
during recovery after SCI such as movement of joints, hindlimb and forelimb coordination,
trunk stability, and paw and tail position [32,33]. We evaluated the effects of hEpi AD–MSC
exosomes using the BBB scoring (Figure 3b). All rats scored 21 before SCI; however, after
SCI, the functional behavior worsened in the Vehicle (0.39 points), Low-Exo (0.56 points),
and High-Exo (0.61 points) groups. Seven days after administration of hEpi AD–MSC exo-
somes, the functional behavior improved in the Vehicle (1.0), Low-Exo (1.39), and High-Exo
(2.0) groups, and it was significantly recovered in a dose-dependent manner from day 14
(Vehicle (3.0), Low-Exo (4.6), and High-Exo (5.78) on day 14; Vehicle (4.07), Low-Exo (5.60),
and High-Exo (7.50) on day 21; Vehicle (5.53), Low-Exo (7.13), and High-Exo (8.61) on
day 28). A score of 8 or more indicated extensive hindlimb movement in the BBB scoring.
Body weight did not differ significantly among all SCI groups (Figure 3c). However, the
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average body weight increased on day 28 in the High-Exo group. All p-value values are
listed in Table 2.
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Figure 3. In vivo evaluation of hEpi AD–MSC exosomes for SCI treatment: (a) schematic representa-
tion of SCI rat model with exosome injection; (b) hindlimb locomotor function was measured using
the BBB scoring method for 28 d. Score ranged from 0 to 21 depending on the function of hindlimb
(*** p ≤ 0.001, **** p ≤ 0.0001 between the Vehicle and High-Exo group); (c) mean body weight in
non-treated and SCI-induced rat model (n = 6, per group).

Table 2. The p-value for BBB scoring and body weight.

BBB Scores p-Value Body Weight p-Value
Vehicle vs.
Low-Exo

Vehicle vs.
High-Exo

Low-Exo vs.
High-Exo

Vehicle vs.
Low-Exo

Vehicle vs.
High-Exo

Low-Exo vs.
High-Exo

Day14 0.0169 0.0002 0.0671 0.478 0.379 0.964
Day21 <0.0001 <0.0001 <0.0001 0.845 0.835 0.708
Day28 0.0091 <0.0001 0.0117 0.847 0.560 0.525

3.4. Histopathological Evaluation

The gross findings and histological analysis of the spinal cord showed damaged
tissue following compression stimulation (Figure 4a,b). Severe SCI was observed in the
vehicle group. In contrast, the exosome-treated groups showed tissue recovery. To evaluate
neuroinflammation, tissue immunostaining was performed for immunohistochemical Iba-1
and GFAP in the spinal cord tissues. Iba-1 is a gene specifically expressed in microglia
and macrophages, also known as allograft inflammatory factors [34]. Compared with that
in the control group, Iba-1 expression was increased in the SCI group. However, Iba-1
expression was significantly decreased in the Low-Exo and High-Exo groups (Figure 4c,d).
The morphology of microglia in the spinal cord changes after damage. The ramified
form was observed in the restoring state without damage, but ameboid shapes, which
are activated states, were observed in the damaged groups. We measured the ratio of the
ameboid form to the ramified form. As a result, it was confirmed that the ameboid shape
decreased when exosomes were treated at low and high concentrations (Figure 4e,f). GFAP,
a hallmark of astrocytes, expression was increased in the vehicle group, whereas it was
decreased in the Low-Exo and High-Exo groups, although the difference was not significant
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(Figure 4g,h). Although Iba-1 and GFAP did not change as much as the negative control
group in the exosome-treated group, it was confirmed that they decreased compared to the
vehicle group. Taken together, it was possible to confirm the changes in Iba-1 and GFAP in
the spinal cord tissue when exosomes were applied at low and high concentrations and to
confirm that exosomes were helpful in reducing neuroinflammation.
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Figure 4. Histopathology and immunohistochemistry analysis of Iba-1 and glial fibrillary acidic pro-
tein (GFAP) in the rat spinal cord: (a) representative images of spinal cord gross findings after sacrifice.
The spinal cord tissues were damaged by compression stimulation; (b) the spinal cord tissues were sec-
tioned longitudinally and stained with hematoxylin and eosin. (Scale bar = 100 µm); (c) immunode-
tection of Iba-1 in the non-treated and SCI-induced rats (scale bar = 200 µm); (d) quantification of Iba-1
expression by DAB staining; (e) representative images of Iba-1 microglia states (scale bar = 20 µm,
black arrow: ramified, white arrow: ameboid); (f) quantification of Iba-1 morphology ratio (ameboid
and ramified microglia); (g) immunodetection of GFAP in the non-treated and spinal cord injured rats.
(Scale bar = 200 µm); (h) quantification of GFAP expressing intensity by DAB staining. (* p ≤ 0.05,
** p ≤ 0.001, ns = not significant).
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3.5. hEpi AD–MSC Exosomes Increased the Expression of Neurotrophin Factor

Neuroregeneration substances are required to regenerate damaged nerves. Neu-
rotrophins help to create a regenerative environment for nerves. BDNF exerts neuroprotec-
tive and growth-promoting effects on various injured neurons [35]. A comparison of BDNF
expression levels in the spinal cord tissues revealed that BDNF level was significantly
reduced in the SCI-induced group, compared with that in the control group. However, it
was significantly increased in the High-Exo group (Figure 5a). VEGF serves as a revascular-
ization agent for angiogenesis and SCI. VEGF has been considered a potent neurotrophic
factor for the survival of spinal neurons [36]. VEGF expression level in the exosome-treated
groups was higher than that in the vehicle group, but the difference was not significant
(Figure 5b).
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3.6. hEpi AD–MSC Exosomes Reduced the Expression of Inflammatory Factors

SCI causes severe damage to the central nervous system, followed by an immediate
secondary inflammatory response in the spinal cord tissues. Our findings showed that hEpi
AD–MSC exosomes regulated the expression of pro-inflammatory and anti-inflammatory
cytokines in SCI-induced rats (Figure 6a–f). Pro-inflammatory cytokines interleukin (IL)-
1β, IL-2, and tumor necrosis factor (TNF)-α increased significantly when SCI occurred,
and significantly decreased in exosome-treated groups. Although there was no signifi-
cant difference, compared with the vehicle group, the mean value of interferon (IFN)- γ
decreased after exosome treatment. In addition, when SCI occurred, anti-inflammatory
cytokines IL-10 and IL-13 were significantly decreased, compared with the control group.
Anti-inflammatory cytokines increased when treating high concentration exosomes, but
it was not significant, compared with the vehicle group. These results suggest that hEpi
AD–MSC exosomes reduce the inflammatory response of spinal cord injury through the
regulation of various cytokines.

3.7. Comparison of Gene Expression in the Spinal Cord Tissues

mRNA sequencing was performed to observe changes in gene expression in the SCI-
induced and hEpi AD–MSC exosome-treated groups. In the control and SCI-induced
groups, 1064 genes were confirmed to have altered expression. The majority of changes oc-
curred in the genes related to the extracellular matrix, inflammatory response, and immune
response (Figure 7a). According to the scatter plot data, the expression of more genes was
upregulated in the vehicle group than in the control group. There were 793 upregulated
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genes (red spots) and 271 downregulated genes (green spots) (Figure 7b). The differences in
the expression of 25 genes (Prg2, Plxnb2, Man2a1, Bcl3, Top2a, IL17ra, Cd37, Tgfb1, Adam15,
Coro1a, Olr1, Plcg2, Prx, Egr2, S100a8, S100a9, Nfkb1, Gldn, Thbs4, Myoc, Cdk5rap2, RT1-Ba,
C3, Nrg1, and Ptprr) were visualized through clustering (Figure 7c). These genes belong to
the categories related to immune response, inflammatory response, and neurogenesis. In
addition, these 25 genes with significantly altered expression in the exosome-treated group,
compared with that in the vehicle group, were analyzed to predict functional annotations
(Figure 7d). Our findings show that hEpi AD–MSC exosomes played a role in reducing SCI-
induced inflammatory responses by targeting immune response and neurogenesis-related
genes in the SCI rat model.
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Figure 7. Comparison of gene expression level by mRNA sequencing: (a) gene category chart of
the control and vehicle groups. The ratio of significant genes according to each gene category;
(b) scatter plot of normalized data (log2N) for each gene. X-axis represents control (log2N), and
y-axis represents vehicle value (log2N), upregulated genes (red) and downregulated genes (green);
(c) clustering heatmap for genes with significantly altered expression; (d) top 10 Gene Ontology (GO)
biological process (BP) terms of genes with significantly altered expression in the exosome-treated
groups, compared with that in the vehicle group (** p < 0.01, *** p < 0.001).

4. Discussion

Extracellular vesicles are classified into three subtypes based on their origin: exosomes,
microparticles, and apoptotic bodies. They differ in origin, size, and biological properties;
exosomes smaller than 200 nm can be isolated using ultracentrifugation, filtration, polyethy-
lene glycol (PEG), size-exclusion chromatography, and microfluidic immunoaffinity [37].
However, exosome isolation technology requires innovative strategies and devices that
have the advantages of being rapid and cost-effective, with efficient isolation, high con-
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centration, and high purity [38]. Although ultracentrifugation is the most commonly used
method to concentrate exosomes, TFF is a more efficient, scalable, and gentle method that
does not damage exosomes. It is also suitable for the large-scale production of high-quality
exosomes compliant with good manufacturing practices (GMPs) [39–41]. Considering the
advantages of TFF, we used the TFF method to isolate a sufficient quantity of exosomes
from a large amount of cell culture medium for characterization and in vivo application.
In addition, the exosomes isolated using the TFF method did not undergo functional or
morphological modifications.

We used MSCs for the isolation of exosomes because they are more accessible than
embryonic stem cells, without any concern about tumor development and ethical issues,
and have rapid proliferation and multi-lineage differentiation capabilities [42–44]. There-
fore, MSCs have been used in research to reduce inflammation and damage in spinal
cord injury. Exosomes derived from MSCs are used as drug delivery systems because
they are easier to preserve than MSCs. [45]. Epidural adipose tissues are routinely elim-
inated during posterior decompression surgery of the lumbar spine; however, epidural
adipose removal causes certain problems, such as post-laminectomy syndrome [29,46].
We hypothesized that epidural fat may play a key role in the neural structure and nearby
conditions. We demonstrated the anti-inflammatory effects of hEpi AD–MSC-derived
exosomes compared to dermal fibroblasts-derived exosomes. As a result, it was confirmed
that the hEpi AD–MSC-derived exosomes inhibit the release of pro-inflammatory cytokines
such as TNF-α and IL-6 in LPS-induced inflammation in THP-1 macrophages [28]. Due
to these advantages of exosomes, recent studies have been reported using exosomes de-
rived from MSCs to treat SCI [44]. A recent study suggested that bone MSC-derived
extracellular vesicles reduce brain cell death and improve motor function, in addition to
improving the integrity of the blood–spinal cord barrier by reducing the movement of
pericytes through downregulation of the NF-κB p65 signaling [27]. Exosomes help in the
recovery of spinal cord damage due to their anti-inflammatory and anti-apoptotic effects
exhibited through mechanisms of A1 astrocyte inhibition, axonal regenerative promotion,
and macrophage polarization [47]. The anti-inflammatory effect of exosomes derived from
MSCs is related to the relatively reduced levels of pro-inflammatory cytokines such as IL-1β,
IL-6, and TNF-α [48–50]. The nucleotide-binding domain-like receptor protein (NLRP3)
inflammasome plays an important role in the secondary damage caused by SCI. Inflam-
masomes are multi-protein complexes that trigger the activation of caspase-1, followed
by the maturation of pro-inflammatory cytokines [51]. Pharmacological suppression of
NLRP3 inflammasome activation regulates neuroinflammation, attenuates mitochondrial
dysfunction, and enhances functional recovery after SCI. Exosomes derived from MSCs
inhibit the activation of the NLRP3 inflammasome and promote neurological recovery
in SCI rats [52,53]. hEpi AD–MSC extracellular vesicles reduced the lesion volume and
cell apoptosis after SCI [53]. NLRP3 inflammasome has a crucial role in the secretion and
mature of cytokines IL-1β and IL-18 by triggering the activation of caspase-1. Additionally,
the NLRP3 inflammasome could be a promising therapeutic target for the CNS diseases
such as SCI, traumatic brain injury, and ischemic stroke [51]. The expression pattern of
mRNA in the rat SCI model and exosome application has not yet been reported. Therefore,
it is expected that the present study can provide new insights into neurological disease
research by correlating the therapeutic effect of hEpi AD–MSC exosomes with changes in
mRNA expression levels in SCI. Indeed, when the SCI and control groups were compared,
it was confirmed by mRNA sequencing that the expression of genes related to the extra-
cellular matrix, inflammatory response, and immune response was changed significantly
(Figure 7a). The biological function analysis of 25 genes that were significantly altered
after exosome treatment confirmed that exosomes regulated inflammatory response in SCI
(Figure 7c,d). Thrombospondin-4 (Thbs4) is one of the five members of the thrombospondin
family [54]. Thbs4 supported local vascular inflammation in the atherosclerosis model
and was associated with inflammation. Thbs4−/− mice showed decreased expression of
pro-inflammatory factors [55]. Bcl3 is mainly localized in the nucleus and regulates NF-κB
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transcriptional activity. Bcl3 expression was induced by IL-6 in multiple myeloma cells,
which increased apoptosis [56]. It was associated with IL-8 and IL-17 in skin T-cell lym-
phoma cells to regulate survival and inflammatory gene expression [57]. It was confirmed
that an increase in Thbs4 and Bcl3 levels in SCI was reversed after treatment with hEpi
AD–MSC exosomes (Figure 7c). Moreover, C3 expression has been reported to increase
in chronic inflammation [58], and when exosomes were applied to these SCI models, the
decrease in C3 expression showed that exosomes were effective against inflammation.
These findings are expected to have an effect on exosomes in both the acute stage and
the chronic stage of SCI. Biodistribution, through fluorescent dye labeling on exosomes,
shows the distribution of administered exosomes in vivo [51,59–61]. Since MSCs target
damaged tissues, MSCs-derived exosomes also accumulate in the damaged spinal cord [61].
As a result, inflammatory responses are reduced and tissue regeneration. Currently, there
is no approved therapy available to restore motor and sensory nerves after SCI, which
necessitates the development of new strategies to promote axonal regrowth and restore
neuronal function. Therefore, it is necessary to understand the cellular and molecular
mechanisms that impair regeneration or neuroplasticity [62]. Systemic application through
intravenous injection is limited by the concentration of exosomes that can be used. Ideal
drug delivery should enable target-specific delivery of therapeutic agents. Exosomes can
be classified into two strategies for drug delivery: cargo loading and exosome modifica-
tion [45]. Representative methods for encapsulating cargo are incubation, electroporation,
and sonication, and cargo types include drugs, nucleic acids, peptides, and nanomaterials.
For instance, anti-cancer drugs, doxorubicin and paclitaxel, can be loaded into exosomes
and delivered to target tissues [63]. A study demonstrated that BDNF was loaded into
macrophage-derived exosomes and applied for Parkinson’s disease therapy [64]. Exo-
somes are biocompatible and prevent recognition and degradation by the immune system.
Although many advantages of exosomes, there is a limit to the loading efficiency of the
cargos. Moreover, as a result of in vivo, exosomes are targeting the kidneys, liver, and
other organs. Thus, in order to increase delivery function, engineering exosomes by fusion
with liposomes. Liposomes have suitable properties for drug delivery due to their lipid
bilayer structure. The result of exosome–liposome hybrid nanoparticles suggested that
decreased immunogenicity and increased colloidal stability and improved the half-life of
exosomes in blood [65]. Additionally, there are several approaches of modifying exosomes
to obtain targeting ability: ligand-receptor binding, pH sensitivity, surface charge, and
magnetic field [66]. The improved exosome delivery system can be used to treat patients
with neurological dysfunction diseases through clinical trials.

5. Conclusions

In conclusion, hEpi AD–MSC exosomes have therapeutic potential, as they regenerate
damaged tissue and restore motor function by alleviating inflammation in SCI. To the best
of our knowledge, this is the first report to compare the differences in gene expression and
analyze the functions of critical genes when hEpi AD–MSC exosomes were applied in SCI,
a neurological injury.
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