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Diauxie and co-utilization of carbon sources can
coexist during bacterial growth in nutritionally
complex environments
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It is commonly thought that when multiple carbon sources are available, bacteria metabolize
them either sequentially (diauxic growth) or simultaneously (co-utilization). However, this
view is mainly based on analyses in relatively simple laboratory settings. Here we show that a
heterotrophic marine bacterium, Pseudoalteromonas haloplanktis, can use both strategies
simultaneously when multiple possible nutrients are provided in the same growth experi-
ment. The order of nutrient uptake is partially determined by the biomass yield that can be
achieved when the same compounds are provided as single carbon sources. Using tran-
scriptomics and time-resolved intracellular TH-13C NMR, we reveal specific pathways for
utilization of various amino acids. Finally, theoretical modelling indicates that this metabolic
phenotype, combining diauxie and co-utilization of substrates, is compatible with a tight
regulation that allows the modulation of assimilatory pathways.
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icroorganisms must quickly and efficiently adapt to a

variety of possible fluctuations in the surrounding

environment. When considering changes in the pool of
available nutrients, this is usually achieved by a tight regulation of
their metabolic phenotypes by sensing the availability of specific
compounds, synthesizing the enzymes required for their catabo-
lism and repressing them after specific metabolites are depleted!.
The spectrum of possible bacterial metabolic adaptation strategies
can be observed, for example, when growing cells in a medium
containing a simple mixture of carbon sources. In this situation
bacterial may exhibit different patterns including diauxic growth?,
simultaneous consumption?, and bistable growth®°. Further,
nutrients concentration and growth medium composition are
known to affect other important cellular features such as motility
and cell adhesion®’ and biofilm formation®°. Typically, these
phenomena have been studied (both theoretically and experi-
mentally) in model organisms (e.g., Escherichia coli and Lacto-
coccus lactis)!0, grown on defined media containing simple
mixtures of 2/3 carbohydrates, e.g., glucose and lactose!!-14, In
natural conditions, however, bacteria rarely encounter simple
combinations of exploitable carbon/energy sources. Rather,
complex mixtures of nutrients are common and often colonized
by actively growing bacteria. This is the case, for example, of
intracellular pathogens that are commonly faced with a diverse
set of host nutrients in infected tissues. In these cases, bacteria
have been shown to adapt to this situation by the simultaneous
exploitation of plastic and flexibles nutrient utilization strate-
gies!5-19,

Do the same models developed for simplified conditions hold
also in real-case scenarios? At present, we witness a knowledge
gap concerning the study of these processes in experimental
settings that do not involve model organisms and/or defined
media and we lack a sound theoretical understanding of the
mechanisms driving nutrients assimilation strategies in condi-
tions that are closer to the ones found in natural settings.

Bacterial exploitation of nutrient patches is made up of (at
least) two different stages, i.e., physical interaction followed by
carbon sources metabolic degradation. The capability of bacteria
to interact with transient nutrient sources is well documented and
has revealed their high efficiency in exploiting transient nutrient
patches?0:21, Little is known, instead, on the molecular aspects
regulating and influencing bacterial productivity once micro-scale
nutrient hot spots are colonized. At this stage, i.e., when cells start
to feed on the available carbon source(s), other cellular
mechanisms need to be involved to ensure a systematic exploi-
tation of the resource. Indeed, as nutrient patches are likely
composed of complex nutrient mixtures (that may include car-
bohydrates, amino acids, lipids and nucleic acids) bacteria need to
dynamically activate specific degradation pathways according to
the kind and concentration of external nutrients. In other words,
a continuous and flexible genetic reprogramming needs to be
active to ensure that the preferred compound(s) are sequentially
or simultaneously taken up from the external environment and
properly metabolized. Up to now, this latter aspect has been
mostly overlooked despite it might be central in the under-
standing of micro-scale nutrients dynamics.

In this regard, the marine environment represents a paradig-
matic example of the challenges encountered by microorganisms
when it comes to the efficient (and rapid) exploitation of complex
nutritional inputs. Such a habitat is thought to be characterized
by a low average nutrient level (e.g., the concentration of amino
acids is in the range of ~10~2 M) and nutrients in general appear
and disappear in a sporadic fashion, demanding a precise che-
mical response, a fast swimming speed, and ability to localize and
exploit a nutrient patch once it is found®. These are the condi-
tions that are commonly faced by marine heterotrophic bacteria,

i.e., those microorganisms relying on the assimilation of external
biomass for both energy generation and nutrition. Their meta-
bolism is pivotal for the maintenance and the correct balance of
oceanic biogeochemical cycles as they are central to the so-called
microbial loop, i.e., the trophic pathway of the marine food web
responsible for the microbial assimilation of dissolved organic
matter, by transforming phytoplankton-derived organic matter
and fuelling the entire ocean biogeochemical nutrient cycle. In
this regard, the metabolism of Pseudoalteromonas haloplanktis
TAC125 (PhTACI125), a heterotrophic marine bacterium isolated
from Antarctica, has recently gained a certain attention due to its
potential biotechnological exploitation??, its capability to syn-
thesize anti-biofilm compounds?3, the necessity to set up efficient
culture conditions*#2° and the metabolic reprogramming during
growth in complex environments?®. In particular, the analysis of
its growth phenotype in an amino acid rich medium has shown
the presence of metabolic switches among different groups of
amino acids?’, although nothing could be said about the mole-
cular mechanisms underlying such phenotype and the possible
regulation involved. Using constraint-based metabolic modelling
we attempted to provide a systems level scheme of PhTAC125
metabolic re-wiring as a consequence of carbon source switching
in such a nutritionally complex medium. Our simulations high-
lighted an efficient reprogramming of PhTACI125 metabolic
machinery to quickly adapt to a nutritionally unstable environ-
ment, compatible with adaptation to fast growth in a highly
competitive environment2°.

Here we have investigated the global regulation of a marine
heterotrophic bacterium when grown in both a complex and a
defined rich medium (ie., including multiple possible carbon
sources) using and integrating a set of complementary-omics
techniques (i.e., transcriptomics and 1H and !3C NMR metabo-
lomics) with measured growth parameters. We show that the two
main nutritional strategies commonly observed (co-utilization
and sequential uptake of multiple substrates) can coexist in the
same growth experiment, leading to an efficient exploitation of
the available carbon sources. We also developed two theoretical
models accounting for nutrients switching in a nutritionally rich
environment in the presence and absence of cell regulation acting
at the level of resource allocation in the synthesis of nutrient
assimilation pathways. We show that a model taking into con-
sideration an overall regulatory control on the sequence of
nutrients uptake produces a better fit with available experimental
data with respect to a purely Michaelis—Menten kinetic model.

Results

Global regulation of a triauxic growth. P. haloplanktis TAC125
(hereinafter PhTAC125) cells were grown in shaken flasks in a
complex medium composed of Schatz salts?” and peptone as their
C source. Optical density (OD) was measured every hour and
cellular RNA was sampled in five different time points of their
growth (Fig. 1a). To increase the time points for a better growth rate
estimation, we also used an interpolation technique on the data
generated at this stage. Details on the specific interpolation
approach used are reported in “Methods” and the resulting plot is
reported in Supplementary Fig. 1. The growth curve displays a
triauxic pattern (Fig. 1a). An initial growth phase (growth rate of
0.023h~1, 0.021 considering interpolated data) is interrupted by a
lag phase between min. 180 and min. 240; afterwards, cells start
growing over but such growth is interrupted by another lag phase
between min. 280 and min. 340. Cells then started growing again,
until the end of the experiment (growth rate of 0.004 h—1, 0.006 h—!
considering interpolated data). The average growth rate across all
the time points was estimated to be 0.01h~1. To identify tran-
scriptional changes during cell growth total RNA was extracted and
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Fig. 1 Transcriptomic data of the multi-auxic growth. a PhTAC125 growth curves in peptone. Asterisks represent hypothetical switch points and T1-T5
indicate the sampled time points. b Clustering of PhTAC125 genes according to their expression values (normalized according to clust algorithm, see

“Methods") throughout the growth curve. ¢ COG functional categories that are significantly over- (“+" sign) or under- (

cluster. Source data are provided as a Source Data file.

sequenced (two biological and two technical replicates for a total of
20 samples) using Illumina MiSeq (Genomix4Life, Naples, Italy).
The main features of the 20 sequenced samples are reported in
Supplementary Table 1. We clustered the genes according to their
expression during the growth and identified six major trends
(clusters C1-C6, Fig. 1b). Overall, we were able to cluster 2045
genes out of the 3448 encoded by the Ph'TAC125 genome (roughly
60%). We then performed a functional annotation and a functional
enrichment analysis for the genes embedded in each cluster. One of
these clusters (C6) did not include any significantly enriched
functional category and thus it was discarded. Cluster C1 includes
genes that display a decrease in their expression between the first
two time points (T1 and T2) and a constant (low) expression across
the rest of the growth curve.

Over-represented genes embedded in this cluster included
those involved in basic housekeeping functions such as transla-
tion, DNA replication and transcription (Fig. 1c). Genes
embedded in Cluster C2 displayed a decreasing trend throughout
the growth curve and mainly included genes involved in RNA
processing, metabolism of coenzymes and amino acids transport
and metabolism. The expression of the 83 genes included in
Cluster C3 was characterized by an abrupt increase between T1
and T2 and then an overall decrease until the end of the curve.
This cluster significantly included genes involved in post-
translational modification, protein turnover and chaperons.
Clusters C4 and C5 included genes whose expression tended to
increase in the later stages of the growth; over-represented genes
in C4 mainly belonged to lipid metabolism, cell motility and
amino acids transport and metabolism. The expression of genes
included in C5 decreased during the first stages of the growth and
is then increased for the rest part of the curve. The cluster of
genes included those involved in signal transduction mechanisms
and cell motility.

Whole-genome transcriptomics data depict a scenario in which
PhTACI25 is active and fast-growing mainly during the first
stages of the curve, as reflected by the relatively high expression of
translation, transcription replication and coenzyme metabolism
genes. Genes embedded in these categories are under-represented
among those increasing their expression in the last stages of the
growth (Fig. 1c) and over-represented among those with high

uon

sign) represented inside each

expression values in the first stages of the growth. Metabolically,
PhTACI25 cells seem to rely more on amino acids metabolism in
the initial stages of their growth, consistently with their
progressive exhaustion in the medium. The last part of the
growth experiment was also characterized by an increase in gene
expression of cell motility-related genes (over-represented in C4
and C5). Finally, genes generally related to post-processing
mechanisms peak their expression at T2.

A non-E. coli-like regulatory response to nutrients exhaustion.
The triauxic growth curve reported in Fig. la (and in Supple-
mentary Fig. 1 using interpolated data) suggests the presence of a
dynamic control on the adjustment of cell physiology. Here we
sought to quantify the regulatory effort required to growing cells
for modulating such cellular response. We focused on tran-
scriptional factors (TFs) and two-component response systems
(TCRSs) and analyzed differentially expressed genes among three
points of PhTAC125 growth curve, namely T1 vs. T3 and T3 vs.
T5. These points should capture PhTACI125 cells during expo-
nential growth after the first growth lag (T1), in-between the two
growth lags (T3) and after the final growth lag but before getting
to plateau (T5).

First, we checked whether PhTAC125 regulation system
somehow resembled the model scheme of the known overall
metabolic regulation (i.e., the one characterized in E. coli). Of
the 81 transcription factors known to directly or indirectly
control central metabolic enzymes?8, we found a reliable
homologue (E-value < 1e29) only for 34 of them (Supplemen-
tary Note 1 and Supplementary Data 1). PhTACI125, for
example, lacks key players in bacterial diauxic shifts as the
major global regulator of catabolite-sensitive operons (when
complexed to cAMP) crp and the genes responsible for the
synthesis of cyclic AMP (adenylate cyclase, cyaA). Among the 34
global regulators identified, only ten (roughly 25% of the shared
ones and 12% of the entire E. coli set) displayed a significantly
altered expression following the first transition (T1-T3) and
none of them was differentially expressed following the second
one (T3-T5). Details on the shared, differentially expressed TFs
are provided in Supplementary Table 2.
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Fig. 2 Differentially expressed genes. a-d Number of up- and downregulated genes in the two contrasts considered, for different gene categories. e Fold
change of each gene responsible for the first degradative step of each amino acid. Differentially expressed genes are marked with an asterisk. Source data

are provided as a Source Data file.

A similar situation was observed for eight selected sigma-
factors that control gene expression globally?8. In this case, as
expected, an ortholog was found for each of them, but only two of
them showed an altered expression following T1-T3 transition
and the expression of none of them was significantly altered
following T3-T5 one. The two genes displaying a significant
change in gene expression were rpoS and rpoD. RpoS is the
primary regulator of stationary phase genes, whereas RpoD is the
primary sigma factor during exponential growth. Expectedly, the
first resulted to be upregulated following the T1-T3 transition,
whereas the second was downregulated (Supplementary Table 3).

With the exception of RpoS and RpoD, whose expression is in
line with the global control of exponential vs. stationary phases, it
appears that growth lags are regulated by mechanisms that poorly
overlap with our current knowledge.

For this reason, we evaluated the expression of the entire
repertoire of PhATAC125 TFs across the two points that involved
the ceasing of cellular growth in our experiment, i.e., T1-T3 and

T3-T5. Overall, we identified 41 differentially expressed TFs, 22
downregulated and 19 upregulated (Fig. 2b, Supplementary Fig. 2
and Supplementary Data 2) following the first growth interrup-
tion. The second growth lag was characterized by the significant
change in expression (upregulation) of just one TF. Together with
TFs, TCRSs are a basic stimulus-response coupling mechanism to
sense and react to changes in environmental conditions, e.g.,
nutrient concentration. We identified differentially expressed
TCRSs in the two selected contrasts. Overall, we found 21 TCRSs-
related genes that were differentially expressed in T1 vs. T3 and
none in the T3 vs. T5 transition (Fig. 2c and Supplementary
Data 3).

We conclude that the two growth lags observed in the curve
apparently point to different reprogramming efforts that, in turn,
may underpin distinct nutrients uptake strategies. The first
growth interruption seems to have a deeper impact on the entire
metabolic system, whereas the second could imply a fine tuning
of the catabolic machinery. This is further confirmed by the
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overall number of DEGs across the selected contrasts (Fig. 2a),
1280 between T1 and T3 (633 and 647 up- and downregulated
genes, respectively) and only 101 between T3 and T5.

Amino acid assimilation pathways and their (dis)regulation.
Previous experiments have shown that PhTAC125 displays a
coordinated sequence of amino acids degradation when grown in
medium embedding complex mixtures of such molecules (ie.,
peptone or casamino acid-based media, Supplementary Note 2)%°.
In other words, some amino acids are preferred over others and
are metabolized early in PhTAC125 growth curve. This switching
among nutrients suggests that an active and modulated repro-
gramming occurs during PhTACI125 growth in a nutritionally
complex environment. Similarly, differentially expressed amino
acid metabolic genes (hereinafter AA-genes) are unevenly dis-
tributed among the two contrasts considered (Fig. 2d). T1 vs. T3
displays a higher number of DEGs (85, 33 downregulated and 55
upregulated) with respect to T3 vs. T5 (8, 5 downregulated and 3
upregulated). Considering the amino acid assimilation pathways
of differentially expressed AA-genes in the T1 vs. T3 contrast
(Supplementary Fig. 3), we did not observe a clear functional bias
towards specific routes. Almost all the pathways are represented,
both in terms of up- and downregulated genes. Similarly, the
switch between T3 and T5 included downregulated genes
involved in a broad spectrum of metabolic pathways including
Val, Leu and Ile degradation, Tyr metabolism and Ala, Asp and
Glu metabolism (one gene for each pathway) and upregulated
genes in Gly, Ser and Thr metabolism (1 gene), Lys biosynthesis
(1 gene) and Arg biosynthesis (3 genes).

To unravel the faith of each amino acid inside the cell, we
analyzed the expression of the genes involved in all their possible
first assimilatory step (Fig. 2e and Supplementary Data 4). We
found 13 DEGs in the T1-T3 contrasts and 2 DEGs in the T3-T5
contrast. The first set comprised seven upregulated and six
downregulated genes; upregulated genes were involved in Glu,
Phe, Met, Gly Ile/Val/Leu, Asn/Asp and Ser degradation, whereas
downregulated genes were responsible for the first assimilatory
step of Met, Asp, Glu, Tyr, Ser and Ala. DEGs identified in the
second contrast included genes involved in Glu and Gly
degradation. Taking the DEGs indicated above as a proxy for
the entire assimilatory process of the corresponding amino acids,
we nZ(;ticed a good overlap with available PhTAC125 physiological
data®.

DEGs analysis also allowed the identification of the major
amino acid entry points into PhTACI125 metabolism. We
counted, for example, 12 alternative possibilities steps to
metabolize Asp in PhTACI125 (Fig. 2e), but the expression of
only two of them (purA and asnB) appeared to be significantly
modified during PhTAC125 growth. Similarly, six alternative
steps can convert Glu to other cellular intermediates following its
uptake. At T1, only two of these genes showed an altered
expression level, suggesting that these may represent the most
relevant players in Glu assimilation and usage. Nearly the same
holds for Ser, with five distinct entry points and only two of them
being differentially regulated.

Overall, we have identified possible key players, both in the
switch among the set of metabolized amino acids, and in the
entrance of amino acids into PhTACI125 entire metabolic
network. However, nutrients switching requires an efficient
genetic regulation to ensure that each catabolic pathway is active
at the right moment, allowing a correct proteome allocation. For
this reason, we analyzed the co-expression of genes belonging to
the same metabolic pathway (Supplementary Note 3) and
identified an overall dis-regulation of such genes (average Fisher’s
Z transformation average of Pearson correlation coefficient 0.49,

Fig. 3a, b, Supplementary Fig. 4 and Supplementary Table 4).
Focusing on the known regulons including AA-genes (Supple-
mentary Table 5), we noticed that nearly half of them (three out
of seven) displayed a relatively low (0.47, ArgR) or almost absent
(0.26 and 0.11, Met] and TyrR1, respectively) correlation among
the expression values of the corresponding genes (Table 1).
Figure 3c-e summarizes the details of the correlation existing
among each gene of each pathway. In the case of ArgR regulon,
for example, the major contribution to the low intra-regulon
correlation is due to astA and astD (PSHAa0195 and 0196,
respectively), showing an almost opposite expression pattern
compared with the other ArgR regulated genes, especially with
PSHAa2287-91 (Fig. 3C). astA and astD are involved in the
conversion of Arg to Glu, whereas ArgHA, B, C, F, G (encoded by
PSHAa2287-91, respectively) are involved in the synthesis of Arg
from Glu through the formation of citrulline and fumarate.

Concerning Met] regulon, we noticed a group of genes (including
PSHAa2222, PSHAa2223, PSHAa0287 and PSHAa2292) whose
expression values are negatively correlated with those of genes
PSHAa2274-76 and PSHAal226 (Fig. 3d). This group of co-
regulated genes include those involved in the conversion of
homocysteine to Met (PSHAa2222 and PSHAa2223), an L-
alanine-DL-glutamate ~ epimerase ~ (PSHAa0287) and a
Methylthioribulose-1-phosphate dehydratase involved in the Met
salvage pathway (PSHAa2292). Finally, as for TyrRlregulon,
PSHAa2042-43, coding for 4a-hydroxytetrahydrobiopterin dehy-
dratase and phenylalanine-4-hydroxylase are negatively correlated
to the other genes in the same regulon (Fig. 3e). PSHAa2043
encodes phhA the gene responsible for the synthesis of Tyr from
Phe, whereas PSHAa2042 (phhB) encodes a Pterin-4-alpha-
carbinolamine dehydratase responsible for the conversion of 4a-
hydroxytetrahydrobiopterin to dihydrobiopterin.

Upstream of most of the genes belonging to the three regulons
considered, we were able to identify a conserved motif for each
regulon (Fig. 3f-h), partially overlapping with their known TF
binding site. Finally, a closer inspection to the metabolic steps
encoded by the differentially regulated genes of these regulons
revealed that they usually belong to different and symmetric
regions of the same metabolic pathway. PSHAa0195 and
PSHAa0196 respectively encodes for astA and astB, responsible
for the first steps of the route leading to the formation of Glu
from Arg. The other genes of the ArgR regulon are mostly
involved in the production of Arg starting from Glu (Fig. 3i).
Similarly, phhA (encoded by PSHAa2043) is involved in the
formation of Tyr (from Phe), whereas all the other genes are
responsible for the formation of Tyr from a set of different
precursors (e.g., prephenate) (Fig. 3k). In the case of MetR
regulon, among the genes that could be reliably assigned to the
methionine metabolic pathway, one of the two group of co-
regulated genes belong to the upper part of the pathway
(upstream the main product methionine), whereas members the
other one are in its close proximity (PSHAa2222) or involved in
the methionine salvage pathway (PSHAa2292), the set of
reactions responsible for the recycle of the thiomethyl group of
S-adenosylmethionine from methylthioadenosine (Fig. 3j).

In a previous work?®, we have simulated the growth of
PhTACI125 in a nutritionally complex environment (peptone)
and derived the overall metabolic reprogramming occurring
during growth in a rich undefined medium using constraint-
based metabolic modelling (i.e., flux balance analysis, FBA)
(Supplementary Note 4). We observed a good correlation between
the measured changes in the expression of AA gene regulons and
the predicted changes in metabolic fluxes of their encoded
reactions using FBA (Pearson’s product-moment correlation =
0.89, p value =0.019). See Supplementary Table 6 for further
details.
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Taken together these results suggest that (i) the two growth lags
observed (Fig. 1a) may be the same phenotypic representation of
two different cellular states (i.e., assimilation strategies) and that
(ii) a rather complex genetic regulation is at work to ensure a
correct decision-making process in nutritionally dynamic envir-
onments. In the next sections these two aspects will be elucidated
using controlled growth conditions and a combination of NMR
experiments and theoretical modelling.

Combination of simultaneous and sequential amino acids
uptake. Up to now, we have analyzed the behaviour of bacterial
cells in a complex medium, using gene expression as a proxy for
amino acids assimilation pathways. The medium used (peptone)
is a complex mixture of nutrients whose exact composition is
unknown.

Accordingly, it is not possible to conclude that the observed
growth features (i.e., triauxic growth) are due to the exhaustion of
certain preferred amino acids in the medium. For this reason, we
assembled a medium including 19 amino acids, 0.2 mM each
(named 19 AA medium, cysteine was not included in the list
because of difficulties in its unambiguous quantitation during the
experiments due to its spontaneous oxidation, as also reported in
ref. 2°) and determined the kinetics of their usage during
PhTAC125 growth by analyzing the growing media using 'H
NMR (Supplementary Note 5 and Supplementary Fig. 5). Data
obtained revealed that an important fraction of all the provided
amino acids (16 out of 19) are consumed in the first 7h of the
growth. Afterwards, the remaining three amino acids (His, Met
and Trp) are (slowly) metabolized (Fig. 4a). Clustering the amino
acids assimilation profiles allowed a clearer visualization of the
order in which amino acids are used by PhTAC125 during its
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growth (Fig. 4b). This analysis divided the set of metabolized
compounds into four main, non-overlapping clusters. Gln, Glu
and Arg are the first amino acids to be consumed in the medium.
Their concentration reaches (negligible) values close to 0.01 mM
after 4.5 h of growth, remaining constant afterwards. The second
set of amino acids is composed of Asn, Asp, Leu and Pro. Their
degradation starts with a small delay with respect to the one of
the first cluster, and they are completely removed from the

Table 1 Fisher's Z transformation average of Pearson
correlation of the same-regulon genes.
Regulon Process Fisher's Z transformation
of Pearson correlation
coefficient
HutC His degradation 2.55
HmgS Tyr degradation 1.92
MetR Met biosynthesis 1.22
LiuR Branched-chain amino 0.97
acid degradation
ArgR Arg biosynthesis/ 0.47
degradation
Met) Met metabolism, Met 0.26
degradation
TyrR1 Aromatic amino acids on
metabolism
a arg
asn
0.20 asp
h:\\ oin
N = glu
S 0.15 \-\ = gly
£ == his
g = SO
<§ 0.10 \ = leu
£ = |ys
8 == met
5 == phe
o 0.05 pro
ser
Nz threo
0.00 - —— trp
tyr
al
01 2 3 456 7 89 !
Time (h)
b
3- gln
= arg
2. glu
g c2
N c4
T o0-
(oY} ser
€
a tyr ile
-1- ph hr
A [vs c3
_2-
va
-5 0 5

Dim1 (75.5%)

medium only between 6 and 6.5 h. The third cluster includes nine
amino acids (Fig. 4b). Their consumption is rather slow in the
first 3h of growth; afterwards, it accelerates leading to negligible
concentration of the corresponding amino acids at 7.5h. The
concentration of amino acids belonging to the fourth cluster
remains overall constant for the first 6h of growth. After that
moment, corresponding to the point in which all the other amino
acids are consumed, it starts decreasing. Importantly, this pattern
of amino acids assimilation results in a triauxic growth curve
(Fig. 4c). Indeed, (short) growth lag phases are observed after 4
and 6 h of growth, in correspondence with the major transition in
amino acids assimilation pattern.

Overall, this behaviour highlights a balanced mix between
simultaneous and sequential uptake of nutrients. Amino acids
belonging to the same group (Fig. 4d) are simultaneously
metabolized by the cells but the assimilation of different groups
occurs with different dynamics and is responsible for growth lags
in the curve. Finally, a typical diauxic nutrient shift is observed
when all the main (preferred) sources are exhausted and the
degradation of the other (previously ignored) compounds begins.
Available growth phenotypes®#30 (Supplementary Note 6) seem
to suggest that the order in which nutrients are used by
PhTaC125 during the growth depends both on the final biomass
and on the specific growth rate achievable when grown with
amino acids as sole carbon sources (Supplementary Fig. 6A, B).
Also, the order of amino acids uptake, partially reflects their entry
point into the TCA cycle (Supplementary Fig. 7).
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Fig. 4 Amino acids assimilation profiles. a Degradation dynamics for each of the 19 amino acids included in the defined AA medium. b Clustering of time-
resolved concentration values for the 19 amino acids analyzed. Error bars represent SD of two different cell cultures in two independent experiments.
¢ Growth curve of the 19 amino acids experiment. Asterisks indicate growth lags. d Degradation dynamics for each of the four identified clusters of amino
acids included in the defined AA medium. Colour codes as in b. Grey shaded area includes the 95% confidence of the linear regression (coloured) line over
the concentrations of the amino acids belonging to the same group. Source data are provided as a Source Data file.
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Despite the trend seems to be quite clear, a certain variability
was observed in the results shown in Supplementary Fig. 6A, B.
This is the case, for example, of Leu in cluster C2 that is preferred
to Ala (C3) despite the growth rate of PhTAC125 growth on Leu
is about twofold lower than that on Ala. This might be accounted
for by promiscuous uptake of nutrients. Indeed, the broad
spectrum of some amino acids transporters is well described in
bacteria3!:32. Thus, some amino acids might be taken up from the
medium not as the result of an active cellular control over the
most efficient carbon sources, but as the result of the broad-
spectrum activity of a membrane transporter.

An additional explanation to the composition of the clusters
might involve the overlap among the catabolic pathways of the
substrate that are co-consumed (ie., belonging to the same
cluster, Supplementary Note 7). Indeed, we noticed that Cl
amino acids (Arg, Glu and Gln) share part of their catabolic
pathways and are all converted to alpha-ketoglutarate before
entering the TCA cycle. Two (out of four, i, Asp and Asn)
amino acids of cluster C2 are converted to oxaloacetate before
entering the TCA cycle. Most of the C3 amino acids (six out of
nine, ie., Ala, Ser, Gly, Thr, Phe and Tyr) are converted to
pyruvate, thus not being directly catabolized into one of the TCA
cycle intermediates. Other three C3 amino acids (Thr, Ile and
Val) can be catabolized to form pyruvate and a TCA intermediate
(i.e., Succinyl-CoA). Finally, C4 includes those amino acids that
are negligibly used during Ph'TAC125 growth, so no degradation
pathways overlap is required to explain their inclusion in the
same group (Supplementary Fig. 7).

In order to check whether the sequential or co-consumption of
substrates also depends on their own concentrations, we
performed a set of additional experiments aimed at evaluating
the effect of higher concentrations of nutrients on the pattern of
nutrients assimilation (Supplementary Note 8). We both tested
the effects of (i) providing all the 19 amino acids at concentra-
tions five and ten times higher (1 and 2 mM, respectively) than
those used in the 19 AA experiment described above and (ii)
increasing the concentration of late-metabolized amino acids
(His, Met, Trp, 2 mM) on the timing of the last metabolic switch
observed during PhTAC125 growth. The results of these analyses
are reported in (Supplementary Figs. 8 and 9) and revealed that
metabolic phenotype identified in the original 19 AA experiment
is poorly affected by the concentration of the available carbon
sources. Also, we compared the phenotype observed in
PhTAC125 with the one of a model organism (E. coli
Supplementary Note 9), when grown in the same nutritional
environment (19 AA medium, 0.2 mM each). A poor overlap was
observed between the specific response to nutrients switching of
the two microorganisms (Supplementary Figs. 10 and 11).

The different fate of the catabolized amino acids. Next, we
investigated the different fate of amino acids belonging to the
same cluster once entered inside Ph'TAC125 cells. To this aim, we
used uniformly labelled !3C amino acids (Glu, Asp, Ala and Met,
belonging to C1, C2, C3 and C4, respectively) and followed the
path of their labelled carbon atoms inside the cells by NMR. More
in detail, for each labelled amino acid used, we prepared four
different parallel cultures, each containing 18 amino acids plus
the 13C labelled one as the only carbon source for PATACI25.
These four cultures were run in parallel and each of them was
sacrificed at a different time point. Specifically, we analyzed four
time points, i.e., early and late exponential growth (3 and 6 h) and
early and late stationary phase (8 h and 30 min, 24 h). For each
time point we analyzed both growing media and the cell lysates
by acquiring mono-dimensional 'H NMR spectra and bidimen-
sional 1H-13C HSQC NMR spectra. A scheme of the structure of

this experiment is reported in Supplementary Fig. 12. This
experiment allowed us to study the metabolic fluxes in a time-
dependent fashion and provided hints on the fate of the meta-
bolized amino acids inside the cell (Fig. 5).

First, by using !H NMR spectra of growing media, we
confirmed the same growth dynamics for all the replicates of
the experiment and the same overall growth features observed in
the unlabelled 19 AA experiment (compare Fig. 5a, c). Similarly,
amino acids were consumed in the same order and with the same
overall rates previously observed (compare Figs. 5b and 4a).

A principal component analysis (PCA) performed on the 'H
spectra of cell lysates clustered the samples according to their
sampling time, thus confirming the consistency and the high
reproducibility among the different replicates (Supplementary
Fig. 13), besides the occurrence of significantly different
metabolic profiles of PhTAC125 cells along the four sampled
time points.

IH-I3C NMR spectra of cell lysates were used to have an
overview of the fate of the metabolized amino acids inside the cells.
Each of the four selected amino acids showed a specific path of
labelled carbon atoms inside the cells, as revealed by the PCA
reported in Fig. 4c ({H-13C HSQC NMR spectra). While the spectra
of Asp and Glu almost overlap, the spectra of Ala and Met are very
well separated. This trend probably reflects the fact that both Glu
and Asp are used to directly feed the TCA cycle, whereas Met and
Ala are used to feed different pathways inside the cell (see below).

In particular, we were able to show that Ala is mostly used to
feed many important pathways inside the cell, namely glycolysis/
gluconeogenesis, nucleotide precursors metabolism and (partly)
TCA cycle. At T3 we found !3C coming from Ala degradation in
most of the key compounds that are the input/output of the
aforementioned pathways, ie., pyruvate, phosphoenolpyruvate
(PEP), fatty acids and AXP/GXP (Fig. 5d, Supplementary Figs. 14
and 15). Oxaloacetate is the only TCA cycle intermediate that
displays Ala labelling at T3 (Fig. 5d and Supplementary Fig. 16). At
T3, we found Asp-derived !3C labelling on all the TCA cycle
intermediates identified and on purine biosynthesis intermediates,
AXP and GXP (Fig. 5d, Supplementary Figs. 15 and 16). At later
growth stages Asp labelling appeared also on PEP and NAD
precursors (Fig. 5d, Supplementary Figs. 14 and 17). Glu-derived
13C labelling appears in all the TCA intermediates analyzed (with
the exception of oxaloacetate) starting from T3 (Fig. 5d and
Supplementary Fig. 16), suggesting that Glu is readily redirected
towards the TCA upon its uptake. Interestingly, Glu seems also to
be used as a substrate for NAD (and precursors) biosynthesis from
the early stage of growth (Fig. 5D and Supplementary Fig. 17).
Finally, this experiment confirmed that Met is incorporated into
the PhTAC125 metabolic network at a later stage of its growth, in
that no identified compounds was labelled with 13C of Met at T3.
Met labelled 13C appear to be included into homocysteine starting
from T6. After 24 h, we found Met labelled 13C on a compound
whose NMR pattern corresponds to that of trimethylamine (Fig. 5d
and Supplementary Fig. 18). Interestingly, in a previous work33, we
had characterized PhTAC125 as a methylamine producer and also
showed that adding Met to the growth medium was pivotal to
allow PhTACI25 to produce this compound (and inhibit the
growth of human opportunistic pathogens). The metabolic flux
analysis performed here suggests a link between the production of
methylamine from the degradation of Met, possibly through the
formation of trimethylamine.

Overall, using 13C-labelled precursors provided evidence that
the different amino acids used by PhTAC125 during its growth
have different and complementary roles within the cell. Ala is
readily converted into pyruvate and this is used to feed both
gluconeogenic pathways and (possibly through the formation of
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acetyl-CoA) fatty acids synthesis. Only at later growth stages,
TCA intermediates started to display Ala-derived labelling.
Conversely, Glu is immediately used to feed the TCA cycle as
all its intermediates but one (oxaloacetate) carry Glu labelling at
T3. No other compounds in the upper part of Fig. 5d displayed
Glu-derived 13C atoms, thus suggesting a clear separation
between Ala and Glu assimilation pathways. The primary
assimilation pathway of Asp seems to be through the TCA cycle,
although part of its carbon skeleton is diverted to PEP formation
(and possibly to gluconeogenesis) at T6. Quite interestingly, 13C
atoms derived from Asp degradation are observed on purine
metabolism product AXP and GXP from the first sampled time
point to the last, despite the gluconeogenic metabolism precursor
PEP does not display the same signal. We thus argue that the
origin of Asp-derived labelling on AXP and GXP might be due to
TCA intermediates playing a role in purine metabolism, e.g., 5-
phosphoribosylamine, Finally, we confirmed the late entrance of
Met into PhTAC125 metabolic network, being initially converted
to homocysteine and then also rerouted towards the production

of trimethylamine (at T24), with a possible but still undisclosed
pathway involving the formation of betaine or carnitine34-3°,
To further characterize the metabolic response of PhnTAC125 to
nutrients consumption, the whole intracellular metabolome was
evaluated through untargeted !H NMR across four time points,
i.e, early and late exponential growth (3 and 6 h) and early and
late stationary phase (8h and 30 min, 24 h). In the spectra, the
signals of 26 metabolites could be unambiguously assigned and
quantified (Supplementary Fig. 19 and 20). These metabolites
were representative of six major metabolic modules, i.e., amino
acids metabolism, purine and pyrimidine metabolism, sugars,
amino sugars metabolism, nucleotide precursors and TCA. The
trend of metabolites’ concentration in time revealed that the
relative concentration of purine and pyrimidines intermediates
(namely uridine and inosine) decreases in time. A similar trend is
observed for ribose and for the detected TCA intermediate
(fumarate). This scenario is compatible with the decrease in
growth rate and overall biomass production of PhnTAC125 along
the growth curve (Fig. 4c) and with a consequent decrease of DNA
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synthesis activity (purine and pyrimidine precursors) and energy
demand (TCA cycle). Conversely, sugars (e.g., glucose) and amino
sugars (e.g, UDP-NAG) increase their cellular concentration in
the latest growth stages, reaching values that are up to three times
the initial ones. This latter finding can be interpreted in the light of
two considerations: first, we have already shown that carbohy-
drates metabolic genes increase their expression at the final stages
of PhTAC125 growth on peptones, suggesting the activation of
sugar metabolism-related pathways at later growth stages. Second,
the increase of sugar/amino sugars intracellular concentrations
might have a role in PhTAC125 cell aggregation when nutrients
concentration starts to deplete given that: (i) such metabolites are
known to be involved in cell-cell contacts??, (ii) PhTAC125 was
shown to produce a biofilm that incorporates amino sugars and
(iii) this is supposed to be a strategy to survive in poor nutrient
conditions?”. Our findings are in line with a scenario in which the
presence of a lower availability of nutrients induces a greater
production of biofilm since the biofilm matrix can improve the
capture of nutrients3®,

Modelling simultaneous and sequential amino acids uptake. At
least two different explanations may account for the mixed sequen-
tial/diauxic nutrient uptake. Either this phenotype is “simply”
determined by different uptake kinetics of the different compounds
or the assimilation pattern is actively regulated by the cells. To dis-
cern between these two scenarios, we implemented two mathematical
models accounting for cell growth and nutrients uptake during the 19
AA experiment. To reduce the complexity of the problem, the 19
amino acids were lumped into the four corresponding clusters shown
in Fig. 4b, d. In this way we modelled the growth of PhATACI125 in a
hypothetical growth medium embedding four different groups of
carbon sources ideally representing the 19 AA medium. The first
model is based on the Michaelis-Menten-Monod kinetics (MMM
model) and is formulated as follows:

P+S;, 2P, (1)

where P represents bacterial cells, S; (with i=1, 2, 3, 4) represents
each of the four groups of pooled C sources and r the rate at which
the reaction occurs. Specifically, r was modelled according to a
canonical (Michaelis-Menten-derived) Monod kinetics with:

_ ﬁf’¢si
"k T eS @)

where f;, ¢S; and k;, represent the maximum rate constant for cell
production, the concentration and the Michaelis-Menten constant
for the ith group of amino acids, respectively. According to these
formulas, the state variables model can be written as:

dgP - B ¢S
Wiizzl:ki‘F(/)Si'ng_d.ng? (3)
des; B ¢S
dt __ki+¢si'¢P’ 4)

where S; (with i=1, 2, 3, 4) represents each of the four lumped
substrates and d the bacterial cells death rate.

The second model implemented here accounts for the effect of
the regulatory processes of catabolite inhibition and activation that
can be observed during microbial growth on multiple substrates.
The model is a modified version of the cybernetic model proposed
by ref. 3%, overall resembling the one proposed in ref. 40.

The cybernetic modelling framework takes into account the
(yet) unknown regulatory processes regulating the microorgan-
isms’ uptake kinetics. It assumes that microorganisms have
evolved under the selective pressure to become optimal with
respect to certain cellular objectives (in our case, maximization of

biomass production) and achieve this task by actively modulating
the induction/repression and activation/inhibition of the key
enzymes of substrates available in their external environment.
Cybernetic variables (see below) are introduced in the model to
account for the induction/repression and activation/inhibition of
the key, bottleneck enzymes regulating cell growth, substrate
consumption, and key enzyme production®!42,

According to this model, the assimilation of substrate S; by cells
P (Eq. (1)) is assumed to be catalyzed by the set of enzymes E;
(with i=1, 2, 3, 4). The assumption here is that enzymes
responsible for the assimilatory pathway of each pool of nutrients
are induced by the presence of S; (and repressed by the presence
of the other nutrients). This alternative model can be written as:

PP, (5)
T U
[y} (6)

17

where E; represents the key assimilatory enzyme. The rate
equations for biomass production (Eq. (5)) and for enzyme
synthesis (Eq. (6)) can be written as a modified form of Monod’s
equation and are respectively expressed as follows:

9S;
rp = Vmax,i ’ ¢Ei : KS T (/)57 (7)
; i
¢S;
o= Vo 8
E; i KE,+¢Si (8)

where ¢E; represents enzyme concentration, V is the maximum
i
rate constant for enzyme’s biosynthesis and V.. ; is the is the

maximum rate constant for bacterial production P on the ith
substrate. Kg and Kj; are the Michaelis-Menten constant for the

ith substrate and the synthesis of the ith enzyme, respectively.
The inhibition/activation effect due to the concentration of the
different substrates is accounted for by two (control) variables, u;
and v;, representing the fractional allocation of resource for the
synthesis of E; and the mechanism of controlling enzymes E;
activity, respectively. u; is expressed as:
Ti
U =8 0 9)

j=17j

(]

with 0<u;<1 and Z?Zl u; = 1. The other control parameter, v;
is expressed as:
ti

K max{ry,ry, 13,14}’ (10)
where the denominator accounts for the observation that priority
is given to the consumption of the substrate(s) that guarantee the
highest growth rate*3. The model further considers constitutive
enzyme production rate (f;), the effect of dilution of the specific
enzyme level due to cell growth («), constant protein decay in the
cells and bacterial death rate (d) and can be written as follows:

des, _ 1)

—1; - v; - ¢P,

d 4

doE; 4
%: u; - g, —Zvj~rj~¢P—oc-¢Ei+ﬁi.

(13)

The model parameters were determined by fitting the
experimental data (shown in Fig. 4a-d) with model simulations
and their values are reported in Supplementary Tables 7 and 8. As
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shown in Fig. 6, the cybernetic model accurately reproduces the
dynamics of all the species considered. This is even clearer in the
case of nutrient concentration dynamics where the model
implementing the MMM model, is not capable of producing a
satisfactory approximation of the real data. Indeed, R? calculation
indicates that the cybernetic modelling framework is performing
better on four out of five of the species included in the model
(Table 2). Likewise, when using the AIC metric, the comparison
between cybernetic model and MMM was shown to follow the
same trend.

These results suggest that, in the conditions tested, the uptake
of nutrients is tightly regulated, leading to the simultaneous
presence of diauxic and co-utilization strategies within the same
growth curve. Hints on the main catabolic players involved in
such assimilation patterns were obtained combining transcrip-
tomic data from the complex-medium experiment and RT-PCR
on specific targets (see Supplementary Note 10, Supplementary
Fig. 21 and Supplementary Table 9).

Discussion

Our knowledge on the possible bacterial strategies for nutrients
assimilation when multiple sources are available is biased by the
fact that it has been mainly studied in a few model organisms,
providing them with a reduced number of possible inputs
(compared with those available in their source environment).
Here, we have characterized a non-model response to nutrients
switching and studied the process of bacterial nutrients uptake in
experimental conditions that more closely resemble a natural
setting, in terms of the availability of many different substrates
simultaneously. Using a marine heterotrophic bacterium (P.
haloplanktis TAC125) as a case study strain, we have shown that
its response during growth lags do not resemble the one currently
known for E. coli. Only 10% of the E. coli metabolic regulators
and two (out of eight) main generic controllers (rpoS and rpoD)
displayed an altered expression level in our experiments. Also, we
showed that when the two microorganisms were independently
cultivated in the same defined medium embedding 19 different
amino acids, differences arose in the choice of the amino acids to
utilize, in the timing of uptake and in the presence/absence of
overall growth lags.

The poor overlap between PhTAC1215 and E. coli transcrip-
tional response suggests that, in marine bacteria, the response to
nutritional switches and/or multi-auxic growth patterns may
involve still untapped genetic circuits. As a matter of fact,
PhTAC125 is known to lack the CCR system#4, which is currently
referred to as the main driver in metabolic switches and diauxic
phenotypes. Using time-resolved transcriptomics we have shown
that growth lags in a nutritionally complex environment are
probably due to the exhaustion of specific carbon sources and that
such event has a deep impact also on other important gene
categories including, for example, motility-related genes. In the
second part of the curve, ie., when nutrient concentration
decreases, cell motility genes increase their expression, probably
reflecting the need to explore the surrounding environment for
other potential sources. This is in line with the observation that

many bacteria become motile when nutrients are scarce®’.
Moreover, among the genes peaking their expression in corre-
spondence of the first growth lag, those involved in post-
translational modification, protein turnover and chaperon are
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Fig. 6 Modelling the multi-auxic growth. Simulation outcomes for the two
models implemented here for biomass (a) and lumped nutrients (b-e).
Dashed lines represent the prediction for the MMM model. Solid lines
represent the prediction for the cybernetic model. Open circles represent
experimental data (same data shown in Fig. 4d). Error bars represent SD of
two different cell cultures in two independent experiments.

Table 2 R? and AIC calculation for the different simulations using the two different models.

Model Cluster A Cluster B Cluster C Cluster D Biomass
Pearson—MMM model 0.9844 0.9922 0.9584 0.9584 0.9959
Pearson—Cybernetic 0.9920 0.9973 0.9953 0.9193 0.9967
AIC—MMM model —408.53 —418.46 —338.17 —476.82 —378.46
AIC—Cybernetic —439.48 —475.38 —438.75 —395.97 —372.37
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significantly over-represented. Generally speaking, proteins
belonging to this functional category can be easily associated to
the stress encountered by an exponentially growing batch culture
that exhaust (part of) the readily available and preferred nutrients
in the growth medium. At this moment cells undergo a regulated
transition into stasis by activating a stereotypic stress response.
Post-translational modifications have been shown to play a role in
the starvation-induced growth arrest, for example in S
coelicolor?340, Tt is to be noticed that these proteins do not
increase their expression in the later stages of the growth and, in
particular, in the second growth arrest experienced by
PhTACI125. This, together with the observation that both the
overall number of DEGs and of those involved in many other
functional processes (amino acids degradation, TFs and TCRS) is
much higher in correspondence of the first time contrast, sug-
gested that the same phenotype (the two growth lags) were
mirrored by profoundly different cellular reprogramming pat-
terns. This prompted us to investigate more in depth the reg-
ulation of amino acid assimilation pathways. This analysis
highlighted the tight regulation required to efficiently exploit
complex and amino acid enriched, nutritional conditions. A
paradigmatic example of this capability is the (dis)regulation of
several genes belonging to the same regulon (ArgR, TyrR1 and
MetR), responsible for the activity of distinct and conflicting
functional metabolic modules inside the same metabolic pathway.
In principle, all the genes belonging to the same regulon are
under the control the same TF. It is known that some TFs may
function as either activators or repressors, often according to the
positioning of the TF binding site in the target promoter,
although this feature had not been described, to date, for amino
acid assimilation pathways?’. Apparently, such a mechanism is at
work in some of the amino acid catabolic pathways of
PhTACI125, probably ensuring an efficient and correct exploita-
tion of the amino acid mixture available in the surrounding
environment.

Despite being closer to the environmental natural setting,
growth in complex medium does not allow a precise under-
standing of the usage of all the available carbon sources. For this
reason, we have assembled a defined but nutritionally rich
medium containing 19 amino acids as the sole carbon sources for
the bacterial cells. Tracking their concentration in time, we
showed that the two main feeding strategies commonly thought
to be exclusive to each other (i.e., sequential and simultaneous
uptake of nutrients) can coexist in the same growth curve.
Clustering metabolized amino acids into four major groups
revealed that amino acids belonging to the same group are co-
utilized, whereas the switch among the different clusters is tightly
modulated. A “canonical” diauxic shift is finally observed at the
end of the growth, when the consumption of a set of previously
untapped nutrients begins. Thus, similar to the complex-medium
growth experiment (Fig. 1), the two growth lags apparently
underlay different cellular states. Indeed, despite the exhaustion
of nutrients is common to both growth lags, in one case (the first
lag) cells are already metabolizing alternative compounds when
the exhaustion of the preferred sources occurs.

The order in which nutrients are utilized can be partially
explained by the biomass yield and growth rates obtained when
each single amino acid is provided as single carbon sources.
Those amino acids allowing the highest growth rate and biomass
production are those that are consumed first in the 19 AA
experiment.

Using !3C-labelled amino acids and time-resolved NMR
spectra, we were able to follow the degradation pathways of four
selected amino acids (Glu, Ala, Asp and Met) and derive their fate
inside the cell. We showed that Ala is readily converted into
pyruvate and then probably used to fuel sugar metabolism (i.e.,

gluconeogenesis and pentose phosphate pathway), leading to the
production of ribonucleotides. Asp and Glu are instead promptly
used to fuel the TCA cycle, with two notable exceptions, i.e., the
entrance of Glu-derived carbons into the biosynthesis of NAD
precursors and the conversion of (part of) the initial amount of
Asp into PEP and its usage for ribonucleotide biosynthesis. The
fate of Met inside the metabolic network remained hard to
decipher, and the actual contribution to the growth of PhTAc125
will require further investigation. Further, results coming from
the untargeted evaluation of the overall intracellular metabolome
is in line with an increased importance of sugar metabolism/
intermediates upon exhaustion of the available amino acids in the
medium, probably reflected in the characterized production of
biofilm in poor nutrients conditions.

Finally, we have shown that the dynamics of nutrients degra-
dation can be explained using a theoretical model that accounts
for gene regulation and, in general, for the proper resource
allocation for the synthesis of the main assimilatory pathways.
This modelling framework can accurately interpret the pattern of
nutrients degradation in a nutritionally rich environment.

In conclusion, we would like to stress the importance of cul-
tivating and studying microorganisms in nutritional conditions
that more closely resemble the ones most found in nature, for
example for what concerns the contemporary availability of many
distinct possible carbon sources as done here. By doing so and
using a combination of computational and experimental (tran-
scriptomics and NMR-based metabolomics) approaches, we have
shown that, despite diauxie and co-utilization strategies have been
usually thought as conflicting phenotypes, they can coexist in the
same growth curve and give rise to a diversified ensemble of
feeding strategies.

The use of different sources depending on the phase of cell
growth and, most of all, a distinct metabolic fate inside the cell for
each of the metabolized compounds, is a common feature of
intracellular bacteria (e.g., Legionella pneumophila, Listeria
monocytogenes or Coxiella burnetiil7-1948-50) suggesting that
plastic strategies for carbon assimilation might be evolved in
response to nutritionally poor and highly variable conditions.

It will be interesting to investigate which are the molecular
mechanisms allowing the implementation of this mixed and
apparently unconventional feeding strategy and, in particular, the
fine-tuned regulatory circuits that are probably responsible for the
efficient switching among all the available carbon sources. Future
efforts will be also devoted to understanding the effect of fluc-
tuations (in the number of cells and/or in nutrients concentra-
tion) and of possible population heterogenicity!®!! on the
resulting growth dynamics of heterotrophic marine bacteria.

Methods
Bacterial strain, media and growth condition. P. haloplanktis TAC125°! cells
were routinely grown in Marine Agar (MA) or Broth (MB) (Condalab, Spain)
under aerobic condition at 21 °C. The stock suspension of the strain was stored in
20% [v/v] glycerol solution at —80 °C. For growth curves experiment, Schatz salts®2
(1 g/l KH,PO4, 1 g/l NH4NO;, 10 g/l NaCl, 0.2 g/l MgSO, x 7H,0, 0.01 g/l
FeSO4 x 7H,0, 0.01 g/l CaCl, x 2H,0) were supplemented with 5 g/l Peptone
N-Z-Soy BL 7 (Sigma-Aldrich S.rl) (complex medium) or with 19 amino acids
(19 AA medium) each one at a final concentration of 0.2 mM (cysteine was not
included due to its rapid oxidation to cystin?®). To confirm the order of AA we
used Schatz salts supplemented with (i) 19 AA at a final concentration of 1 mM
each, (ii) 19 AA at a final concentration of 2 mM each and (iii) 16 AA at a final
concentration of 0.2 mM and histidine, methionine and tryptophan at a final
concentration of 2mM. The experiments with 13C AA were performed using
Schatz salts supplemented with 18 standard AA and one of the four marked amino
acid (-Alanine-13C;, 1-Aspartic acid-13C, r-Glutamic acid-13C5 and 1-Methio-
nine-13Cs) all at a final concentration of 0.2 mM. In all cases the pH was adjusted
to 7.0. All the amino acids were purchased from Sigma-Aldrich S.r.l. All the
experiments were performed under aerobic condition at 21 °C.

E. coli Dh5a (laboratory stock suspension stored in 20% [v/v] glycerol solution
at —80 °C) were grown in Luria Bertani (LB)®3, agar or broth, and in M9 media®3

12 | (2020)11:3135 | https://doi.org/10.1038/s41467-020-16872-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

supplemented with 19 AA at a final concentration of 0.2 mM (pH 7.0) (19 AA M9
medium). The experiments were performed under aerobic condition at 37 °C.

Growth curve experiments. The growth curve experiments with PhTAC125 were
performed after two pre-cultures, as in Wilmes et al.2® with some adaptations. For
the complex medium growth curves, a first preculture was grown for 20 h, in 20 ml
MB medium in a 100 ml flask. Then this preculture was diluted 1:1000 in a final
volume of 100 ml of the complex medium in a 11 flask. After 20 h of growth, the
optical density (ODgq) of this second preculture was measured to be used to
inoculate the final flask (11) in a final volume of 150 ml of Schatz salts and Peptone
with a starting ODggg ~ 0.1. For the growth curves in the 19 AA medium, for all the
concentrations used, the first preculture in MB was diluted 1:100 in a final volume
of 100 ml of the 19 AA medium (for each experiment the AA concentration used
for the final growth curves was used) in a 11 flask. After 22 h of growth, the second
preculture was washed, resuspend and used to inoculate the final flask (11) in a final
volume of 200 ml of the 19 AA medium with a starting ODggo ~ 0.1. In all
experiments, the pre-cultures and the final growth cultures were incubated at 21 °C
with shaking. Each experiment was performed in duplicate. Cell growth was
monitored measuring the ODg every hour in the experiments in complex med-
ium, and every half an hour or an hour, depending on the concentration of AA
used, in the experiments with the 19 AA medium. Three different measures were
performed at each time point for each biological replicate.

The growth curve experiments with E. coli were performed after a first
preculture of 20 h in 20 ml of LB broth in a 100 ml flask and a second preculture in
100 ml of 19 AA M9 medium.

After 20 h of growth, the optical density (ODggo) was measured to be used to
inoculate the final flask (11) in a final volume of 200 ml of 19 AA M9 medium. The
cells were grown at 37 °C with shaking in duplicate and the growth was monitored
measuring the ODgg, every hour.

Sampling. Two biological replicates of the growth curves performed in complex
medium were used for RNA-seq experiment. Every hour, in correspondence of the
ODggo measurements, two replicates of 500 ul each for each curve, were treated
with the RNA protect bacteria reagent (Qiagen S.r.l) and conserved at —80 °C.

During the experiment in the 0.2 mM 19 AA medium, at each time point, two
replicates of 500 pl each for each curve, were treated with the RNA protect bacteria
reagent like above. During all the experiment in the 19 AA medium, regardless of
the concentration of AA used, and in the growth curve with E.coli, two replicates of
1 ml each for each curve were filtered at each time point (Filtropur 0.2 pm,
SARSTED AG & Co. KG) to remove bacterial cells and conserved at —20 °C for
NMR metabolomic.

Growth curves with 13C amino acids. Four different experiments were performed
using one uniformly 13C-labelled amino acid each time (13C-Glu, 13C-Ala, 13C-Asp
and 13C-Met). For each experiment, two pre-cultures as described above were used,
while the final growth experiments were performed in quadruplicate. Cell growth
were monitored measuring the ODggo every hour. At four time points, early and
late exponential growth (3 and 6 h) and early and late stationary phase (8 h and 30
min, 24 h), one of the four replicates was analyzed. Overall 1 ml of the medium
were filtered (Filtropur 0.2 um, SARSTED AG & Co. KG) to remove bacterial cells
and conserved at —20 °C. The remaining culture (199 ml), was pelleted by cen-
trifuging for 10 min at 11,000 rpm at 4 °C and resuspended in 500 pl of PBS>4.
Then, cells were sonicated for 20 min, with cycle of 1s of activity and 9 s of rest
(292.5W, 13 mm tip), with contemporary cooling on ice. After lysis, the samples
were centrifugated for 25 min at 4 °C, at 8000 g, as described in ref. 4.

RNA extraction and sequencing. For RNA-seq, a preliminary sequencing (data
not shown) was performed on an Illumina Hiseq 50 platform (Genomix4Life S.r.l.,
Italy). Total RNA was extracted with a RNeasy Tissue Mini Kit (Qiagen S.r.l.)
following manufacturer’s instructions. For improving the lysis step proteinase k
and lysozyme were added to the lysis solution and the samples were homogenized
using Tissue lyser II (Qiagen S.r.l). The concentration and purity of RNA were
analyzed using a NanoDrop ND-1000 (Thermo Fisher Scientific) and a Bioanalyzer
(Agilent Technologies, Inc.). rRNA was removed from the sample using the Ribo-
Zero Magnetic Kit (Bacteria) (Illumina, Inc.). The quality of the RNA depletion was
then checked using Bioanalyzer (Agilent RNA 6000 PICO Assay, Agilent Tech-
nologies, Inc.). The ScriptSeq v2 RNA-Seq Library Preparation Kit (Illumina, Inc.)
is then used to make the RNA-Seq library from the Ribo-Zero treated RNA. For
each library 1 ug of RNA (rRNA depleted) was used following manufacturer’s
instructions. The quality of the libraries was evaluated using Bioanalyzer (Agilent
Technologies, Inc.).

For the final experiment total RNA was extracted from a total of 20 samples of
the growth curve in complex medium (five time points, two technical and two
biological replicates) and library sequencing has been carried out at Genomix4Life
S.rl. (Italy) on an Illumina NextSeq500 (single-end sequencing strategy, 1 x 75 bp,
~25 reads/sample).

For real-time PCR (qRT-PCR), total RNA was extracted from the samples of
five time points (T4, T6, T8, T10 and T12) for each biological replicate of the
growth curve performed in the 19 AA medium, using a RNeasy Mini Kit (Qiagen S.

r.l), following the manufacturer’s instruction. DNA was then removed from the
samples using a RNase-free DNase (Qiagen S.r.l.). Overall 10 pl of the extracted
RNA was reverse-transcribed using a Superscript II Reverse Transcriptase
(Invitrogen) with Random primers (Invitrogen) following the manufacturer’s
instruction.

Quantitative real-time PCR (qRT-PCR). qRT-PCR reactions were performed in a
final volume of 10 pl containing 1 pl of a 1:10 dilution of each cDNA, 5 ul of
Powrup Sybr Master Mix (Life Technologies) and 1 uM of each primer (Supple-
mentary Table 9). Primers were designed using the Primer3 software>. Each
sample was spotted in triplicate.

A first experiment using known amounts of DNA of the PATAC125 strain
(1-0.1-0.01-0.001 ng) were performed to obtain a standard curve and calculate the
amplification efficiency for each primer pairs (data not shown). rpIM and dnaA
genes were used as internal references to normalize mRNA content.

All the reactions were performed on a QuantStudio™ 7 Flex Real-Time PCR
System (Applied Biosystems by Life Technologies). Cycling conditions were:
hold stage [50 °C for 2" and 95 °C for 10'], PCR stage [40 cycles of: 95 °C for 30",
59 °C for 1/, 72 °C for 15”], melt curve stage [95 °C for 15" 60 °C for 1/, 95°C
for 15'].

RNA-seq data analysis. Bowtie 2 (v2.2.3)%0 was used to align raw reads to P.
haloplanktis TAC125 reference genome (GCA_000026085.1_ASM2608v1). rRNA
depletion, strand specificity and gene coverage were evaluated using BEDTools
(v2.20.1)7 and SAMtools (v0.1.19)8 to verify the library preparation and
sequencing performances. Raw read counts were then used to calculate TPM values
for each PhTAC125 gene. Clusters of co-regulated genes were identified using the
Clust tool*® using the following parameters: k-means clustering method, tightness
weight equal to 0.3 and Q3s outliers threshold equal to 2.0.

Differentially expressed genes between the various contrasts were identified
using the R (R Development Core Team, 2012, https://www.r-project.org/) package
DeSeq2%0 using default parameters and the following thresholds: adjusted p value <
0.01 and log2FC > 0.75 or 1og2FC < —0.75. The clustering of genes based on their
FC was performed using the Pheatmap R package. Visualization of Pearson
correlation was performed using “corplot” R package.

Functional enrichment analysis and regulon identification. To conduct func-
tional enrichment, each gene whose upstream intergenic region was clustered in
one of the three clusters was assigned to a specific functional category using a
BLAST®! search against the COG database®?, with default parameters and con-
sidering a hit as significant if E-value < 1e—20. The exact binomial test imple-
mented in the R package was used to assess over- and under-represented functional
categories against the corresponding genomic background. Available information
on PhTAC125 amino acid metabolism regulons were retrieved using RegPrecise
database®364, The RegPrecise includes information for 7 PhATACI25 regulons
(Supplementary Table 5).

Motif finding. Shared, conserved upstream motifs were searched up to 200 bp
upstream of the genes belonging to the same regulon. These sequences were
retrieved were retrieved from the P. haloplanktis TAC125 reference genome and
fed into the MEME suite® v. 5.1.1. MEME was used in combination with MAST
(version 5.0.5)% for identifying the most plausible shared motifs upstream of the
selected genes. MEME was used setting the following parameters: -nmotifs 5,
-minw 6, -maxw 30, -objfun classic, -revcomp, -markov_order 0, -minsites 1,
-maxsites 3. All the other parameters were set as default. MAST was used using
default parameters. In all cases, only the best scoring motif was considered for
further analyses, provided that the search produced a significant result (e-value <
0.05). The conservation of identified shared motifs was represented using
WebLogo®”.

Modelling. The deterministic system was simulated by numerically integrating
differential equations using the Matlab built-in function ode45 v. 2019a. To esti-
mate the unknown parameters of the model from experimental data we used a
stochastic curve-fitting in-house Matlab software. The algorithm is based on the
paper by Cardoso et al.®8 and consists in the combination of the non-linear simplex
and the simulated annealing approach to minimize the squared deviation function.
To increase the points available for curve-fitting, we used the spline interpolation
function implemented in MATLAB on the measured values of nutrients and
biomass concentration. The same function was adopted to increase the points
available for growth rate estimation during the experiment reported in Fig. 1a.

The codes used to perform the simulations reported in this work and the details
about the options of the curve-fitting environment, are available at https://
multiauxic.sourceforge.io.

To assess the quality of the fit of the MMM vs. the cybernetic model R? and AIC
were computed. R? values between experimental data and model predictions were
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computed using the built-in cor.test function in R%. AIC values were computed as:

AIC = N x log(%) + 2xp.

With p being the number of parameters in the models (19 and 9 for cybernetic
and MMM models, respectively), N being the number of training cases and SSE
being the sum of squared errors for each training set. The interpolated datasets
used to compute the fit with the models were also used when computing AIC (i.e.,
N=49). The AIC values were computed using MATLAB 2019a.

Growth rates estimation on interpolated growth data. To increase the points
available for curve-fitting, we used the spline interpolation function implemented
in MATLAB on the measured values of biomass concentration (OD) obtained from
growing PhTAC125 cells on peptone.

Metabolomic assay and data analysis. NMR spectra were acquired on (i) cell
media to monitor the uptake of the various amino acids by measuring their levels
in samples collected at different time points of cell growth; (ii) cell lysates to
characterize the intracellular metabolome and its variation over time.

Medium samples were prepared in 5.00 mm NMR tubes by mixing 60 uL of a
potassium phosphate buffer (1.5 M K,HPO,, 100% (v/v) 2H,0, 10 mM sodium
trimethylsilyl [2,2,3,3—2H,] propionate (TMSP), pH 7.4) and 540 uL of sample.
Cell lysate samples were prepared in 5.00 NMR tubes by mixing 60 pL of 2H,O and
540 uL of samples.

Spectral acquisition and processing were performed according to procedures
developed at CERM>%70-74, All the spectra were recorded using a Bruker 600 MHz
spectrometer (Bruker BioSpin) operating at 600.13 MHz proton Larmor frequency
and equipped with a 5 mm PATXI 'H-13C-1°N and ?H-decoupling probe including
a z axis gradient coil, an automatic tuning matching and an automatic and
refrigerate sample changer (SampleJet). A BTO 2000 thermocouple served for
temperature stabilization at the level of ~0.1 K at the sample. Before measurement,
samples were kept for 5 min inside the NMR probe head, for temperature
equilibration at 300 K.

For media, NMR spectra were acquired with water peak suppression and (i)
one-dimensional (1D) 'H standard NOESY pulse sequence’® using 128 scans,
65,536 data points, a spectral width of 12,019 Hz, an acquisition time of 2.7 s, a
relaxation delay of 4 s and a mixing time of 0.01s; (i) two-dimensional (2D) 'H-
13C heteronuclear single quantum coherence spectroscopy (HSQC) pulse sequence
(hsqcetgpsisp2, Bruker). A total of 80 scans were collected using a spectral width of
12,019 for {2 and of 30,178 for f1, f2 and f1 acquisition time of 0.085 sand 0.002 s,
respectively, and a relaxation delay of 2s.

For lysates, NMR spectra were acquired with water peak suppression and (i)
1D !H standard NOESY pulse sequence using 64 scans, 98,304 data points, a
spectral width of 18,028 Hz, an acquisition time of 2.7 s, a relaxation delay of 4 s
and a mixing time of 0.01; (ii) 1D 'H Carr-Purcell-Meiboom-Gill sequence
using 64 scans’®, 73,728 data points, a spectral width of 12,019 Hz, an
acquisition time of 3.07 s and a relaxation delay of 4; (iii) 2D 'H-13C HSQC
pulse sequence (hsqcetgpsisp2, Bruker)””. A total of 80 scans were collected
using a spectral width of 12,019 for f2 and of 30,178 for f1, f2 and f1 acquisition
time of 0.085 sand 0.002 s, respectively, and a relaxation delay of 2's.

The raw data were multiplied by a 0.3 Hz exponential line broadening before
applying Fourier transformation. Transformed spectra were automatically
corrected for phase and baseline distortions. All the spectra were then calibrated to
the reference signal of TMSP at § 0.00 'H chemical shift (ppm) using TopSpin 3.5
(Bruker BioSpin srl).!H-13C HSQC spectra were also calibrated to the methyl signal
of alanine at § 19.03 13C chemical shift (ppm).

The signals deriving from each metabolite were assigned using an internal NMR
spectral library of pure organic compounds, spiking NMR experiments and literature
data. Matching between the present NMR spectra and the NMR spectral library
was performed using the AMIX and Assure software (Bruker BioSpin srl). The
relative concentrations of the various metabolites were calculated by integrating the
corresponding signals in defined spectral range, using a home-made R 3.0.2 script.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

RNA-seq data that support the findings of this study have been deposited in NCBI SRA
archive with the accession codes SAMN12207305 to SAMN12207324. Metabolomics
data have been deposited at MetaboLights (https://www.ebi.ac.uk/metabolights/) under
code unique identifier MTBLS1699 (www.ebi.ac.uk/metabolights/MTBLS1699).

Databases used in this work: COG (https://www.ncbi.nlm.nih.gov/COG/), KEGG
(https://www.genome.jp/kegg/), RegPrecise (http://regprecise.sbpdiscovery.org:8080/
WebRegPrecise/).

The authors declare that the other data supporting the findings of this study are
available within the paper. No restrictions apply to data availability. The source data
underlying Figs. 1a—c, 2a-d, 2b-e, 4a, ¢, d, 5a, b, S6a, S8a-d, S9a, b, 10a, b, S20 and S21
are provided as a Source Data files.

Code availability
Code and scripts used to implement the model are available at https://multiauxic.
sourceforge.io.
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