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needed to optimize outcomes
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Baltimore, MD, United States, 2Department of Urology, Johns Hopkins University School of
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Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Johns Hopkins
University School of Medicine, Baltimore, MD, United States,
Hemoglobinopathies are autosomal recessive disorders that occur when genetic

mutations negatively impact the function of hemoglobin. Common

hemoglobinopathies that are clinically significant include sickle cell disease,

alpha thalassemia, and beta thalassemia. Advancements in disease-modifying

and curative treatments for the common hemoglobinopathies over the past

thirty years have led to improvements in patient quality of life and longevity for

those who are affected. However, the diseases, their treatments and cures pose

infertility risks,making fertility preservation counseling and treatment an important

part of the contemporary comprehensive patient care. Sickle cell disease

negatively impacts both male and female infertility, primarily by testicular failure

and decreased ovarian reserve, respectively. Fertility in both males and females

with beta thalassemia major are negatively impacted by iron deposition due to

chronic blood transfusions. Hematopoietic stemcell transplant (HSCT) is currently

the only curative treatment for SCD and transfusion dependent beta thalassemia.

Many of the conditioning regimens for HSCT contain chemotherapeutic agents

with known gonadotoxicity and whole-body radiation. Although most clinical

studies on toxicity and impact of HSCT on long-term health do not evaluate

fertility, gonadal failure is common. Male fertility preservationmodalities that exist

prior to gonadotoxic treatment include sperm banking for pubertal males and

testicular cryopreservation for pre-pubertal boys. For female patients, fertility

preservation options include oocyte cryopreservation and ovarian tissue

cryopreservation. Oocyte cryopreservation requires controlled ovarian

hyperstimulation (COH) with ten to fourteen days of intensive monitoring and

medication administration. This is feasible once the patient has undergone

menarche. Follicular growth is monitored via transvaginal or transabdominal
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ultrasound, and hormone levels are monitored through frequent blood work.

Oocytes are then harvested via a minimally invasive approach under anesthesia.

Complications of COH are more common in patients with hemoglobinopathies.

Ovarian hyperstimulation syndrome creates a greater risk to patients with

underlying vascular, pulmonary, and renal injury, as they may be less able to

tolerate fluids shifts. Thus, it is critical tomonitor patients undergoing COHclosely

with close collaboration between the hematology team and the reproductive

endocrinology team. Counseling patients and families about future fertility must

take into consideration the patient’s disease, treatment history, and planned

treatment, acknowledging current knowledge gaps.
KEYWORDS

fertility preservation, sickle cell disease, beta thalassemia, oocyte cryopreservation,
ovarian tissue cryopreservation, sperm cryopreservation
Introduction

Hemoglobin is an oxygen-carrying protein comprised of four

subunits: two alpha chains and two non-alpha globin chains. In a

healthy adult, approximately 95-98% of hemoglobin is in the

form of HbA1, which consists of two alpha and two beta chains;

the remaining small percentage of hemoglobin is in the form of

HbA2 (two alpha and two delta chains) and HbF (two alpha and

two gamma chains) (1). Almost 2,000 hemoglobin gene variants

have been described (2). However, most variants are not

associated with clinically significant disease. Indeed, it is

estimated that 24% of the world population carry at least one

altered globin gene, but only 5% carry a clinically significant

variant (3). Hemoglobinopathies are autosomal recessive

disorders: sickle cell disease, alpha thalassemia, and

beta thalassemia.

Advancements in disease-modifying and curative treatments

for the common hemoglobinopathies over the past thirty years

have led to improvements in patient quality of life and longevity

for those who are affected. However, the diseases, their

treatments and cures may pose infertility risks. Expanding

opportunities to preserve fertility in childhood are thus

relevant for children with these common genetic conditions.

In this article, we discuss the indications and complications

of fert i l i ty preservat ion in pediatr ic pat ients with

hemoglobinopathies, specifically sickle cell disease and beta

thalassemia. We also review their etiologies and impact on

fertility and summarize their main disease modifying treatment

options, focusing on the use of hydroxyurea and hematopoietic

stem cell transplant. Finally, we review healthcare and research

disparities in this field.
02
Overview of common
hemoglobinopathies

Sickle cell disease

Sickle ce l l d isease (SCD) refers to a group of

hemoglobinopathies characterized by two b-globin gene

mutations or deletions, at least one of which is the point mutation

that leads to the production of hemoglobin S (HbS) (Table 1). An

adenine-to-thymine substitution in the sixth codon of the beta-

globin chain results in HbS. This substitution creates an insoluble

polymer that distorts the cellular membrane and promotes the

characteristic red blood cell sickling in deoxygenated states. The

inability of HbS to deform normally results in hemolysis, a

shortened red blood cell lifespan, and a hypercoagulable state.

Additionally, the sickled red blood cells may become entrapped

within vessels, leading to vascular occlusion and ischemia that

promotes further sickling. This is the mechanism responsible for

vaso-occlusive pain crises (VOC), acute chest syndrome (ACS),

stroke, splenic sequestration, neuropathy, osteonecrosis, and

recurrent infections, among other severe complications of SCD (4).

SCD occurs when an individual is homozygous for HbS (i.e.,

HbSS, sickle cell anemia) or compound heterozygous with

another beta globin gene mutation.
Beta thalassemia

Thalassemia arises from globin chain imbalance due to

mutations in one of the four alpha subunit genes or one of the

two beta subunit genes. An imbalance in the production of alpha
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and beta globin chains produces unpaired globin chains that

precipitate within red blood cells, resulting in hemolysis and

ineffective hematopoiesis. Thalassemia severity depends on the

type of genetic defect (i.e., missense versus full deletion) and on

the number of genes affected.

Beta thalassemia is caused by mutations in the beta globin

gene. Some mutations reduce expression of the beta subunit

(b+), whereas others result in complete loss of expression from

that allele (b0). Individuals with one functional beta globin (b/b+
or b/b0; beta thalassemia minor) are asymptomatic carriers.

Patients with some normal beta globin production (b+/b+ or

b+/b0; beta thalassemia intermedia) usually have mild to

moderate anemia, although patients may require chronic

transfusions. Beta thalassemia major (BTM) is characterized

by severe anemia that results when both beta globin genes

have deletions (b0/b0) or when a deletion is paired with

another mutation that severely decreases beta globin

expression (5).

When patients are dependent on transfusions for survival,

regardless of genotype, they are said to have transfusion-

dependent thalassemia (6). These patients usually have BTM

and without treatment or cure, they are at risk of growth

impairment, skeletal abnormalities, hepatosplenomegaly, and

death within the first two decades of life (5). Life expectancy

for individuals with BTM has significantly (7) improved over the

years. In the 1970s, half of patients died before the age of 12 (8);
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however, many patients are now living into their 50s or 60s,

making normal puberty important and parenthood viable (9).

Given the prevalence and severity of BTM and SCD, this

review article will focus on these hemoglobinopathies. We note

that a small, but growing number of people with alpha

thalassemia major are surviving. These patients, like those with

beta thalassemia major are at risk for iron overload and

gonadotoxicity during HSCT. Given the lack of data, however,

we do not focus on these patients (7, 10).
Impact of hemoglobinopathies
on fertility

Sickle cell disease

Male infertility risks
Studies suggest that males with SCD are at risk for infertility

as a result of both hypergonadatropic hypogonadism from vaso-

occ lus ive induced te s t i cu lar i s chemia as we l l a s

hypogonadotropic hypogonadism from chronic transfusion-

induced iron deposition in the hypothalamus and pituitary

(11–13). Indeed, studies have demonstrated that approximately

24% of adult men with SCD are hypogonadal from both

hypergonadatropic hypogonadism as well as hypogonadotropic

hypogonadism (13–16). As a result, adolescent males may
TABLE 1 Hemoglobinopathy pathophysiology, major treatment modalities, and impact on fertility.

Hemoglobinopathy Pathophysiology Fertility
Effects

Treatments Treatment Fertility Effect

Beta Thalassemia Alpha globin chain precipitates due to globin chain
imbalance, leading to hemolysis and ineffective
hematopoiesis

Fertility effects
thought to be
secondary to
chronic
transfusions

Blood
transfusions

- Iron overload leads to hypothalamic
hypogonadism, impaired leptin synthesis,
delayed puberty
- Diminished sperm production

HSCT Chemotherapeutic agents and radiation may
lead to diminished ovarian reserve,
diminished sperm production, varying
degree of gonadal failure and infertility

Sickle Cell Disease Hemoglobin becomes insoluble polymer, distorts the
cellular membrane and promotes red blood cell sickling
in deoxygenated states; results in hemolysis, entrapment,
and hypercoagulability

Male:
- hypogonadism
- impaired
spermatogenesis
- delay in sexual
maturation
- Erectile
dysfunction
Female
- delay in sexual
maturation
- diminished
ovarian reserve

Pain
management:
NSAIDs,
opioids

Opioids: inhibits GnRH
NSAIDs: impairs ovulation, fertilization,
and implantation

Blood/
exchange
transfusions

- Iron overload leads to hypothalamic
hypogonadism, delayed puberty

Hydroxyurea - Diminished sperm production and
concentration
- Diminished ovarian reserve
- In pregnancy: birth defects, FGR

HSCT Chemotherapeutic agents and radiation may
lead to diminished ovarian reserve,
diminished sperm production, varying
degree of gonadal failure and infertility
HSCT, hematopoietic stem cell transplant; GnRH, gonadotropin releasing hormone; NSAIDs, nonsteroidal anti-inflammatory drugs; FGR, fetal growth restriction.
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experience a delay in sexual maturation by one to two years, and

boys with more severe genotypes (HbSS, HbSb0) experiencing
greater delays (13, 17).

Infertility in males with SCD can also occur as a result of

severe erectile dysfunction. Vaso-occlusion of the corpus

cavernosum can result in priapism and repeated vasoocclusive

episodes with priapism can result in high rates of erectile

dysfunction, with some studies demonstrating as many as 48%

of men will have impaired erectile function at an average age of

28 years old (18). Priapism is a true SCD emergency as the risk of

erectile dysfunction increases with prolonged episodes of

priapism (19, 20). Severe cases of erectile dysfunction can

make spontaneous reproduction difficult and limit future

fertility and may even require penile prosthesis to achieve an

erection necessary for intercourse.

Even in eugonadal men with SCD, spermatogenesis is often

affected; impaired semen parameters have been observed in men

with normal FSH, LH and testosterone levels, possibly due to

testicular infarction (21, 22). In one study, 91% of patients with

SCD and taking no disease modifying therapy had an abnormality

on semen analysis. Themost common abnormality being impaired

motility, though total motile counts were still on average around 32

million motile sperm (23). Despite a high published rates of

abnormalities on semen analysis in men with sickle cell disease,

in a large retrospective registry study of patients with sickle cell

disease, Gordeuk et al. found that among 1018 men with sickle cell

disease, 620 pregnancies conceptions had been reported for a rate of

0.61 per man (24).

Men with SCD can conceive an unassisted pregnancy with a

partner, though no largescale study has assessed the frequency of

infertility in this population, and further studies are needed

to determine.

Female infertility risks
The majority of data on female sexual development in SCD

is from the 1960s-1990s. These studies demonstrated that

females with SCD achieve sexual development and undergo

menarche at later ages than unaffected females (25), with more

severe genotypes (HbSS, HbSb0) having greater delays than

those with less severe hemoglobinopathies (HbSb+ or HbSC)

(13, 26). The delay in menarche is thought to be constitutional

(13, 26), and age of menarche is consistent with bone age (27).

Once menarche is reached, however, patients can be expected to

have regular menstruation (26). The effects of disease-modifying

therapy on age of menarche remains poorly defined (28).

The extent to which fertility is impacted in female patients

with SCD is also unclear. Historically, lower pregnancy rates

among women with SCD was used as a surrogate for fertility

(29), but this approach to estimating fertility is limited. Women

with SCD have multiple risks for reduced ovarian reserve:

chronic inflammation, oxidative stress, and ovarian ischemia

and reperfusion injuries (30, 31). Three studies have
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demonstrated normal anti-müllerian hormone (AMH) levels

in untreated adolescent and young adults with SCD (32–34).

However, women with SCD experience a more rapid decline in

ovarian reserve, with lower levels of AMH than age matched

controls (33, 35, 36). Females with SCD develop diminished

ovarian reserve (DOR) at younger ages (25-30 years) than age-

matched women (33, 34). Yet, no studies to date define the

definitive risk of infertility in this population (28). Interestingly,

in 2021 Mamsen et al. evaluated ovarian health markers in

adolescent females with hemoglobinopathies. They found no

difference in ovarian follicular density, morphology, and

expression of follicular and oocyte proteins between those with

SCD and health age-matched controls, suggesting that the

primordial follicle pool is normal in this population (37).
Beta thalassemia

Delayed sexual development, menarche, and hypothalamic

hypogonadism are common in adolescents with BTM (38) but

are these thought to be secondary to iron deposition from

chronic transfusions rather than a consequence of the disease

itself (39). Impact of chronic transfusion on pubertal

development and fertility and prevention options will be

further discussed in the next section.

For both SCD and BTM, a patient’s disease and disease

severity, may impact which fertility preservation treatment

options are available to them and the success of their fertility

treatment. When counseling patients and guardians about

treatment options, it is important to consider how the

individual’s unique disease presentation may impact success.
Palliative and disease modifying
therapies as potential infertility risks

Pain management
Chronic pain and opioid use are common sequelae of SCD.

Additionally, almost 70% of patients with BTM report recent

pain (40). Opioids have been shown to suppress the

hypothalamic-pituitary-gonadal axis through inhibiting

gonadotropin releasing hormone (41). Indeed, women taking

opioids chronically have an approximately 50% reduction in

estradiol and testosterone levels, a 30% reduction in

gonadotropins (42), and may experience menstrual cycle

disruption (42). Chronic opioid use also reduces testosterone

levels in males (43) and leads to lower sperm motility and

morphology (44) as well as increased DNA fragmentation (43).

The use of nonsteroidal anti-inflammatory drugs (NSAIDs)

can impact fertility through inhibition of cyclooxygenase 2

(COX-2), leading to reduced prostaglandin synthesis and
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impairments in ovulation, fertilization, and implantation (45,

46). While small studies have linked impaired ovulation and

infertility with NSAID use, the impact of chronic NSAID use on

ovarian reserve and fertility is not well understood (30).

Furthermore, polypharmacy may obfuscate associations

between analgesic medications and fertility in patients with

SCD or BTM.

Blood transfusion
Red blood cell transfusion or exchange is a cornerstone for

symptomatic management and prevention in patients with SCD

and BTM. For patients with SCD, these transfusions/exchanges

dilute sickle cell hemoglobin and thus reduce the sequalae of

sickling. For patients with BTM, transfusions supply normal red

blood cells and inhibit ineffective erythropoiesis (47). These

patients often undergo transfusions every three to four

weeks (5).

Despite clear benefits, chronic transfusions often lead to iron

overload, which has both direct and indirect impact on gonadal

function. Interestingly, iron deposition appears to be a greater

issue for individuals with BTM than those with SCD (48, 49),

and effects from iron deposition are the major complications

associated with BTM. For example, in a study of 73 patients with

BTM and SCD who received chronic transfusions, 33% of BTM

had gonadal failure compared to 0% of SCD patients (48). A

similar 2006 study found that 40% of patients with BTM had

hypogonadism, and they were eight times as likely to have

hypogonadism as patients with SCD (49). Chelation therapy

thus becomes essential for those receiving chronic blood

transfusions and should often be initiated prior to puberty in

order to encourage normal development (50). However,

progressive deposition in the hypothalamus and pituitary will

occur even in the setting of chelation therapy (51).

Hypothalamic hypogonadism may result from direct iron

deposition in the hypothalamus, pituitary, and reproductive

organs as well as free radial oxidative stress (39, 52–54). The

anterior pituitary is particularly sensitive to iron deposition and

demonstrates evidence of iron accumulation within the first

decade of life. Damage to the anterior pituitary leads to

disturbances in gonadotropic hormones and may lead to

pubertal delays or arrest. In fact, hypothalamic hypogonadism

is the most common endocrinopathy affecting individuals with

BTM (38). It is estimated that 70% of boys with beta thalassemia

intermedia or major will develop hypogonadotropic

hypogonadism (55), and over 50% of females will not reach

menarche spontaneously (38). In addition to iron deposition in

the hypothalamus and pituitary, gonadal iron deposition may

occur (56). However, ovarian function appears to be preserved as

evidenced by an age-appropriate ovarian response to

hyperstimulation (57, 58). Furthermore, ovarian tissue

preserved for fertility preservation in females with BTM

demonstrate normal follicular density and morphology (37).
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Iron deposition also negatively impacts fertility in patients

with BTM include impaired leptin synthesis and disruption of

liver and pancreatic function, which are involved in hormone

and antioxidant metabolism (39). It has been suggested that iron

deposition in adipose tissue disrupts the production of leptin, a

hormone now believed to be vital for the pubertal development.

In a study of 101 adolescents with BTM, Perrone et al. found

significantly lower leptin levels than expected for Tanner stage 1-

4 males and stage 3-5 females (59). In a separate study,

Dedoussis et al. found that leptin serum levels were

significantly lower for BTM patients who received either

sporadic or chronic transfusions than normal and that leptin

level was negatively correlated with levels of transferrin

reception for those who were transfusion dependent (60).

Males with transfusion dependent beta-thalassemia have

high rates of oligospermia and azoospermia, but conception is

still possible. In a study of 52 men, 60% were normospermic,

17% were oligospermic, and 23% were azoospermic (61). For

men with impaired spermatogenesis, spermatogenesis can be

induced with exogenous gonadotropin stimulation, with human

chorionic gonadotropin (hCG) alone or combined with human

menopausal gonadotropin, thus making paternity possible (9,

62–64) Indeed, in a survey of ten thalassemia centers, including

738 transfusion-dependent men over the age of 18, 75% of those

married or living with a partner conceived a pregnancy within

the first two years of the marriage. Of these pregnancies, 79%

occurred via natural conception and 15% of men required

exogenous gonadotropin stimulation (65).

Hydroxyurea
Approved by the FDA in 1998 for use in adults with sickle

cell anemia, hydroxyurea has dramatically improved patient

quality of life and reduced disease complications. Patients

taking hydroxyurea are less likely to be hospitalized or require

transfusions. Studies have also found improvements in long-

term survival and reduced risk of stroke (66–71).

Hydroxyurea inhibits ribonucleotide reductase and thus cell

cycle specific DNA replication. Through unclear mechanisms,

hydroxyurea shifts expression of the beta globin locus resulting

in increased production of HbF and decreased production of

HbS. As a result of decreased HbS concentration, hemoglobin is

less prone to polymerization and sickling. Hydroxyurea also

decreases circulating leukocytes and reticulocytes, increases red

blood cell volume, and improves cellular deformability, thereby

reducing painful events (72).

Given substantive improvements in patient symptoms and

markers of disease control, the National Heart, Lung, and Blood

Institute (NHLBI) recommends offering hydroxyurea in

pediatric patients over 9 months of age, regardless of clinical

severity (68). However, the optimal time to start hydroxyurea

therapy has not been established, and other national guidelines

recommend starting at later ages (73). Additionally, in patients
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not taking hydroxyurea, it may be recommended prior to bone

marrow transplant to reduce the risk of rejection and improve

chance of engraftment (74). While there have been some studies

suggesting benefit in the use of hydroxyurea in patients with

BTM (75), these results are not widespread and its use in this

population is uncommon (5).

Hydroxyurea use may be lifelong for patients with SCD.

While there is strong evidence as to the myelosuppressive effects

of hydroxyurea, data on other long-term effects, such as on

infertility, are conflicting. The National Toxicology Program

(NTP) Center for the Evaluation of Risks to Human

Reproduction (CERHR) gave hydroxyurea use in pregnancy its

second highest concern level due to risk for birth defects and

intrauterine growth restriction (76). CERHR also ranks use of

hydroxyurea in post-pubertal males as “highly concerning.”

For men, hydroxyurea owes its rank of “highly concerning”

to its impact on sperm parameters. In men, treatment with

hydroxyurea has been shown to significantly impair total sperm

concentration (pretreatment: 38.5 million sperm/mL; post

treatment: 18.46 million sperm/mL) but forward motility

remains similar (pretreatment: 28.6%; post treatment: 29.4%)

(23). In another study of men with SCD on hydroxyurea therapy,

20% developed oligospermia and 10% developed azoospermia

(77). The impact on spermatogenesis extends to prepubertal

males as well. In one study, two young males initiated on

hydroxyurea at ages 10 and 16 were found to have severe

oligospermia eight years after treatment initiation; two others

who began hydroxyurea at ages 8 and 11 were found to be

azoospermic 15 and 12 years later, respectively (78).

Despite hydroxyurea’s deleterious impact on semen

parameters, studies have shown normalization of semen

parameters after discontinuing the medication. In one study,

almost 75% of men who stopped hydroxyurea for three months

had normalization of their semen parameters (77). In a recent

study by Joseph et al., there was no difference in semen volume,

sperm concentration, total sperm count, or spermatozoa

motility, morphology, and vitality between men who received

hydroxyurea prior to puberty and men who were hydroxyurea

naïve. In this study, men who had a history of hydroxyurea use

stopped hydroxyurea on average two and a half years prior to

semen analysis (79). These studies suggest that while

hydroxyurea may have more severe effects when started in the

prepubertal period, the effects are potentially reversible.

However, the reliability and duration to recovery of

spermatogenesis after hydroxyurea has not been well

elucidated, and so sperm banking or testicular tissue banking

may be considered prior to initiating hydroxyurea therapy.

While hydroxyurea is considered ‘low risk’ for infertility in

women, it is associated with diminished ovarian reserve in three

small studies of people with sickle cell anemia (hemoglobin SS

and hemoglobin S beta-null thalassemia). During the decade-

long follow up of the Multicenter Study of Hydroxyurea (MSH)

randomized control trial, AMH was lower for women who were
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on hydroxyurea than for those not taking it (33). In 2015,

Elchuri et al. compared 10-21 year-old females with SCD who

received supportive care, hydroxyurea, or underwent bone

marrow transplantation. They found that 24% of patients

treated with hydroxyurea had diminished ovarian reserve as

defined by AMH <5% of expected for age-matched controls (32).

Moreover, among patients taking hydroxyurea, those with DOR

had been taking the medication for 2.8 years longer on average

than those without DOR. No patient receiving hydroxyurea in

this study met criteria for premature ovarian insufficiency as

defined as FSH is > 40 IU/L (32). In another single center

analysis of ovarian reserve in 26 women with sickle cell anemia,

all (n=5) women diagnosed with DOR were taking hydroxyurea

(34). Whether markers of ovarian reserve normalize when

hydroxyurea is stopped and whether hydroxyurea impairs

fertility, ovarian hyperstimulation, or oocyte quality is not

established. Given the potential to affect oocyte quantity and

quality, the potential risks associated with its use must be

weighed against the potential benefit of reduced rejection and

graft versus host disease risk.

Hematopoietic stem cell transplant
Hematopoietic stem cell transplant (HSCT) is currently the

only curative treatment for SCD and transfusion dependent beta

thalassemia. It is recommended when symptoms are no longer

controlled with supportive care and medical management or for

those who with serious disease complications. For patients with

SCD who underwent HLA-matched transplants, greater than

90% sustained engraftment and resolution of painful crises (80).

Similar improvements are seen in patients with BTM. To date,

more than 5,000 of HSCT have been performed for these

disorders (81–83).

For patients with SCD, HLAmatched sibling donors result in

the highest event-free survival. However due to limited availability

of HLA-matched siblings, haploidentical, matched unrelated, and

mismatched unrelated donation are possible and mostly offered

on an experimental basis (84). Age at transplantation impacts

morbidity and mortality, which is an important consideration for

fertility preservation. When HSCT is performed prior to 16 years

of age, the 5-year survival is 95% compared to 81% at older ages

(82), and children <10 years old have decreased mortality

compared to those transplanted 10-21 years old (85). Similarly,

for BTM HLA identical transplantation at younger ages (<14

years) improves outcomes and survival (83, 86) due to higher rates

of disease complications with age; transplant related mortality is

<5% if performed prior to 5 years old (83).

A variety of condition regimens for HSCT are described. The

first successful regimens were myeloablative. However, given the

intolerability of these regimens for those with severe disease,

nonmyeloablative conditioning regimens have been developed.

Many of the conditioning regimens contain chemotherapeutic

agents with known gonadotoxicity, such as cyclophosphamide.

Whole body radiation may also be included. The commonly
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used radiation dose (2-3Gy) is less than the effective sterilizing

dose (>14 Gy in females; > 6 Gy in males) but falls within ranges

known to cause significant gonadal damage (87–89). Despite the

potential for significant deleterious gonadal damage, most

clinical studies on toxicity and impact of HSCT on long-term

health do not evaluate gonadal function or fertility. From the

studies that do (Table 2), it is evident that gonadal failure is

common, but the impact is variable and unpredictable (115).

Additionally, younger age at transplant and male sex appear to

reduces risk of gonadal failure (109).

After transplantation, patients are often placed on additional

immunosuppressive medications to reduce the risk for GvHD,

such as cyclophosphamide or sirolimus (84, 116). Primary

ovarian insufficiency is a common consequence of

cyclophosphamide (117, 118), although ovarian reserve appears

to be less affected if cyclophosphamide is given prior tomenarche

(119). Sirolimus has also been shown to significantly reduce

sperm counts and fertility rates in male organ transplant

recipients (120), lead to gonadal dysfunction and secondary

infertility (121), and to negatively impact IVF outcomes (122).

In summary, counseling patients and families on future

fertility is complicated by the wide range of conditioning

regimens available and poor reporting on gonadal function

post-transplant. Furthermore, impact on gonadal function may

be highly variable even for the same conditioning regimen, with

some patients experiencing rapid gonadal failure necessitating

hormonal supplementation and others retaining full function.

Long term follow-up and a greater understanding of the interplay

between gonadotoxic treatment and gonadal function is needed.
Fertility preservation

Given the risk of gonadal failure after HSCT, fertility

preservation before HSCT should be offered (123). Early

counseling, no matter the patient age, is vital to provide

patients with the optimal opportunity to protect their

reproductive potential. Furthermore, fear of toxicity and

sterility are important barriers to HSCT acceptance (124, 125).

However, significant access to care remains including provider

awareness, patient/family preferences, and financial barriers.
Male fertility preservation

Fertility preservation is an important consideration for men

and their provider to discuss prior to HSCT or even initiating

hydroxyurea therapy (126). Male fertility preservation in many

ways is more straight forward than for females - ejaculate or

testicular tissue do not require stimulation cycles and can be

collected nearly immediately, but counseling men about the risk

of gonadotoxic agents is less frequently discussed with males

than female cancer patients (127, 128).
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Sperm banking
For post pubertal males, sperm banking can readily be

performed via ejaculation which allows sperm to be frozen

until the patient desires fertility, at which time in vitro

fertilization could be pursued (129). Given the impact of

hydroxyurea on spermatogenesis, it is recommended that

hydroxyurea be discontinued several months prior to sperm

collection (123). This may allow for normalization of sperm

parameters. However, discontinuing hydroxyurea for several

months may be challenging for patients with severe SCD.

While the process of sperm cryopreservation is relatively

simple, informing patients of the risk of gonadotoxic agents is

not always discussed or pursued (130). Studies have found low

rates of fertility preservation counseling prior to gonadotoxic

chemotherapy for cancer (128). However, these findings may not

be applicable to adolescent males facing gonadotoxic treatment

for their chronic lifelong disease and more research is needed

about fertility preservation counseling in this population.

Discussion of fertility preservation and increasing state-

mandated coverage of fertility preservation has resulted in an

increase in rates of fertility preservation (128). In recent years,

several online based companies have emerged that allow for in-

home collection for sperm banking wherein the individual

receives a kit, ejaculates in their own home into the provided

container, and then ships the kit back for cryopreservation (131).

With increasing insurance coverage of fertility preservation,

awareness of fertility preservation options amongst providers,

and online-based sperm preservation companies, hopefully the

rates of sperm banking prior to gonadotoxic agents will increase.
Testicular tissue preservation
Fertility preservation is more complex if the male has not yet

gone through puberty. Indeed, rates of azoospermia are quite

high in boys 13 years or younger (132). In these cases, surgery is

required to harvest testicular tissue for cryopreservation (133).

Only a small amount of testicular tissue is collected, and the

procedure is well tolerated with minimal side effects (134). It is

important however to note that there is no current ability to use

this sperm for future fertility attempts; thus prepubescent

testicular preservation is only offered in certain academic

centers as part of a research protocol (135). Research into

maturation of the testicular tissue and methods of

reimplantation are ongoing. The field recently took a major

step forward with the successful transplant of frozen rat

spermatogonial stem cells into recipient mice, which produced

differentiating germ cell types with production of spermatids

(136). While this murine study is certainly promising for the

future of reimplantation of testicular tissue, parents of boys

undergoing gonadotoxic treatments should be aware that much

research is still required and previously harvested testicular

tissue may not be ready for spermatogenesis at the time when

fertility may be desired. Currently, testicular tissue preservation
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TABLE 2 Clinical studies of hematopoietic stem cell transplant in patients with sickle cell disease and beta thalassemia that evaluated
reproductive function.

Authors,
year

Diagnosis Sample
Size

Median
age at time
of HSCT
(range)

Conditioning regimen Follow
up
time

Impact on reproductive
function

De Santis
et al., 1991
(90)

BTM N=30 Mean 12.9
years
(9.3-17.2
years)

Busulfan/cyclophosphamide 0.7-5.1
years

- 12/15 females had elevated
levels of LH and FSH
- 15/15 males had normal LH,
FSH, testosterone

Vermylen
et al., 1998
(91)

SCD N=50 7.5 years
(0.9-23 years)

Busulfan/Cyclophosphamide +/- total lymphoid
irradiation or ATG

0.3-11
years

- 2/2 postpubertal females
developed secondary
amenorrhea
- 5/6 prepubertal females had
primary amenorrhea and
required hormone replacement
- 1/6 prepubertal female had
spontaneous menarche
- 6/6 males adolescent boys had
normal sexual development
- 4/6 males had decreased
testosterone and elevated FSH
-1/6 males had elevated LH

Slavin et al.,
1998 (92)

Malignant and
non-malignant
hematologic
diseases

N=26 (1 with
BTM)

31 years
(1-61 years)

Fludarabine/ATG/low-dose busulfan Median: 8
months

1 19-year-old female regained
menstruation

Bernaudin
et al., 2007
(93)

SCD N=87 9.5 years
(2-22 years)

Busulfan/cyclophosphamide/
ATG

2-17.9
years

- 7 postpubertal females
developed amenorrhea, low
estradiol, elevated FHS and LH
levels
- “most” of prepubertal females
required hormone therapy
- 2 prepubertal girls underwent
spontaneous puberty
- All males had normal
testosterone, FSH, and LH
levels

Brachet et al.,
2007 (94)

SCD N=30 7.2 years
(2.3-14.2
years)

Busulfan/cyclophosphamide 2.5-17.3
years

- 7/10 females had amenorrhea
- 1 spontaneous pregnancy/live
birth
- 9/9 males underwent
spontaneous puberty
9/9 males had normal/low-
normal testosterone
-1/2 males had azoospermia

Lukusa et al.,
2009 (95)

SCD N=10 32 years
(10-34 years)

Busulfan/cyclophosphamide +/- total lymphoid
irradiation

8-21
years

- 5/5 spontaneous puberty
- 3/6 azoospermia
- no pregnancies fathered

Hsieh et al.,
2009 (96)
(supplemental
material)

SCD N=10 26 years
(16-45 years)

Total-body irradiation (3Gy)/alemtuzumab 15-54 mo 1.25 to 4.5 years post HSCT:
- Range of FSH 5.8-179 units/L;
LH 2-98.4 units/L
- 1 female patient had FSH >40
units/L 0.5 years after HSCT; <
40 m/L FSH 1 and 2 years after
- 1 pregnancy/
delivery
- 1 female has regular menses
on oral contraception
- Range of total testosterone
191-1230 ng/dL; free
testosterone 4.1-40.7 ng/dL

(Continued)
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TABLE 2 Continued

Authors,
year

Diagnosis Sample
Size

Median
age at time
of HSCT
(range)

Conditioning regimen Follow
up
time

Impact on reproductive
function

- 1 male on testosterone
replacement

Walters et al.,
2010 (97)

SCD N=55 <16 Busulfan/cyclophosphamide 3-12.4
years

- 9/12 females had amenorrhea
- 2 spontaneous pregnancies/
live births
- 8/11 males had low
testosterone

Majumdar
et al., 2010
(98)

SCD N=10 10.1 years
(2.8-16.3
years)

Busulfan/cyclophosphamide/
thyroglobulin

2.9-11
years

-2/7 had FSH >40 mIU/mL
more than 3 years post-
transplant
-2/3 females >14 have POF

Dallas et al.,
2013 (99)

SCD N=22 11.1 years
(5.4-17.4
years)

Busulfan/cyclophosphamide/
thyroglobulin

0.9-12.3
years

-5/9 males had normal gonadal
function (normal LH, FSH,
testosterone)
- 3/9 males had hypogonadism
with normal testosterone
-1/9 male required testosterone
- 2/4 females developed POF
requiring therapy
-2/4 females had normal cycles
and hormone levels
- 1 pregnancy (unspecified if
spontaneous)

Hsieh et al.,
2014 (100)

SCD N=30 Not reported
(16-65 years)

Alemtuzumab/total-body irradiation (300 cGy)/
sirolimus

1-8.6
years

- spontaneous conception for 2
women and 2 men after
transplant (no specifics)

Bhatia et al.,
2014 (101)

SCD N=17 8.9 years
(2.3-20.2
years)

Busulfan/fludarabine/
alemtuzumab

135–2731
days

- Semen analyses, testosterone,
LH, FSH levels measured in
postpubteral males
- AMH, estradiol, LH, FSH
levels measured in postpubertal
females
No results reported

Dedeken et al.,
2014 (102)

SCD N=50 8.3 years
(1.7-15.3
years)

Busulfan/cyclophosphamide;
Busulfan/cyclophosphamide/
ATG

0.4-21.3
years

- 3/12 spontaneous puberty
- 1 female had 2 spontaneous
pregnancies
- 1 female had POF which
recovered spontaneously and
had normal pregnancy

Soni et al.,
2014 (103)

SCD N=15 5 years
(1.5-18 years)

Busulfan/cyclophosphamide/
thyroglobulin

0.9-7.5
years

-2/3 females had gonadal
dysfunction

Maheshwari
et al., 2014
(104)

SCD N=16 6.2 years
(1.2-19.3
years)

Busulfan/cyclophosphamide/
thyroglobulin

1.3-9
years

-2/5 (1 male and 1 female) had
gonadal dysfunction requiring
hormone replacement

Elchuri et al.,
2015 (32)

SCD N=56 10-21 years Supportive care vs hydroxyurea (≥20mg/kg for
≥12mo vs HSCT (busulfan and cyclophosphamide)

n/a - Mean AMH was 17.1
(supportive care), 13.4 (HU),
and <0.57pmol/L (HSCT)
- POI was found in 0%
(Supportive care and HU) and
89% (HSCT) patients

King et al.,
2015 (105)

SCD, BT N=52 11.5 years
(0.8-20.3
years)

Reduced intensity conditioning: alemtuzumab/
Fludarabine/melphalan

0.75-11.8
years

- Resumption of menses within
a year of transplant in 4
teenagers
- “maintained fertility” (not
defined) in 3 females

(Continued)
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TABLE 2 Continued

Authors,
year

Diagnosis Sample
Size

Median
age at time
of HSCT
(range)

Conditioning regimen Follow
up
time

Impact on reproductive
function

Madden et al.,
2016 (106)

Mixture of
diagnoses
(immune,
metabolic,
hemoglobinopathy)
Results not
differentiated by
diagnosis

N= 43 (10
had hemo-
globinopathy)

3.4 years
(1.5 mo-20
years)

Reduced intensity conditioning with Alemtuzumab/
Fludarabine/mephalan

2 to 8
years

- 1 of 17 had hypogonadism
(also had chronic GvHD)
- 3 of 3 postpubertal girls
resumed menstruation; 2 had
normal pregnancies
- 9 of 11 age-appropriate
Tanner development

Marzollo
et al., 2017
(107)

SCD N=11 6.5 years
(4-16.3 years)

Treosulfan/fludarabine/ATG/
thiotepa

0.8-
6.5years

- 3/4 had normal pubertal
development
-1/4 had secondary
hypogonadism

Santarone
et al., 2017
(108)

BTM Males:
N=8
Females:
N=15

Males:
15 years
(4-24 years)
Females:
14 years
(2-21 years)

Busulfan (total dose, 14 mg/kg) and
cyclophosphamide (total dose, 200 mg/kg) as
conditioning therapy and cyclosporine and short-
course methotrexate as GvHD prophylaxis

Median
24 years
(10-33
years)

-15 women achieved 27
pregnancies, 21 were achieved
via natural conception, 6 via
IVF
- 2 miscarriage
- 3 abortions (2 intended, 1

unintentional)
- 22 live births

- 8 men achieved 15
pregnancies with their partner,
all via natural conception
- 1 intended abortion
- 14 live births

Rahal et al.,
2018 (109)

BT N=99 5.9 years
(8mo-26
years)

Busulfan/cyclophosphamide;
busulfan/fludarabine +/- thiotepa
3 other regimens including radiation

2-30
years

- Hypogonadism present in
56% of females and 14% of
males
- 6/6 females had secondary
amenorrhea; 5 had
hypogonadism
-12/33 females had spontaneous
and normal puberty
-21/33 females had delayed
puberty
- 11/27 females had 1+
successful pregnancy, 2
required oocyte donation (both
had delayed puberty)
-4/22 males had delayed
puberty; 3 developed
hypogonadism
- 18/22 males had normal
pubertal development
-4/21 males had fathered 1+
children (1 required IVF for
hypogonadism and oligo-
asthenozoospermia)

Zhao et al.,
2019 (110)

SCD N=3 14 years (11-
15 years)

Alemtuzumab/fludarabine/
melphalan

>1 year
post
transplant

-3/3 normal testosterone
- 2/3 azoospermia
- no pregnancies fathered

Elchuri et al.,
2020 (111)

SCD N=40 9 years (6-34
years)

Busulfan/cyclophosphamide 1.1-18.5
years

- 21/21 females had DOR; 18
had undetectable AMH
- 10/21 females had POI
- 1 female had a spontaneous
pregnancy/livebirth
- 16/16 males had normal

(Continued)
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TABLE 2 Continued

Authors,
year

Diagnosis Sample
Size

Median
age at time
of HSCT
(range)

Conditioning regimen Follow
up
time

Impact on reproductive
function

testosterone
- no males fathered pregnancies

Bernaudin
et al., 2020
(112)

SCD N= 234 8.4 years
(2.2-28.9
years)

Busulfan, cyclophosphamide at 200 mg/kg and
rabbit ATG at different doses

0.1-27.6
years

- 14/14 postpubertal females
were amenorrheic within 1 year
and required hormone
replacement
- “Most” of 32 pre-pubertal
females required hormone
therapy
- 9 of 32 prepubertal girls
underwent spontaneous puberty
- 6 spontaneous pregnancies
- 2 females had orthotopic
ovarian fragment autograft;
both recovered ovarian
function; 1 conceived twice
- All males who were of
pubertal age had normal
development, normal
testosterone, FSH, LH
- 3 males had fathered
spontaneously

Rostami et al.,
2020 (61)

BTM N=43
(HSCT)
N=52
(chronic
transfusion)

Range 16-41
years

Cyclophosphamide/busulfan - 33% of entire cohort had
hypogonadism
HSCT cohort
-26% had dry ejaculate
- 51% had azoospermia
- 12% had oligospermia
Transfusion cohort
- 10% had dry ejaculate
- 23% had azoospermia
-17% had oligospermia

Alzahrani
et al., 2021
(113)

SCD N=122 29 years
(10-65 years)

Alemtuzumab/total body irradiation (3 Gy) 0.6-14.9
years

- 7 females had 1+ spontaneous
pregnancies
- 7 males fathered 1+
pregnancies spontaneously

Boga et al.,
2022 (114)

SCD N= 49 Not reported
(18-45 years)

Busulfan/cyclophosphamide/
Fludarabine/total body irradiation (2Gy)

>2 years
after
transplant

- 15/22 females had
documented amenorrhea
- 7/22 females without
amenorrhea were on hormonal
support
- All women had AMH <1ng/
mL 2 years after transplant
- 10/22 females had FSH >40
IU/mL x2
- 1 female had spontaneous
pregnancy and miscarriage
- 1 pregnancy from embryo
cryopreservation
-74% of males had azoospermia
- testosterone levels were all
normal
- 4/21 males fathered
pregnancies; 1 required IVF
Frontiers in En
docrinology
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ATG, anti-thymocyte globulin; AMH: anti-mullerian hormone; FSH, follicle stimulating hormone; GvHD, graft vs host disease; HSCT, hematopoietic stem cell transplant; HU,
hydroxyurea; IVF, in vitro fertilization; LH, luteinizing hormone; POF, primary ovarian failure; POI, primary ovarian insufficiency.
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is recommended for patients at significant risk for infertility,

including patients with SCD and BTM (137). Operative

considerations are discussed below.
Female fertility preservation

The most important factors determining mode of fertility

preservation in a female patient are whether she has undergone

menarche and the urgency with which the gonadotoxic

treatment is needed. Fertility preservation prior to HSCT for

hemoglobinopathies is not usually urgent. This will allow for

improved coordination and health optimization prior. In some

cases, this may allow time for menarche to occur and thus permit

the use of controlled ovarian hyperstimulation and oocyte

cryopreservation. For patients who have not yet undergone

menarche and for whom waiting until after menarche for

transplantation is not feasible due to patient age and disease

severity, ovarian tissue cryopreservation (OTC) is the only

current option for fertility preservation. For females who have

undergone menarche, OTC and oocyte cryopreservation are

available. While embryo cryopreservation is another option, it

is less likely in the pediatric and young adult population as it

requires a sperm source and has greater ethical implications.

Oocyte cryopreservation
Controlled ovarian hyperstimulation (COH) requires ten to

fourteen days of intensive monitoring and medication

administration. Follicular growth is monitored via transvaginal

or transabdominal ultrasound, and hormone levels are

monitored through frequent blood work. Oocytes are then

harvested via a minimally invasive approach under anesthesia.

Common complications of COH include headache, nausea,

abdominal distention, and discomfort. Less commonly, ovarian

hyperstimulation syndrome (OHSS) occurs, which may produce

venous thromboembolism (VTE), ascites, and cardiopulmonary

effusions (138). These consequences of COH are of even greater

concern for patients with hemoglobinopathies, who may have

altered pain perception and be less able to tolerate the discomfort

of COH. Ovarian hyperstimulation syndrome also creates a

greater risk to patients with underlying vascular, pulmonary,

and renal injury, as they may be less able to tolerate fluids shifts

(139). Indeed, COH increases the risk of VOC and ACS in

patients with SCD. To date, there are 4 reported cases of acute

pain crises during COH (Table 3).

Results of COH in patients with SCD are variable, with the

number of oocytes retrieved ranging from 4 - 31. Fifteen is

considered the minimum number of oocytes to harvest to

optimize the change of pregnancy in one cycle (152).

However, only 25% of the reported patients reached this goal.

No patients in these cohorts underwent multiple cycles for
Frontiers in Endocrinology 12
fertility preservation, perhaps reflecting time and monetary

constraints (139). There is also a scarcity of published data on

ovarian stimulation protocols and outcomes in adolescent

patients with and without hemoglobinopathies (153). It is

generally recommended to use adult dosing regimens as a

guide, adjusting for age, FSH level, and AFC. However, this

may require frequent and significant dose adjustments. For

example, in their cohort of eight teenage girls, Lavery et al.,

reported that dose adjustments were needed in 80% of

cases (154).

To date, there have been several reports of successful and

uncomplicated ovulation induction and IVF cycles for

untransplanted patients with BTM. However, there have been

no published COH protocols for BTM prior to fertility

preservation (155, 156). These authors recommended

discontinuing iron chelators prior to ovulation induction (156)

as they are contraindicated in pregnancy, but this is not

necessary for the purpose of fertility preservation.

Ovarian tissue cryopreservation
Ovarian tissue cryopreservation (OTC) is an increasingly

utilized method of FPT. As of 2019, OTC is no longer considered

experimental by the American Society for Reproductive

Medicine (ASRM), although it may be in other countries. As

of 2017, there had been 130 live births from OTC (157), with

estimates of greater than 200 births as of 2020 (158). Given the

younger ages at which HSCT is recommended for patients with

hemoglobinopathies, OTC may be the only mode of

FPT available.

Ovarian tissue cryopreservation is commonly performed via

an outpatient laparoscopic surgery in which an ovary, or portion

of the ovary is removed. This tissue is then stored until future use

at which point ovarian tissue transplantation (OTT) may occur.

Since OTC enables preservation of a larger cohort of primordial

follicles, ovarian endocrine function may be restored after OTT.

Indeed, in a metanalysis of 309 cases of OTT, endocrine

restoration, as defined by cyclic menstrual cycles, ovarian

follicle growth on ultrasound, or pregnancy, was achieved in

64% of cases. Clinical pregnancy rate after OTT was 57.5% (159).

Importantly, ovarian endocrine function appears to be

restored in the small number of reported post-OTT patients

with hemoglobinopathies (Table 4). In 2006, Donnez et al. was

the first to report restoration of ovarian function after orthotopic

transplantation in a patient with HbSS. The patient underwent

OTC prior to HSCT at age 21 years old. She required hormone

supplementation after transplant and eventually had an OTT

after which she had resumption of ovarian function, evidenced

of follicular development, and regular menstruation (140). These

findings have been replicated in several other reports of

adolescent patients with hemoglobinopathies, including

patients who were prepubertal (37).
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TABLE 3 Clinical reports of ovarian tissue cryopreservation for sickle cell disease and beta thalassemia.

Author,
Year

Cases Age Diagnosis/
Genotype1

Indication for
FPT

OTC Post HSCT Need for
hormonal

supplementation

Outcomes

Donnez
et al., 2006
(140)

1 21 years HbSS Prior to HSCT
(busulfan/
cyclophosphamide)

LSCO Amenorrheic;
FSH 48.2 mIU/mL;
LH 18.5 mIU/ml;
Estradil <10 pg/ml

Required - After cessation of HRT, bimonthly
FSH, LH, 17beta-estradiol
demonstrated anovulation
-Part of cryopreserved ovary
reimplanted
- Resumption of ovarian function,
follicular development, menstruation

Roux et al.,
2010 (141)

1 20 years HbSS Prior to HSCT
(busulfan/
cyclophosphamide)

LSCO Clinical and
biological POI

Required Desired pregnancy; had transplant
- 4 months after OTT, follicle
development
- 19 weeks after OTT, stopped HRT
and normalized AMH, FSH
-spontaneous pregnancy,
uncomplicated

Revel et al.,
2011 (142)

1 19 years BTM Prior to HSCT LSCO Clinical and
biological POI

Required - Desired pregnancy; 5 mature
oocytes were thawed but did not
mature
- After 1st OTT, FSH decreased,
estradiol increased
- After 3 cycles of failed IVF, ovarian
tissue stopped responding to
induction
- Underwent 2 additional OTT
- after 14th cycle of IVF, conceived,
delivered full term

Revelli
et al., 2013
(143)

1 21 years Transfusion-
dependent BT

Prior HSCT
(busulfan/
cyclophosphamide)

Ovarian
cortex
harvest

Clinical and
biological POI

Required - Desired pregnancy; discontinued
HRT, (FSH 72.3 IU/L, LH 32.1 IU/L)
with a drop of E2 levels (12 pg/mL)
- 3 months after OTT, E2 79 pg/mL,
and FSH levels decreased 46.1 IU/L
- Spontaneous pregnancy, full term
cesarean delivery

Demeestere
et al., 2015
(144)

1 13 years
(post

pubertal,
pre-

menarchal)

SCD Prior to HSCT
(busulfan/
cyclophosphamide/
ATG)

LSCO POI Required hormonal
supplementation for
menarche

- Desired pregnancy; discontinued
HRT; FSH 59 IU/l, LH 32 IU/l)
- 4 months after OTT: hormone
levels FSH 5 IU/l; LH 6 U/l; estradiol
E2 166 pg/ml)
- 5 months after OTT: started
regular menstruation
- 2 years after OTT: conceived
spontaneously; uncomplicated
pregnancy
*first case of premenarchal OTC
resulting in pregnancy

Pecker
et al., 2018
(139)

2 25, 27 SCD Prior to HSCT LSCO NR NR 1 patient experienced pain crisis after
laparotomy

Armstrong
et al., 2018
(145)

18
(114
total)

Range 2-
13 years

10 SCD
8 BT

Unknown/prior to
HSCT

NR NR NR Not reported

Matthews
et al., 2018
(146, 147)

1 9 years BTM Prior to HSCT LSCO Menarche age 15;
sporadic menses
- Patient trying to
conceive 2 years;
AMH <0.5ng/mL;
FSH 18-67 IU/L

Started on estradiol/
Norgestrel for uterine
development,
regulation of
menstrual cycle

- HRT discontinued after OTT
- FSH and LH ranged from pre to
post-menopausal range, at 5 mo
AMH approached 2 ng/mL
- Underwent IVF cycle (anatagonist),
8 oocytes retrieved from transplanted
ovary; uncomplicated pregnancy

(Continued)
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Spontaneous pregnancy may occur after OTC, although IVF

is frequently required. In 2015, Demeestere et al., reported the

first live birth from ovarian tissue cryopreserved from a pubertal

female who was pre-menarchal. The OTC occurred at age 13.

The patient, who had SCD, was confirmed to have primary

ovarian insufficiency when she desired to conceive. Two years

after ovarian transplantation, the patient spontaneously

conceived (144). In 2021, Mamsen et al., reported the first case

of pregnancy from OTC performed prior to puberty. The patient

who had beta thalassemia underwent OTC prior to HSCT at 9

years old. She returned at 23 for OTT after which she had

resumption of ovarian function and was able to conceive with

IVF. In a separate case report, a patient required 14 cycles of IVF

and 3 separate OTT to achieve a life birth (142). Unfortunately,

most studies do not report on infertility rates among patients

who have undergone OTT, nor do they report sufficient

information on the indication for IVF or the number of cycles

to draw conclusions about the chance of spontaneous

conception after OTT. Furthermore, patients’ response to

HSCT is variable; some patients appear to be completely cured
Frontiers in Endocrinology 14
after treatment while others have a less robust response.

Individuals who are not cured likely differ in pregnancy

outcomes given the higher rate of stillbirth and fetal growth

restriction in untreated patients with SCD (161).

OTC has dramatically altered opportunities for fertility

preservation in pediatric patients, especially those who are

prepubertal. Despite the promise of OTC, outcomes should be

viewed cautiously. Globally, few pregnancies have occurred for

patients who had OTC prior to puberty. While spontaneous

pregnancies occur, they should not be viewed as expected.

Furthermore, ovarian tissue grafts have a finite life. It is

estimated that ovarian grafts last approximately 2.25 years on

average (159). Therefore, periodic OTT may be required

throughout a female’s reproductive life.
Other fertility considerations

Women with SCD and beta thalassemia are at increased

risks for obstetric complications including maternal mortality,
TABLE 3 Continued

Author,
Year

Cases Age Diagnosis/
Genotype1

Indication for
FPT

OTC Post HSCT Need for
hormonal

supplementation

Outcomes

Poirot et al.,
2019 (148)

71
(418
total)

Range 0.3-
15 years
across all
categories

“hemo-
globinopathies”
- not
characterized

NR NR NR NR -oocytes isolated from the tissue
were cryopreserved in 50 cases

Mamsen
et al., 2021
(37)

14 Range 2.8-
17.4 years

10 BT
4 SCD

NR LSCO Two patients
underwent OTT-
menopausal at
time of transplant

NR - follicle density, morphology, and
expression of follicle- and oocyte
specific proteins were comparable to
an age-matched reference group
- 3-4 months after OTT, serum
hormone levels normal
- 1 patient conceived with IVF, gave
birth full term
*first case of pre-pubertal follicle
resulting in pregnancy

Dolmans
et al., 2021
(149)

9 (285
total)

Range 9-
44 years
across all
categories

“hemo-
globinopathies”
- not
characterized

NR NR NR NR - All patients had OTT
-40% spontaneous conception rate

Kristensen
et al., 2021
(150)

1,186
total

Range
4mo-44
years

across all
categories

55 benign
hematological
disease

NR NR NR NR - 117 returned for OTT
- Patients with benign hematological
diseases had highest (35%) return
rate

Hanfling
et al., 2021
(151)

2 2, 18 years 1 SCD, 1 BT Prior to HSCT
(both on
hydroxyurea)

LSCO NR NR - Mature oocytes found at time of
OTC

Boga et al.,
2022 (114)

1 Not reported
1- Diagnosis and genotype are those reported in manuscript
OTC, ovarian tissue cryopreservation; FPT, fertility preservation treatment; HSCT, hematopoietic stem cell transplant; OTT, ovarian tissue transplantation; SCD, sickle cell disease; BTM,
beta thalassemia major; BT, beta thalassemia; POI primary ovarian insufficiency; NR, not reported; LSCO laparoscopic oophorectomy; ATG, anti-thymocyte globulin; E2, estradiol; HRT,
hormone replacement therapy.
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intrauterine fetal demise, preeclampsia, preterm delivery, and

spontaneous miscarriage (162–167). These risks are partly

due to high rate of comorbidities associated with these

hemoglobinopathies, i.e., hypercoagulability. For women with

significant comorbidities who wish to have biologic children,

the option for surrogacy should be discussed along with

appropriate preconception counseling with maternal-fetal

medicine specialists.

Another important component of fertility treatment is the

discussion of genetic testing. Individuals who carry mutations

for hemoglobinopathies should be offered preimplantation

genetic testing (PGT) to reduce the risk of an affected

offspring. While patients may not be ready for parenthood

soon after their fertility preservation, education on surrogacy

and PGT may be helpful in informing patients and their families

on the full scope of fertility options.
Discussion

Preoperative and post-operative
risk management

Both surgery and COH contribute to fluid shifts and

hypercoagulability, which increase the risks for adverse

outcomes among patients with SCD. It is estimated that 5% of
Frontiers in Endocrinology 15
pediatric patients experience postoperative VOC and ACS (168,

169), and moderate to severe OHSS occur in 1-5% of all COH

cycles (138). To date, there have been six adverse outcomes

reports from FPT: (Table 5): one episode of mild OHSS, four

episodes of acute pain crises, and one episode of ACS requiring

intubation and intensive care unit admission. All adverse events

occurred in patients with SCD, and the more severe adverse

events occurred in older patients with more comorbidities.

Patients with BTM who have undergone a splenectomy are at

increased risk of post-operative infections and those with

hemosiderosis induced heart failure are more prone to fluid

overload. However, these risks are less well described than for

SCD. To date, no adverse events have been reported in pediatric

SCD FPT or in any BTM patient undergoing FPT.

Preoperative and postoperative optimization are vital to

reduce procedural complications and to reduce the risk of

cancellation of high stakes cycles. While there are no

standardized protocols for preoperative management, there are

general principles which should be followed. Below, we discuss

the available literature and include a protocol created by our

center for management of COH in patients with SCD (Table 6).

Preoperative/preprocedural planning
Prior to FPT, coordination with the patient’s hematologist is

vital for procedural optimization and postprodcedural

management. Universal preoperative anesthesia consult is not
TABLE 4 Cases of controlled ovarian hyperstimulation in patients with hemoglobinopathies.

Author, Year Age Diagnosis AFC Days
stimulated

Peak
estradiol

Total Gonado-
tropin IU/d

Trigger #oocytes
retrieved

#oocytes
cryopreserved

Dovey et al., 2012
(160)

19 years SCD 20 6 859 900 Leuprolide 20IU BID 9 8

Lavery et al., 2016
(154)

14 years SCD 13 14 NR 2625 rHCG 7 7

15 years SCD 6 10 NR 1875 rHCG 5 4

16 years SCD 18 11 NR 131.5 rHCG 21 16

16 years SCD 16 10 NR 1462.5 rHCG 29 25

16 years SCD 16 10 NR 1500 rHCG 14 11

17 years SCD 20 11 NR 3350 rHCG 5 3

18 years SCD 20 10 NR 1875 rHCG 31 30

18 years SCD 12 12 NR 3075 rHCG 7 1

Matthews and
Pollack, 2017 (146)

23 years SCD 28 5 1,669 1,125 Leuprolide 80IU 2
doses at 36 and 24 hr

9 8

Pecker et al., 2018
(139)

26 years SCD 2 13 3567 5850 Leuprolide 21 21

28 years SCD Small
follicles

10 244 3000 hCG 11 7 embryos

32 years SCD 10 10 983 1875 hCG 14 14

28 years SCD Small
follicles

12 815 3300 Leuprolide 4 3

15 years SCD 14 13 457 2925 hCG 14
(transabdominal)

12

Boga et al., 2022
(114)

1 patient had embryos cryopreserved, 3 had oocytes cryopreserved
AFC, antral follicle count; SCD, sickle cell disease; NR, not reported; BID, twice daily.
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warranted (170) but should be considered based on patient’s

medical comorbidities. Ensuring that children are up to date on

disease-specific screening (i.e. transcranial Doppler ultrasound)

is also recommended, although this is expected if the patient is in

the process of undergoing HSCT. Patients may have a history of

prior VTE, and thus an anticoagulation plan must be considered

when planning for both surgery and COH. To reduce overall

surgical risks, coordinating with other procedures, such as port

placement, should be considered.

Creating a COH stimulation protocol that optimizes oocyte

yield while minimizing risk of OHSS is vital. In our practice, we

use either hCG or a gonadotropin-releasing hormone agonist for

trigger to reduce the risk of OHSS (139). Given the unclear

impact of hydroxyurea on ovarian reserve, oocyte quality and

embryo development (171), we also recommend discussing

medication discontinuation prior to FPT.

Data on the benefits of preoperative transfusion in patients

with SCD is conflicting (172–176). Nevertheless, most experts

recommend transfusion for a hemoglobin level ≥9-10 g/dL and

exchange transfusions for hemoglobin S <30% (170, 177), and

these are the benchmarks that our group has recommended for

management of COH (139). For patients who receive regular

transfusions or exchanges, these should be continued in the

immediate preoperative period. If transfusion or exchange is

planned, coordination with blood bank specialists who are

familiar with the patient’s transfusion history and have
Frontiers in Endocrinology 16
knowledge of any red blood cell autoimmunization or

alloimmunization is recommended (139). Decisions on if and

when transfusions or exchanges are recommended should be

discussed with the patient’s hematologist.

Perioperative
Triggers for sickling should beminimized in the perioperative

setting, including dehydration, acidosis, hypoxia, and

hypothermia. To prevent dehydration, it is recommended that

patients avoid prolonged fasting, consume clear liquids up to two

hours prior to their procedure, and receive IV hydration while

fasting. Our group recommends administering IV hydration prior

to anesthesia administration (139). Normothermia through use of

body temperature monitoring systems, blankets, and ambient

temperature control is recommended. Monitoring oxygen

saturation is paramount, and supplemental oxygen used when

indicated. Glucocorticoids, such as dexamethasone, should be

avoided as they may precipitate pain crises (139, 178, 179).

Postoperative
Use of incentive spirometry, chest physiotherapy, and early

ambulation in the postoperative period is widely recommended

to reduce the risk of ACS (139, 170). Early pain control is

another important facet to postoperative management. Patients

with chronic pain, such as in SCD, may have altered pain

perception and may already be taking daily narcotics.
TABLE 5 Adverse outcomes associated with fertility preservation treatment in patients with sickle cell disease.

Authors Age Type of
FPT

Complication Management

Dovey et al., 2012 (160) 19 COH Acute pain crisis starting immediately post oocyte
retrieval

Hospital admission

Lavery et al., 2016 (154) 18 COH Mild OHSS 4 days post retrieval Supportive care

Matthew and Pollack, 2017
(146)

23 COH Acute pain crisis on day 6 of COH Exchange transfusion; cycle continuation

Pecker et al., 2018 (139) 26 COH ACS, respiratory failure, bacteremia Intubation, intensive care unit admission, pain control,
antibiotics

27 OTC Acute pain crisis Red Cell exchange

28 COH Acute pain crisis on day 6 of COH Hospital admission; IV hydration; pain control
FPT,-fertility preservation treatment; COH,- controlled ovarian hyperstimulation; OTC,-ovarian tissue cryopreservation; OHSS,-ovarian hyperstimulation syndrome.
TABLE 6 Perioperative considerations.

Preoperative Perioperative Post-operative

- Coordination with anesthesia and hematology
- Develop pain management plan in coordination with
hematology
- Consider exchange transfusion
- Consider HU discontinuation
- IF HU naïve and planning on starting HU prior to
HSCT, perform FP prior
- Consider prophylactic anticoagulation if history of VTE

- First or early start case
- Clear liquids up to 2 hours prior to start time
- IV hydration when fasting and prior to anesthesia
- Minimizing hypothermia in pre-operative space, in the operating
room, and in recovery
- Avoidance of dexamethasone for nausea

- Early pain management
- Early incentive spirometry
- Discontinue IV hydration when
tolerating by mouth
HU, hydroxyurea; HSCT, hematopoietic stem cell transplant; FP, fertility preservation VTE, venous thromboembolism; IV, intravenous
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Preoperative discussion with the patient’s hematologist is

absolutely critical when determining postoperative pain

regimen. Narcotics are often first line agents, although patient-

controlled analgesia may be warranted (170). Understanding the

patient’s recent pain history may help to predict postoperative

complications, as patients with recent hospitalizations for crises

are more likely to have postoperative crises (180).
Health care and research disparities

Hemoglobinopathies are the most commonly inherited

monogenetic diseases, yet research and funding do not reflect

the prevalence of the diseases (125, 181). For example, sickle cell

related variables are not collected in large health outcomes

databases and no robust dataset exists for hemoglobinopathies

and fertility (28), thereby limiting providers’ ability to offer

evidence based care.

No studies to date have evaluated access to FPT care for

patients with hemoglobinopathies (125). However, fertility

preservation is not commonly utilized prior to HSCT. For

example, in a claims database study of over 400 adults who

underwent HSCT, only 7% had claims for fertility preservation

services before their transplant (182). A significant barrier to

care, especially in the adolescent population is timely referrals.

Pediatric providers may not be aware of infertility risks and may

feel poorly equipped to discuss fertility preservation and

uncomfortable discussing reproductive health with patients

and their families (183–185), especially with rapidly evolving

recommendations and practices.

For patients who do receive a referral for fertility

preservation, the cost of FPT may be a significant barrier. The

average cost of COH for fertility preservation is over $12,000

(186, 187), and the cost of laparoscopic oophorectomy is

comparable (186). Storage fees for cryopreserved oocytes and

ovarian tissue, which may be over twenty years, further adds to

required costs. Whereas programs such as Livestrong exist to

assist patients in fertility preservation prior to cancer treatment,

no such national program exists for hemoglobinopathies. As of

2022, 12 states mandate coverage for fertility preservation prior

to gonadotoxic treatment (188). However, mandates often do

not cover government assistance such as Medicaid and

Medicare, and some states such as Utah require that the

patient has a cancer diagnosis, thereby disqualifying many

patients with SCD or BTM. Some have argued for the need to

change institutional programs (125) to provide coverage for

patients with SCD. Ultimately, advocating for legislation change

both on the local and national level is needed to expand coverage

for this population.

Adoption and utilization of oncofertility patient navigators

(189) may help to reduce some of these barriers to fertility

preservation among patients with hemoglobinopathies. Patient

navigators help guide patients and their families through fertility
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preservation, from identifying an in-network clinic, expediting

fertility evaluation, providing education about different fertility

options, and referring to different support groups (190).

Through advocating for patients and their families, navigators

may play a vital role in empowering them to make the right

fertility preservation decisions for their circumstances and goals.
Conclusions

Sickle cell disease and beta thalassemia are the most common

and morbid hemoglobinopathies. Disease modifying and curative

treatments have improved quality of life and increased the chance

of living into adulthood. However, many of these treatments

negatively impact fertility and normal pubertal development.

Fertility preservation should be discussed with all patients and

families considering disease modifying and curative therapies. In

very young children in which fertility preservation may be

challenging, the risks and benefits to delaying HSCT for greater

maturation should be discussed. Counseling patients and families

about future fertility must take into consideration the patient’s

disease, treatment history, and planned treatment, acknowledging

current knowledge gaps. Preparing for fertility preservation must

also include a multidisciplinary approach to optimize patient

outcomes while reducing surgical and procedural risks. Further

research and advocacy are needed to improve patient care and

future fertility.
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