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model;8 it is defined as a reversible condition between being 
independent and dependent physiologically, and is a term 
that refers to subjects who benefit from geriatric intervention 
to return to a healthy state. Assessment of frailty is useful 
in determining the feasibility of invasive treatments, and 
identifying high-risk individuals for prognostic purposes; 
early detection of frailty is critical for implementing 
interventions aimed at reversing frailty. Indeed, we have 
previously reported the need to assess physical frailty and to 
intervene appropriately in patients with CVD.9–15 Although 
the importance of frailty assessment is already well 
recognized in clinical practice, it is not easy to assess muscle 
strength, walking speed and physical activity required for 
standard frailty assessment for all older patients in routine 
clinical practice. As a solution to this problem, it may be 
useful to determine frailty risk using indicators that can be 

A s the population ages, the number of frail older 
adults, one of the most significant challenges of 
aging, is increasing. Aging is a multifactorial and 

multimodal process characterized by an increased incidence 
of health-related problems and non-communicable diseases, 
with Japan leading the world in life expectancy and aging 
rate.1 Frailty is one of the most common non-communicable 
diseases,2 increasing at a rate of 4.3% per year3 and affecting 
8.7% of community-dwelling older adults in Japan.4 Similar 
problems occur in patients with cardiovascular disease 
(CVD), with a high rate of concomitant frailty (15–63%), 
requiring adequate clinical management.5 Therefore, it is 
important to detect not only community-dwelling frail 
older adults but also hospitalized frail patients at an early 
stage and to provide appropriate care.6,7

The concept of frailty is commonly known as a phenotypic 
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Background:  This study aimed to create a deep learning model for predicting phenotypic physical frailty from electronic medical 
record information in patients with cardiovascular disease.

Methods and Results:  This single-center retrospective study enrolled patients who could be assessed for physical frailty according 
to cardiovascular health study criteria (25.5% [691/2,705] of the patients were frail). Patients were randomly separated for training 
(Train set: 80%) and validation (Test set: 20%) of the deep learning model. Multiple models were created using LightGBM, random 
forest, and logistic regression for deep learning, and their predictive abilities were compared. The LightGBM model had the highest 
accuracy (in a Test set: F1 score 0.561; accuracy 0.726; area under the curve of the receiver operating characteristics [AUC] 0.804). 
These results using only commonly used blood biochemistry test indices (in a Test set: F1 score 0.551; accuracy 0.721; AUC 0.793) 
were similar. The created models were consistently and strongly associated with physical functions at hospital discharge, all-cause 
death, and heart failure-related readmission.

Conclusions:  Deep learning models derived from large sample sizes of phenotypic physical frailty have shown good accuracy and 
consistent associations with prognosis and physical functions.
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study’s information was posted on plainly worded opt-out 
materials, and a guide for withdrawing from the study was 
presented.

Clinical Data Collection and Assessment of Frailty, 
Physical Function, and Prognosis
We extracted data necessary for defining frailty and to 
create a predictive model using items that were considered 
likely to be related to frailty, as follows: patient information 
(e.g., age, sex, body weight, blood pressure, and heart rate), 
blood test values, history of disease, and medications. Data 
used to predict physical frailty were collected from EHRs 
and selected based on the time of hospital discharge. The 
value of the corresponding period was used for items 
missing at discharge or measured only once during the 
hospitalization period. General-purpose indicators were 
targeted at commonly used daily blood biochemistry test 
indices that could be collected throughout various settings 
(Supplementary Table 1). When collecting blood test 
results and medication data, we exported the data from the 
EHR system. Disease information and frailty status were 
manually entered by the researchers while reviewing the 
EHR, with a careful double-checking process to ensure 
accuracy.

In this study, 2 criteria based on phenotype from Fried 
et al.8 were used to measure physical frailty: Cardiovascular 
Health Study (CHS) criteria,17 and the revised Japanese 
version of the CHS (J-CHS) criteria.18 Both sets of criteria 
consisted of muscle weakness, slow gait speed, physical 
inactivity, loss of body weight, and fatigue. Details of each 
criterion are presented in Supplementary Table 2. A physical 
therapist assessed the measured frailty at the end of the 
in-hospital rehabilitation before the patient was discharged 
with stable disease. For both criteria, applying 3 or more 
items was considered physically frail and used as the correct 
label for subsequent analyses.

assessed in daily clinical practice, such as electronic health 
record (EHR) data.

In recent years, there have been some reports on using 
artificial intelligence (AI) to create predictive models of 
frailty.16 However, studies with adequate sample sizes 
often use data such as mortality and prognosis as training 
data, and there are few models that use standard phenotypic 
frailty criteria, including assessments of muscle strength 
and walking speed, as training data. In addition, there are 
yet to be any reports of prediction models using only 
commonly used interview data and blood biochemistry 
indices that can be generalized, such as collecting general 
health checkups. Therefore, in the present study, we created 
a model for predictive phenotypic physical frailty and 
verified its usefulness based on information obtained from 
EHRs for patients with CVD, and checked whether the 
model would be equally valuable with only commonly 
used blood biochemistry test indices.

Methods
Study Design and Population
The study was performed retrospectively at a Kitasato 
University Hospital. Data were obtained from EHRs and 
physical function assessments, and data analysis, including 
deep learning, was outsourced to a vendor (Open Health 
Initiative, Minato-ku, Japan; https://www.openhealth-i.
com/). Patients who underwent inpatient rehabilitation at 
the Cardiovascular Center of Kitasato University Hospital 
between January 2008 and December 2020 were included. 
Patients who could not be assessed for physical frailty for 
any reason were excluded from the study. The study was 
performed according to the Declaration of Helsinki, and 
the study protocol, including matters of sharing data and 
materials with vendors, was approved by the Ethics 
Committee of Kitasato University Hospital (B21-170). The 

Table 1.  Association Between Both Phenotypic Frail Criteria and Physical Function Separated by Sex

Women Men

n Frail Non-frail P value n Frail Non-frail P value

CHS criteria n=215 n=584 n=415 n=1,220

    SPPB (point) 779 9.10 (2.89) 10.88 (1.87)　　 <0.001 1,588 9.80 (2.68) 11.40 (1.27)　　 <0.001

    Grip strength (kg) 790 14.5 (4.4)　　 18.5 (5.2)　　 <0.001 1,613 23 (6)　　 31 (8)　　 <0.001

    AC (cm) 791 23.9 (4.2)　　 25.2 (3.7)　　 <0.001 1,612 24.8 (3.4)　　 27.0 (3.4)　　 <0.001

    QIS/BM (%) 772 30 (10) 38 (12) <0.001 1,551 38 (16) 50 (16) <0.001

    CC (cm) 791 30.5 (4.3)　　 32.2 (3.7)　　 <0.001 1,611 32.2 (4.0)　　 35.0 (4.1)　　 <0.001

    MGS (m/s) 736 1.02 (0.37) 1.32 (0.33) <0.001 1,504 1.23 (0.40) 1.58 (0.38) <0.001

    CGS (m/s) 775 0.81 (0.27) 1.03 (0.25) <0.001 1,583 0.92 (0.30) 1.17 (0.26) <0.001

    6MWD (m) 777 257 (118) 346 (110) <0.001 1,571 307 (129) 423 (114) <0.001

J-CHS criteria n=309 n=590 n=382 n=1,423

    SPPB (point) 875 8.75 (2.88) 11.16 (1.55)　　 <0.001 1,755 9.06 (2.77) 11.50 (1.11)　　 <0.001

    Grip strength (kg) 896 13.8 (3.9)　　 19.1 (5.1)　　 <0.001 1,788 22 (6)　　 31 (7)　　 <0.001

    AC (cm) 893 24.0 (4.1)　　 25.1 (3.7)　　 <0.001 1,787 24.7 (3.4)　　 27.0 (3.5)　　 <0.001

    QIS/BM (%) 875 29 (10) 39 (12) <0.001 1,716 36 (13) 50 (17) <0.001

    CC (cm) 893 30.6 (4.2)　　 32.3 (3.7)　　 <0.001 1,787 31.9 (3.9)　　 34.9 (4.1)　　 <0.001

    MGS (m/s) 827 0.94 (0.32) 1.39 (0.30) <0.001 1,671 1.08 (0.40) 1.60 (0.36) <0.001

    CGS (m/s) 876 0.76 (0.26) 1.06 (0.23) <0.001 1,758 0.84 (0.28) 1.18 (0.25) <0.001

    6MWD (m) 877 235 (102) 365 (104) <0.001 1,738 271 (123) 427 (108) <0.001

Data are shown to mean (standard deviation) or n (%). 6MWD, 6-min walking distance; AC, arm circumference; CC, calf circumference; CGS, 
comfortable gait speed; CHS, Cardiovascular Health Study; J-CHS, revised Japanese version of the Cardiovascular Health Study; MGS, 
maximum gait speed; QIS/BM, quadriceps isometric strength/body mass; SPPB, short physical performance battery.

https://www.openhealth-i.com/
https://www.openhealth-i.com/
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and Test sets. The Wilcoxon rank-sum test, χ-square test, 
or Fisher’s exact probability test were used to verify the 
comparison. Kaplan-Meier survival curves were then drawn 
to check whether the Train and Test sets had a similar 
association with prognosis.

Deep Learning
The LightGBM,22 logistic regression, and random forest23 
methods were used for deep learning, and their accuracies 
were compared. To create the learning model using the 
Train set, we tried several combinations of features: a 
statistically significant difference item (All EHR model), 
and commonly used indices (Simple EHR model). To 
evaluate the accuracy of the predicting model made using 
the Train set, we used the values of precision (how well the 
model fits the prediction that it is a positive example), 
recall (how well the model picks up a positive example), F1 
score (which shows the trade-off relationship between 
precision and recall), and accuracy; the area under the curve 
of the receiver operating characteristics (AUC) values were 
also calculated. Using the 2×2 division confusion matrix 
(true positive [TP], true negative [TN], false positive [FP], 
and false negative [FN]), the formulas for each value are as 
follows:

Precision = (TP) / (TP+FP)
Recall = (TP) / (TP + FN)
Accuracy = (TP + TN) / (TP + FN + FP + TN)
F1 score = 2 × (Precision × Recall) / (Precision + Recall)
Using the Test set of cases, we then performed the 

prediction of frailty decisions based on the models with the 
best accuracy and investigated the degree of agreement 

A short physical performance battery, grip strength, mid-
upper arm circumference, quadriceps isometric strength, 
calf circumference, maximum gait speed, comfortable gait 
speed, and 6-min walking distance were assessed as physical 
function parameters at hospital discharge.19–21 As a primary 
outcome, all-cause death during 5 years was followed up 
using the date of discharge as the baseline. In cases where 
death could not be confirmed from EHRs, follow up was 
censored at the last date of survival confirmation. As a 
secondary outcome, heart failure (HF)-related rehospital-
ization events during 5 years were investigated. The 
definition of censoring was the same as for all-cause deaths 
up to the last survival date that could be verified in the 
EHR.

Preparation for Deep Learning
Initially, descriptive statistics were used to confirm the 
characteristics of the 2 frailty criteria. For confirmation, 
physical functions were measured at the same time as the 
identification of physical frailty for men and women. 
Comparisons between frail and non-frail were examined 
using the Wilcoxon rank-sum test. To test the association 
between the 2 frail criteria sets and prognosis, we classified 
the patients into 2 groups according to the presence or 
absence of physical frailty in both sets. We drew Kaplan-
Meier survival curves for all-cause death and HF-related 
rehospitalization. Last, we examined which features were 
associated with the presence or absence of both frailty 
criteria sets using the Wilcoxon rank-sum test, the χ-square 
test, or Fisher’s exact probability test.

The data were then randomly split into a training set 
(Train set: 80%) and a test set (Test set: 20%). After splitting, 
the data were compared for feature bias between the Train 

Figure 1.    Association of all-cause mortality (Top) and heart failure (HF)-related readmission (Bottom) with the presence (orange 
line) or absence (blue line) of frailty identified using the Cardiovascular Health Study (CHS) and revised Japanese version of the 
CHS (J-CHS) criteria.
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Results
Results of the Descriptive Statistics of Patients in the 
Present Study
During the inclusion period, 8,507 patients underwent 
in-hospital rehabilitation. Of these, 2,434 subjects were able 
to be identified using the CHS criteria, and 2,705 subjects 
were able to be identified using the J-CHS criteria. A total 
of 25.9% (630/2,434) was determined to be frail using the 
CHS criteria and 25.5% (691/2,705) using the J-CHS criteria.

Table 1 shows the physical functions of the 2 groups, 
determined by the presence or absence of phenotypic physical 
frailty as assessed by each criterion. For both criteria sets, 

with the actual results of frailty decisions. The reliability 
evaluation was based on the F1 score, recall, precision, 
accuracy, AUC value, and confusion matrix. In addition, 
the patients in the Test set were divided into 2 groups 
according to frailty and non-frailty predicted by the model, 
and their relationship to each physical function and 
prognosis after discharge was investigated. Last, the clinical 
validity of the generated frailty prediction model was 
visually confirmed using feature importance, partial depen-
dence plots with the main features, and the shapely additive 
explanation (SHAP) value.

Python 3.9 software was used for both analyses, and the 
statistical significance level was <5% with a 2-tailed test.

Figure 2.    Association of all-cause mortality (Top) and heart failure (HF)-related readmission (Bottom) with the presence (orange 
line) or absence (blue line) of frailty identified using the Cardiovascular Health Study (CHS) and revised Japanese version of the 
CHS (J-CHS) criteria, separated by Train set (Left) and Test set (Right).
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design for each frailty criterion.

Training in Deep Learning
We compared the characteristics (Supplementary Table 4) 
and prognoses (Figure 2) of the patients classified into the 
Train set (80%) and Test set (20%) for each phenotypic 
frailty criterion. We confirmed that there was no difference 
between the 2 groups in all characteristics in the CHS 
criteria, and no difference between the 2 groups in the 
J-CHS criteria except for the history of HF and smoking 
history. In addition, there were significant difference in the 
incidence of all-cause deaths or HF-related readmissions 
in all categories (P<0.001).

Table 2 shows the results of the model creation using 
the Train set. First, the All EHR model created using 

all physical function indices were significantly lower in the 
frail group, confirming the robustness of the frail phenotype 
criterion. Similarly, all survival analyses showed that the 
frail group had a poorer prognosis (all-cause death and 
HF-related readmission), confirming the robustness of the 
frail phenotype criterion (Figure 1).

The relationship between the presence or absence of 
phenotypic frailty and each characteristic measured is shown 
in Supplementary Table 3. Both criteria showed significant 
differences in age, body mass index, and other factors 
associated with frailty. In contrast, we also observed that 
there were factors, such as sex and history of dementia, 
which differed in the tendency of group differences in the 
characteristics between the 2 frailty criteria sets. The items 
that showed significant differences were used in the model 

Table 2.  Accuracy of the Frail Predictive Model Established Using Data of the Train Set

CHS criteria J-CHS criteria

F1 score Recall Precision Accuracy AUC F1 score Recall Precision Accuracy AUC

LightGBM

    All EHR model 0.507 0.639 0.420 0.685 0.714 0.546 0.687 0.454 0.705 0.743

    Simple EHR model 0.506 0.646 0.416 0.680 0.690 0.535 0.664 0.449 0.701 0.730

Logistic

    All EHR model 0.471 0.623 0.379 0.647 0.688 0.522 0.683 0.423 0.675 0.735

    Simple EHR model 0.490 0.670 0.387 0.647 0.694 0.517 0.706 0.409 0.658 0.722

Random forest

    All EHR model 0.478 0.643 0.381 0.646 0.707 0.519 0.692 0.417 0.668 0.731

    Simple EHR model 0.473 0.644 0.374 0.637 0.684 0.504 0.663 0.408 0.663 0.721

AUC, area under the curve; EHR, electronic health record. Other abbreviations as in Table 1.

Figure 3.    Confusion matrix results of the All EHR model (Top) and the Simple EHR model (Bottom) using LightGBM. The results 
show the F1 score, recall, precision, accuracy, and area under the curve (AUC) of the receiver operating characteristics curve. 
EHR, electronic health record.
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for CHS criteria, which was lower than those for the All 
EHR model. In contrast, the frailty model defined by the 
J-CHS criteria showed good accuracy, with an F1 score of 
0.535 and an AUC of 0.730, almost as accurate as the All 
EHR model, even when commonly used indices were used. 

LightGBM showed the high prediction accuracies for both 
the CHS (F1 score 0.507; AUC 0.714) and J-CHS criteria 
(F1 score 0.546; AUC 0.743). Second, the Simple EHR 
model created with commonly used indices were compared. 
The F1 scores and AUC were 0.506 and 0.690, respectively, 

Figure 4.    Association of all-cause death (Left) and heart failure (HF)-related readmission (Right) with the presence (orange line) 
or absence (blue line) of frailty identified using the All EHR model and the Simple EHR model using LightGBM. EHR, electronic 
health record.

Table 3.  Check of the Accuracy of the Frail Predictive Model for Physical Function Using Data of the Test Set

Women Men

n Frail Non-frail P value n Frail Non-frail P value

All EHR model n=89 n=82 n=118 n=248

    SPPB (point) 170 9.48 (2.70) 11.32 (1.36)　　 <0.001 349 9.88 (2.50) 11.51 (1.16)　　 <0.001

    Grip strength (kg) 171 15.3 (4.4)　　 19.8 (5.0)　　 <0.001 360 23 (6)　　 31 (7)　　 <0.001

    AC (cm) 170 23 8 (3.6)　　 25.8 (3,1)　　 <0.001 358 24.4 (3.1)　　 27.4 (3.4)　　 <0.001

    QIS/BM (%) 167 31 (11) 40 (14) <0.001 347 38 (13) 50 (16) <0.001

    CC (cm) 170 31.0 (3.7)　　 33.2 (2 8)　　 <0.001 358 32 0 (3.3)　　 35.0 (4.1)　　 <0.001

    MGS (m/s) 157 1.10 (0.33) 14.5 (0.30) <0.001 327  119 (0.39) 1.62 (0.37) <0.001

    CGS (m/s) 169 0.87 (0.27) 1.14 (0.22) <0.001 351 0.92 (0.28) 1.20 (0 25) <0.001

    6MWD (m) 170 281 (112) 388 (95)　　 <0.001 345 298 (127) 443 (99)　　 <0.001

Simple EHR model n=91 n=80 n=115 n=251

    SPPB (point) 170 9.69 (2.66) 11.12 (1.64)　　 <0.001 349 9.89 (2.58) 11.47 (1.15)　　 <0.001

    Grip strength (kg) 171 15.2 (4.2)　　 20.1 (5.0)　　 <0.001 360 23 (6)　　 31 (7)　　 <0.001

    AC (cm) 170 23.6 (3.6)　　 26.1 (3.0)　　 <0.001 358 24.5 (3.2)　　 27.4 (3.4)　　 <0.001

    QIS/BM (%) 167 31 (12) 40 (14) <0.001 347 38 (13) 50 (16) <0.001

    CC (cm) 170 30.9 (3.6)　　 33.3 (2.9)　　 <0.001 358 32.1 (3.5)　　 34.9 (4.1)　　 <0.001

    MGS (m/s) 157 1.12 (0.34) 14.3 (0.31) <0.001 327 1.20 (0.39) 1.61 (0.37) <0.001

    CGS (m/s) 169 0.89 (0.28) 1.13 (0.23) <0.001 351 0.93 (0.29) 1.19 (0.25) <0.001

    6MWD (m) 170 286 (113) 384 (99)　　 <0.001 345 302 (128) 440 (104) <0.001

Data are shown to mean (standard deviation). Abbreviations as in Tables 1,2.
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subsequent validation. Also, the J-CHS criterion was used 
for validation by the Test set because of its higher prediction 
accuracy for the J-CHS criterion compared with the CHS 
criterion in all analyses using the Train set.

Confirming Validity Using the Test Set
Figure 3 shows the confusion matrix results using the 
LightGBM model (All EHR model and Simple EHR 

Third, we compared the prediction accuracy of the models 
created by logistic regression and random forest with that 
of the LightGBM model. In both the All EHR model and 
the Simple EHR model, the prediction accuracy of the 
model obtained with LightGBM was the same or better 
than the others. Based on the above analysis, it was deter-
mined that the model created with LightGBM showed the 
best accuracy, and it was decided to use LightGBM for 

Figure 5.    The feature importance results (Left), partial dependence (Top Right), and the shapely additive explanation (SHAP) 
value for the predictive frailty (Middle Right and Bottom Right) identified using the All EHR model. ALT, alanine aminotransferase; 
AST, aspartate aminotransferase; BNP, brain natriuretic peptide; BP, blood pressure; CKD, chronic kidney disease; COPD, chronic 
obstructive pulmonary disease; CRP, C-reactive protein; CRT-P, cardiac resynchronization therapy-pacemaker; DOAC, direct oral 
anticoagulant; eGFR, estimated glomerular filtration rate; EHR, electronic health record; IHD, ischemic heart disease; LDL-C, low 
density lipoprotein cholesterol; PT-INR, prothrombin time–international normalized ratio; TLC, total lymphocyte count.
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patients using physique, blood, cardiac, disease, self-
reported disease, consumption, and medical test attributes.26 
Another study used discharge data from 469 hospitalized 
patients using age, sex, cumulative length of stay in acute 
care and the intensive care unit, presence of at least 1 
emergency admission, diagnostic code, and an electrical 
frailty index.27 In contrast, some reports use frailty, defined 
by other frailty assessment tools, as the correct label. One 
report validated the Gradient Boosting model using the 
same method as in the present study;28 a decision model 
was created for 5,466 primary care patients using frailty 
defined by the Rockwood clinical frailty scale as the correct 
label. Features in this previous study included age, sex, 
diagnosis, chronic conditions, biometrics, province, medica-
tions, physique, and blood pressure. Despite these previous 
studies, there have been no reports on the development of 
a deep learning model to predict phenotypic frailty using 
blood test data obtained in daily clinical practice, and the 
present study is the first attempt to do so.

One of the strengths of the frailty prediction model 
developed in this study for clinical use is its ability to 
visualize which features contribute to the degree of frailty 
using SHAP. The main features extracted (aging, under-
weight, undernutrition, liver dysfunction, and anemia) were 
familiar factors associated with frailty.17,29–31 Moreover, the 
thresholds at which the confidence level to determine 
frailty increased non-linearly were also generally consistent 
with the clinical cut-off values (age 65 years; body mass 
index 20 kg/m2; albumin 4.0 g/dL; hemoglobin 13–14 g/dL). 
These results could provide a helpful guide to the question 
of which aspects of the multifactorial and diverse clinical 
profile of frail patients should be focused on and intensively 
treated. In other words, we successfully modeled the indi-
vidually reported frailty-related indicators, with weighting 
according to their characteristics. Thus, it became possible 
to evaluate and infer the pathophysiology of frailty from 
multiple perspectives for each patient. This strength point 
is not only original and unique compared with previous 
studies, but also is expected to be used as a predictive 
model of frailty that can be applied to clinical practice.

In this study, we performed the same validation using 
only commonly used blood biochemistry test indices for 
general purposes in addition to basic information, such as 
age, sex, and body mass index, so that the results could be 
used not only in acute care settings but also in the 
community and for health checkups. In addition, the model 
was designed for broad application in various healthcare 
institutions to automatically assess frailty risk, and therefore 
we deliberately chose not to incorporate specific score-based 
indices such as nutritional scores. Additionally, we excluded 
feature factors like gait speed and grip strength, which are 
not routinely measured in some facilities. However, many 
of the variables used in developing the algorithm are 
well-known indicators related to physical frailty and 
malnutrition. As a result, a good accuracy prediction model 
was created with an AUC of approximately 0.8. In recent 
years, health checkups have been conducted in Japan to 
screen for high-risk frail individuals in community-dwelling 
older adults, and the usefulness of these checkups is 
reported.32 For example, implementing the frailty determi-
nation model developed in this study could lead to 
identifying detailed high-risk cases and early intervention 
to correct frailty. Thus, in the future, it will be necessary to 
focus on evaluating and reinforcing frailty measures based 
on the frailty prediction model developed in this study, and 

model). In both models, F1 scores ranged from 0.551 to 
0.561, and AUC ranged from 0.793 to 0.804, showing the 
same high accuracy as when models were created using the 
Train set.

Figure 4 shows the relationship between the with or 
without frailty groups predicted by the created models and 
prognosis. As with the Train set, the incidence of all-cause 
death and HF-related readmission was worse in the frailty-
labeled group in all models. Similarly, in all prediction 
models, physical function was significantly lower in the 
frailty-labeled group (Table 3).

Last, we present the results of a visual verification of 
the feature trends. The feature importance results indicate 
that age, albumin, aspartate aminotransferase to alanine 
aminotransferase ratio, body mass index, and hemoglobin 
are the most important features, in that order (Figure 5 
Left). Partial dependence of these major characteristics 
showed that confidence in judging frailty increased non-
linearly after age exceeded approximately 65 years, after 
body mass index fell below approximately 20 kg/m2, after 
albumin fell below approximately 4.0 mg/dL, and after 
hemoglobin fell below approximately 13 mg/dL (Figure 5 
Top Right). In addition, the contribution of each feature 
was visually verified using SHAP values. The case in Figure 5 
Middle Right is an older patient (age 78 years), and the 
parameters are trending towards predicting frailty, but 
considering the results of the other parameters, the model 
predicts non-frail. In contrast, the case in Figure 5 Bottom 
Right is comparatively young (age 55 years), but the model 
predicts frailty because of a low body mass index, hemo-
globin concentration values, and other worse factors.

Discussion
The goal of this work was to create and establish the utility 
of an AI model for predicting phenotypic frailty models in 
patients with CVD using common indicators available 
from EHRs. The results showed that (1) the model created 
by Light Gradient Boosting was more accurate, (2) models 
assessing commonly used blood biochemistry test indices 
(Simple EHR model) showed almost the same discrimination 
ability, and (3) all of the frailty prediction models were 
consistently associated with prognosis and physical function. 
The main strengths of this study, which produced these 
results, are that we built a model to predict actual measured 
phenotypic physical frailty in patients with CVD, and that 
the model was generated using commonly used blood 
biochemistry test indices.

To our knowledge, this is the first report to use machine 
learning for phenotypic frail prediction with EHR data as 
features in patients with CVD. CVD is widely known to 
have a high rate of frailty complications and a poor 
prognosis compared with the community-dwelling older 
population.5,17,24 A previous study using machine learning 
with an unsupervised clustering approach to predict frailty 
in 37,431 veterans’ EHR data, composed of frailty index, 
ejection fraction, laboratory values, blood pressure, and 
demographic information from EHRs in HF, is associated 
with mortality, similar to the results in this study.25 
Another notable strength is that, to our knowledge, this is 
the largest sample size of any report on machine learning 
using EHRs with Fried et al.’s phenotype-defined frailty as 
the correct label. Two reports on machine learning with 
phenotypic frailty as a supervised label validated the model 
using EHR data. One report assessed the EHR data of 474 
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to determine whether frailty measures lead to improved 
patient outcomes.33 In addition, given the inherent trade-off 
between sensitivity and specificity in frailty prediction, it 
may be necessary to adjust the cut-off value based on the 
target population and the clinical context in which the 
model is applied. Lowering the cut-off value could reduce 
the occurrence of FNs, minimizing the risk of missing 
frailty cases. When applying this model in clinical practice, 
careful consideration should be given to adjusting the 
cut-off value to ensure optimal balance between the risks of 
missing frailty and the potential for overdiagnosis, tailored 
to the specific population and clinical circumstances.

Study Limitations
While this study has the strengths mentioned above, it 
also has some limitations. First, this study included only 
single-center, retrospective, cross-sectional data, including 
only patients with CVD, and it did not examine longitudinal 
changes in the frailty prediction model. Further validation 
is required to determine whether the model developed in 
this study can be applied to community-dwelling older 
adults and individuals with other diseases. In addition, 
future studies need to follow up to see how changes in the 
prediction model due to improved or worsened parameters 
contribute to clinical and other outcomes. Second, this 
study only deals with information that can be collected 
directly from EHRs and does not cover other indicators 
that may be useful for predicting frailty, such as text data34 
and medical images.35 Therefore, although the predictive 
ability was high, the AUC was only approximately 0.8. 
Solving these problems would enable us to create a model 
for predicting frailty with a higher ability. Last, because 
this study focused on cases in which the phenotypic model 
could be measured, it is not clear whether it can be adapted 
to patients with functional impairment to the extent that 
measurement is not possible.

Conclusions
In the present study, using a phenotypic model of frailty as 
the correct label, we developed a model to predict frailty in 
patients with CVD using data only from EHRs. Models 
derived from very large sample sizes of frailty assessment 
data, based on actual measurements, such as gait speed 
and grip strength, have shown consistent associations with 
frailty and prognosis, creating a robust model. The main 
features were widely known to be associated with frailty, 
and only commonly used blood biochemistry test indices, 
in addition to basic information such as age and sex, also 
had sufficient predictive accuracy. For social implementation 
of the obtained model, it is necessary to confirm external 
validity, report the results through trial operations in the 
clinical setting or any other field, and track the longitudinal 
changes in the frailty model due to changes in the features.
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