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Extracellular vesicle biomarkers for
complement dysfunction in schizophrenia

Ting Xue,"? Wenxin Liu,> Li%'un Wang,? Yuan Shi,? Ying Hu,* Jing Yang,>
Guiming Li,”> Hongna Huang"” and ®Donghong Cui®**°

Schizophrenia, a complex neuropsychiatric disorder, frequently experiences a high rate of misdiagnosis due to sub-
jective symptom assessment. Consequently, there is an urgent need for innovative and objective diagnostic tools.
In this study, we used cutting-edge extracellular vesicles’ (EVs) proteome profiling and XGBoost-based machine
learning to develop new markers and personalized discrimination scores for schizophrenia diagnosis and prediction
of treatment response. We analysed plasma and plasma-derived EVs from 343 participants, including 100 individuals
with chronic schizophrenia, 34 first-episode and drug-naive patients, 35 individuals with bipolar disorder, 25 indivi-
duals with major depressive disorder and 149 age- and sex-matched healthy controls.

Our innovative approach uncovered EVs-based complement changes in patients, specific to their disease-type and status.
The EV-based biomarkers outperformed their plasma counterparts, accurately distinguishing schizophrenia individuals
from healthy controls with an area under curve (AUC) of 0.895, 83.5% accuracy, 85.3% sensitivity and 82.0% specificity.
Moreover, they effectively differentiated schizophrenia from bipolar disorder and major depressive disorder, with AUCs
0f 0.966 and 0.893, respectively. The personalized discrimination scores provided a personalized diagnostic index for schizo-
phrenia and exhibited a significant association with patients’ antipsychotic treatment response in the follow-up cohort.
Overall, our study represents a significant advancement in the field of neuropsychiatric disorders, demonstrating the po-
tential of EV-based biomarkers in guiding personalized diagnosis and treatment of schizophrenia.
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Introduction

Schizophrenia is a severe psychiatric disorder, significantly affect-
ing individuals’ well-being and imposing a substantial societal
health burden.? Its diagnosis primarily relies on subjective assess-
ments of clinical symptomatology. However, this approach is prone
to misdiagnosis due to symptom overlap with other severe mental
disorders like bipolar disorder (BD) and major depressive disorder
(MDD). In addition, patients’ subjective feelings and expressions
can easily affect clinicians’ assessments. Epidemiologic studies
have revealed a high misdiagnosis rate of nearly 25% in clinical
practice.” Meanwhile, there is high heterogeneity of response to
antipsychotic drugs among patients.> These clinical issues
lead to delayed or inappropriate treatment for schizophrenia.
Consequently, reliable and objective biomarkers that can guide clin-
icians towards precise diagnoses and treatment is urgently needed.
As an emerging form of liquid biopsy, the billions of extracellular ve-
sicles (EVs) in peripheral circulation offer a valuable and non-
invasive resource.*

EVs are bilayer membrane-enclosed nanoparticles secreted
from cells and tissues, primarily divided into microvesicles
(150-1000 nm) and exosomes (30-150 nm) depending on their size
and biogenesis. They play critical roles in transporting cell-derived
biomolecules for intracellular signalling and cell-to-cell communi-
cation.” EVs have recently been implicated in the pathogenesis of
neurodegenerative diseases.® They are enriched in proteins, some
of which appear to change in amount during the pathogenic pro-
cesses of neurodegenerative diseases.”’° Pharmaceutical treat-
ment could also alter the protein compositions of EVs.'»1?
Therefore, mounting evidence suggests that EV proteins are effect-
ive diagnostic and prognostic biomarkers in neurological diseases,
including Parkinson's disease and Alzheimer's disease.’**®

Currently, research on EV-derived proteins in schizophrenia is
limited and lacks comparative analyses with other psychiatric dis-
orders exhibiting similar symptoms.*®*® Previous studies primarily
detected individual EV proteins associated with mitochondrial ac-
tivity and insulin signalling by electrochemiluminescence or
ELISA assay.'®"'® The EV proteome of schizophrenia remains largely
unknown, which could provide more comprehensive biomarkers and
insights into disease mechanisms. Furthermore, a potent approach is
essential for training these biomarkers, yielding robust models for
disease diagnosis and prediction. EXtreme Gradient Boosting
(XGBoost) has been demonstrated as a powerful machine learning al-
gorithm for generating accurate classifications and predictions, even
with small sample sizes. It is an ensemble method that utilizes
gradient-boosted trees and can handle high dimensional and sparse
data.’ Herein, we conducted mass spectrometry-based analysis of
the EV proteome and applied XGBoost-based machine learning to de-
velop new EV-based biomarkers and yield personalized discrimin-
ation scores (PDS) for schizophrenia diagnosis and prediction of
antipsychotic responses (Supplementary Fig. 1A).

We isolated plasma and plasma-derived EVs from 343 partici-
pants, including individuals with schizophrenia, BD, MDD and
healthy controls. First, we examined the EV proteome of schizophre-
niain a sex- and age- matched case-control cohort. Second, potential
EV-based biomarkers were validated in another schizophrenia co-
hort. Plasma proteins were used as a comparison to EV proteins.
Third, we applied XGBoost-based machine learning to train and
test EV-based biomarkers in schizophrenia, BD and MDD cohorts.
Finally, we used the optimized schizophrenia-specific biomarkers
to build PDS for diagnosis and evaluating antipsychotic response at
an individual level (Supplementary Fig. 1).
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Our study successfully identified a panel of EV-based biomarkers
that achieved high area under the curve (AUC), accuracy, specificity
and sensitivity in distinguishing patients with schizophrenia from
healthy control subjects, outperforming their plasma counterparts.
Moreover, these EV-based biomarkers effectively discriminated
schizophrenia from BD and MDD. Notably, the PDS we constructed
exhibits high efficacy in individual-level schizophrenia diagnosis
and antipsychotic response prediction, which holds significant clin-
icalvalue. Our discovery provides a novel and objective approach for
schizophrenia detection and treatment evaluation, providing valu-
able insights into the pathophysiology of schizophrenia.

Materials and methods

The study aimed to develop novel EV-based protein biomarkers and
PDS for specific diagnosis of schizophrenia and prediction of anti-
psychotic response. We analysed plasma and plasma-derived EV
samples from individuals with schizophrenia, BD, MDD and
healthy controls. Participants were recruited from Shanghai
Mental Health Center (SMHC) between 2017 and 2020. Consensus
diagnosis of these illnesses was made by two experienced psychia-
trists according to the Structured Clinical Interview for Diagnostic
and Statistical Manual of Mental Disorders, fourth edition
(DSM-1IV). For longitudinal samples of schizophrenia, patients
were treated with antipsychotic medication for ~3 months.
Treatment response was defined as a reduction rate of >25%° in
the Positive and Negative Syndrome Scale (PANSS).?* All partici-
pants or their relatives provided informed consent and the study
was approved by the Institutional Review Board of SMHC. The ex-
periments were conducted in accordance with the Declaration of
Helsinki. Participants who met the inclusion and exclusion criteria
and were willing to provide a minimum of 10 ml of blood were in-
cluded. To ensure comparability between groups, participants
were matched on age and sex. Ultimately, this study included a to-
tal of 100 individuals with chronic schizophrenia, 34 first-episode
and drug-naive (FEDN) patients, 35 individuals with BD, 25 indivi-
duals with MDD and 149 healthy controls. This sample size was suf-
ficient for analyses. All investigators involved in EV isolation and
biomarker quantification were blinded until all measurements
were made and the dataset was blocked for analysis.

Plasma-derived EVs were isolated by sequential ultracentrifuga-
tion.?>?3 Typical EV markers used were rabbit-anti-CD63 (Santa
Cruz Biotechnology, SC-15363), mouse-anti-CD9 (Proteintech,
60232-1-Ig), and rabbit-anti-Flotillin-1 (Proteintech, 15571-1-AP).
Albumin was visualized by Ponceau S staining. The size distribu-
tion and concentration of EVs were measured by nanoparticle
tracking analysis (NTA) (Particle Metrix). Transmission electron
microscopy (TEM) (FEI Company) with negative staining was per-
formed to characterize EV morphology.

EV proteins were extracted by sonication and RIPA lysis buffer. The
filter aided sample preparation (FASP)** was performed to prepare
peptides. A Synapt G2-Si quadrupole time-of-flight mass spectrom-
eter (MS) equipped with ion mobility option (Waters Corporation)
was used for sample analysis. Data were acquired in the HDMSF
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mode. MS raw spectra were processed in Waters Progenesis QI (QIP,
version 3.0.2)%° searched against the UniProt human proteomic
database (version 2020/06). Data normalization was performed at
peptide levels. Proteins were quantified using the TOP 3 meth-
0d.?®?’ Proteins whose intensities exceeded the range of mean + 2
sigma in each group were defined as outliers and removed. Only
proteins identified in at least 50% samples in each group were re-
tained for analysis. k-nearest neighbour (x-NN) imputation was ap-
plied to impute the missing values. Three approaches were applied
to identify differentially expressed proteins (DEPs): (i) Limma R
package with Benjamini-Hochberg (BH) multiple correction; (ii)
Samr R package with 1000 permutations and a false discovery
rate (FDR) threshold of 0.05%%; and (iii) Students’ t-test and BH mul-
tiple correction. Proteins with a fold change of >|1.5| and an ad-
justed P-value <0.05 across all three methods were defined as
DEPs. Biological function analyses were performed in g:profiler
(https://biit.cs.ut.ee/gprofiler/).>° Protein-protein interaction ana-
lysis was conducted in STRING (https:/string-db.org/)*° and visua-
lized with Cytoscape 3.6.1.>" mRNA expression data enriched in
brain were obtained from The Human Protein Atlas (http:/www.
proteinatlas.org/).>> Weighted gene co-expression network ana-
lysis (WGCNA) package in R** was used to build signed co-
expression networks.

Plasma-derived complement DEPs were quantified by ELISA assay.
Complement C3 (C3, Cloud-Clone, SEA861Hu), Complement C4 (C4,
Elabscience, E-EL-H6027), C4b-binding protein alpha chain (C4BPA,
Cloud-Clone, SEB620Hu) and vitamin K-dependent protein S
(PROS1, Cloud-Clone, SEB971Hu) were analysed. The C3 antibody
recognizes the full-length of C3 and its fragments. The C4 antibody
detects the full-length of the C4 protein.

EV-derived complement DEPs were quantified by Mesoscale
Discovery electrochemiluminescence assays (MSD). Primary anti-
bodies of C3 (21337-1-AP), C4 (22233-1-AP), C4BPA (11819-1-AP)
and PROS1 (16910-1-AP) were used, which were all purchased
from Proteintech Group, Inc. The C3 and C4 antibodies recognize
the full-length of the proteins and their fragments. The C4 antibody
does not differentiate between C4A and C4B.

Data processing and machine learning were performed in Python
(version 3.7.3). The XGBoost package (version 0.90) was used for
classification and prediction. Missing values were imputed with
k-NN using sklearn impute package. Features were selected using
a decision tree. Cross-validation involved 5-fold training/test splits
with 15 repetitions. Variables input into the XGBoost classifier were
the normalized concentration of complement DEPs. Normalization
was performed separately for each dataset and calculated as: (x —
min) / (max — min). The XGBoost classifier was trained to predict
disease probabilities, with the output being the predicted classes
and their corresponding probabilities on a scale of 0 to 1. The prob-
abilities were then transformed into z-scores, where a z-score >0
indicates a higher likelihood of schizophrenia for the participant.

Normality of continuous variables was assessed by Shapiro-Wilk
test. The Levene test was used to examine the homogeneity of vari-
ance. Two sample comparisons were performed with chi-square
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test, two-tailed Mann-Whitney U-test, Welch's test or Students’
t-test, as appropriate. Smoking was adjusted as a covariate in
MDD compared with healthy controls, and analysis of covariance
(ANCOVA) was applied. Pearson or Spearman correlation test was
used as appropriate, adjusted covariates as needed. P <0.05 was
considered statistically significant. Data were represented as mean
+ standard deviation (SD) or displayed by box-and-whisker plots in
which horizontal lines indicate the median. The rhombus indicates
the mean. The hinges of the box denote the first and third quartiles
above and below. The lower and upper whiskers represent 1.5 times
the IQR (interquartile range). All statistical analyses were con-
ducted in R package and visualized using ggplot2.

Results

In this study, we devised a step-wise approach to investigate plas-
ma and plasma-derived EVs from 343 individuals, comprising both
case and control groups. We isolated EVs using sequential ultracen-
trifugation and assessed their quality by canonical EVs markers (i.e.
CD9, CD63 and Flotillin1) and morphology via NTA and TEM ana-
lysis (Supplementary Fig. 2A-C). To evaluate the potential contam-
ination of EV samples by plasma proteins, we also examined the
presence of albumin, a major plasma protein, and found it to be un-
detectable in EV samples (Supplementary Fig. 2A). Furthermore, we
identified a significant correlation between EV numbers and their
protein amount (Supplementary Fig. 2D, R=0.79, P <0.0001).
Overall, our results suggest a relatively pure isolation of plasma-
derived EVs using ultracentrifugation.

EV proteome profiling was compared between age- and
sex-matched schizophrenia patients (n=20) and healthy controls
(n=28) (Supplementary Table 1). Patient-derived EVs exhibited a
significantly higher count and a smaller size compared to controls’
(all P<0.05, Fig. 1A and B). Additionally, their EV numbers were
associated with the disease course (Fig. 1C).

WGCNA clustered the total identified EV proteome (1262 pro-
teins) into seven modules (Fig. 1D). Only the turquoise module
showed a significant correlation with the disease state (R=0.52,
P <0.001, Fig. 1E). The turquoise module also exhibits the highest
proportion of DEPs compared to other modules, both in terms of
the total proteins within the module and the total DEPs across all
modules (Fig. 1F and G). For proteins to be considered as DEPs,
they had to be identified by all three statistical methods (fold
change >1.5 or <0.67, and P,gjusted < 0.05) (Fig. 1H). Therefore, we
proposed the turquoise module as the disease-modified module.

EV proteins in the turquoise module were generally highly
expressed in patients compared to controls (ratio: 1.65+0.68, P <
0.001) (Fig. 11) and they were primarily enriched in the complement
network (Fig. 1J). Within this network, complement components
such as C3, C4A, C4B, C4BPA and C4BPB were identified as DEPs.
Additionally, C3, C4A and C4B were recognized as the hub genes
within the network (Fig. 1K). Furthermore, through a literature re-
view, we discovered that PROS1, a DEP in the turquoise module,
forms a high-affinity complex with C4BP,***® which has been pro-
posed to have an important link with the complement system.
Therefore, we described PROS1 as a protein with potential link
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Figure 1 Proteome profiles of the plasma-derived EVs compared between patients with schizophrenia and healthy controls. Plasma-derived extracel-
lular vesicles (EVs) were enriched by the ultracentrifugation strategy. (A and B) Comparison of EV number and EV size between patients with schizo-
phrenia (SZ) and healthy controls (HC). No confounding covariates were adjusted. *P = 0.038, Cohen's d = 0.71; **P = 0.0012, Cohen's d = 1.07. (C) Pearson's
correlation between the disease course and EV number in patients with schizophrenia. (D) Weighted gene co-expression network analysis (WGCNA)
analysis of co-expression of EVs proteins in patients with schizophrenia and healthy controls. Each protein in the module has a correlation of >0.4 with
the module eigengene. (E) Heat map showing the association of each WGCNA module with the phenotypes. Only the significant associations were
shown (top number: R-value; bottom number: adjusted P-value). (F) The proportion of differentially expressed proteins (DEPs) within a module relative
to the total proteins in that module. (G) The proportion of DEPs within a module relative to the total number of DEPs across all modules. Numbers on top
of each column represent the DEPs numbers in this module. (H) DEPs defined by three statistical methods: (i) Samr R package was employed with 1000
permutations and a false discovery rate (FDR) threshold of 0.05; (ii) Limmar R package was used with Benjamini-Hochberg (BH) multiple correction; and
(iii) Student’s t-test and BH multiple correction was applied. (I) Distribution of protein expression ratio of EVs in the turquoise module compared be-
tween patients with schizophrenia and healthy controls. **P < 0.001. (J) Biological network enriched in the turquoise module (protein-protein inter-
action confidence >0.7). Query size = proteins involved in the network. Adjusted P-value <0.05. (K) Network of complement activation in the
turquoise module. Dark blue = DEPs defined by three statistical methods; Grey = non-DEPs in the network; circle size = numbers of proteins interacted
with the node; line thickness = confidence of protein-protein interaction. SZ, n=20; HC, n = 28.

with complement system and included it in the subsequent ana- controls (Fig. 2A-F). Furthermore, when compared to non-DEPs
lysis. Later, we will refer to C3, C4A, C4B, C4BPA, C4BPB and within the complement network, these complement DEPs exhib-
PROS1 as complement DEPs. ited the highest number of significant correlations with the disease

course (P < 0.0015, Fig. 2G-1). Additionally, we discovered significant
correlations between these complement DEPs and DEPs of NOE1,
KIRR3 and LMO4. Notably, such correlation was exclusively ob-
served in schizophrenia patients rather than controls (Fig. 2M).
We found that all of the EV-derived complement DEPs were signifi- These three DEPs showed predominant mRNA expression in brain
cantly elevated in patients with schizophrenia compared to tissue according to the Human Protein Atlas database®? (https://

Characterization of extracellular vesicle-derived
complement DEPs in patients with schizophrenia
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Figure 2 Characteristics of EV-derived complement DEPs in patients with schizophrenia. (A) Comparison of C3 expression between patients with
schizophrenia (SZ) and healthy controls (HC). *P=0.039, Cohen's d=0.78. (B) Comparison of C4A expression. **P<0.001, Cohen's d=1.57.
(C) Comparison of C4B expression. **P <0.001, Cohen's d = 1.24. (D) Comparison of C4BPA expression. P =0.0029, Cohen's d =1.17. (E) Comparison
of C4BPB expression. *P=0.0129, Cohen's d =0.88. (F) Comparison of PROS1 expression. **P <0.001, Cohen's d =1.20. Although the levels of body
mass index (BMI) and diastolic blood pressure (DBP) were significantly different between patients and controls, they did not demonstrate significant
correlations with the levels of extracellular vesicle (EV)-derived complement associated components within each independent group. Hence, they were
not adjusted as covariates. (G and H) The heat map of correlation analysis between EV-derived non-differentially expressed proteins (DEPs) and DEPs in
the complement network and the disease course. Significant correlation was defined as absolute R values >0.4 and P-value <0.05 [-1log10 (P) > 1.3].
Pearson or Spearman correlation was used as appropriate. (I) Box plot of the absolute R value of correlation analysis. **P =0.0015, Cohen's d = 1.67.
(I-L) Expression levels of NOE1, KIRR3 and LMO4 mRNA in different tissues; their mRNA expression were mostly enriched in brain. Data were extracted
from the Human Protein Atlas. (M) Heat map of linear correlation results between the EV-derived complement DEPs and brain enriched proteins of
NOEL, KIRR3 and LMO4 in patients and healthy controls. The number in each box and the legend represent the R-value. *P < 0.05; **P < 0.01; **P < 0.001.
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www.proteinatlas.org) (Fig. 2J-L). Previous studies have reported
the significance of these three DEPs in CNS development. 3942
Taken together, we hypothesize that these complement DEPs
may synergistically participate in regulating CNS development
and play crucial roles in the progression of schizophrenia.

Validation of extracellular vesicle-derived
complement DEPs in patients with schizophrenia

Next, we validated these EV-derived complement DEPs using MSD
technology in another independent set of age- and sex-matched
samples (Set 2), comprising 26 patients with schizophrenia and 26
healthy controls (Supplementary Table 1). Notably, C4A and C4B
share high sequence similarity (>95%) with only 10 different resi-
dues. Although we could differentiate between the two variants
through their unique identified peptides in our MS analysis, there
were no available antibodies to distinguish between them.
Therefore, during the MSD validation, we measured the total level
of C4 instead. To make a comparison with the MSD results, we
summed the intensities of C4A and C4B detected by MS as an esti-
mate of the overall C4 level (Fig. 3C). The unavailability of a suitable
antibody for C4BPB also precluded its inclusion in analysis.
Consequently, our validation focused solely on EV-derived C3, C4,
C4BPA and PROS1. As a result, they were all significantly upregu-
lated in patients compared to controls (Fig. 3B, D, F and H), which
supports our proteomic discovery (Fig. 3A, C, E and Q).
Furthermore, to evaluate complement activation in EVs, we used
neoepitope antibodies targeting C3a and C4a. We found increased
levels of C3a and C4a in patients compared to controls,
indicating enhanced complement activation in EVs under the ill-
ness (Fig. 3I-L).

Extracellular vesicle-derived complement DEPs
outperform their counterparts from plasma as
biomarkers

Plasma has been widely used as a convenient source for biomarker
development in schizophrenia; however, the results have been in-
consistent and inconclusive.*? In this study, we compared the ex-
pression levels of C3, C4, C4BPA and PROS1 in both plasma and
EVs between patients with schizophrenia and healthy controls.
Our results showed that in plasma, none of these proteins dis-
played statistically significant or consistent difference across the
two sample sets (Fig. 4). Conversely, EV-derived C3, C4, C4BPA
and PROS1 exhibited better consistency between sets compared
to their plasma counterparts, where they were all significantly
overexpressed in patients relative to controls (Fig. 3). Therefore,
we suggest that EV-derived complement DEPs outperform their
plasma counterparts and represent a superior source of biomarkers
for schizophrenia.

Machine learning to develop diagnostic biomarkers
for schizophrenia

Next, based on the four EV-derived complement DEPs, we used
XGBoost-based machine learning to establish models for classifica-
tion of schizophrenia. We utilized the aforementioned two samples
sets of schizophrenia patients and controls, testing all possible
combinations of the four indexes (Y%, C}, = 15). Five-fold training/
test splits and 15 repeats were applied for cross-validation. We
found that combinations of two and more complement DEPs
achieved an AUC of >84%. Notably, the combination of all four in-
dexes demonstrated the highest AUC [0.895, 95% confidence
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interval (CI) = 0.882-0.908], with an accuracy of 83.5%, a sensitivity
of 85.3% and a specificity of 82.0% (Fig. 5A and Table 1) for distin-
guishing between schizophrenia and healthy controls.

Additionally, we assessed the performance of the four indexes
in distinguishing FEDN schizophrenia patients and healthy con-
trols in an age- and sex-matched case-control cohort (n =34 each)
(Supplementary Table 2). In this analysis, we did not observe any
significant difference in the expression of EV-derived C3, C4,
C4BPA and PROS1 between FEDN patients and controls
(Supplementary Fig. 3A-E). Consequently, the four indexes were
less effective in discriminating between FEDN patients and healthy
controls, achieving only a 0.661 AUC, 62.4% accuracy, 64.9% sensi-
tivity and 60.2% specificity (Supplementary Fig. 3F). However, the
four indexes performed better in distinguishing between chronic
and FEND patients, with a 0.881 AUC, 82.2% accuracy, 85.4% sensi-
tivity and 78.7% specificity (Supplementary Fig. 3G).

Extracellular vesicle-based biomarkers were able to
distinguish schizophrenia from bipolar disorder and
major depressive disorder

Given the high rate of misdiagnosis of schizophrenia as BD and
MDD, we investigated whether the EV-based four indexes could dif-
ferentiate between these disorders. We recruited participants with
BD (n=35) or MDD (n = 26), and age- and sex- matched healthy con-
trols (n =35 and 25, respectively) (Supplementary Table 3). The ex-
pression of EV-derived C3, C4, C4BPA and PROS1 were measured
by MSD. We found that their expression patterns were specific to
each disorder (Table 2 and Supplementary Fig. 4). The EV-based
four indexes yield a 0.966 AUC, 91.0% accuracy, 91.1% sensitivity
and 91.2% specificity for discriminating participants with schizo-
phrenia from those with BD (Fig. 5B and Table 1). When differenti-
ating between schizophrenia and MDD, the four indexes achieved
an 0.893 AUC, 84.0% accuracy, 80.5% sensitivity and 86.9% specifi-
city (Fig. 5C and Table 1). Collectively, these data suggest that the
EV-based biomarkers could effectively distinguish schizophrenia
from BD and MDD.

The Personalized Discrimination Score could
diagnose schizophrenia at the individual level

An individualized assessment tool holds significance in clinical
practice. We further utilized the XGBoost algorithm to construct a
PDS based on the EV-based four indexes for individual diagnosis
(schizophrenia versus control). The PDS was assigned polarity in
such a way that individuals with a positive score were predicted
to belong to the schizophrenia group. We observed that PDS had a
significant ability to differentiate individuals with schizophrenia
from healthy controls (Fig. 6A). However, it was unable to distin-
guish healthy individuals from BD (Fig. 6B) or MDD (Fig. 6C).
Therefore, we concluded that the discrimination score derived
from the four indexes is highly sensitive and specific to schizophre-
nia, highlighting its potential for individual diagnosis of schizo-
phrenia and differentiation from BD and MDD.

The Personalized Discrimination Score is available
for prediction of antipsychotic response at the
individual level

Next, to determine whether the PDS is related to the antipsychotic
response of schizophrenia patients, we recruited a follow-up cohort
that included symptomatic schizophrenia patients (n =27). We col-
lected clinical assessments and the levels of EV-derived C3, C4,
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Figure 3 Potential biomarkers validated in EVs in patients with schizophrenia and healthy controls. The concentration of extracellular vesicle
(EV)-derived complement differentially expressed proteins were detected by proteomics (Set 1) and Mesoscale Discovery technology (Set 2). (A and
B) C3 amount in EVs. Set 1: *P=0.039, Cohen's d =0.78. Set 2: **P <0.001, Cohen's d =1.13. (C and D) C4 amount in EVs. Set 1: ***P <0.001, Cohen's d =
1.36. C4 intensity was the combination of C4A and C4B intensity. Set 2: *P =0.019, Cohen's d=0.67. (E and F) C4BPA amount in EVs. Set 1: **P =0.003,
Cohen's d=1.17. Set 2: ***P <0.001, Cohen's d = 2.04. (G and H) PROS1 amount in EVs. Set 1: **P < 0.001, Cohen's d = 1.20. Set 2: **P =0.0023, Cohen's d
=0.90. Although the levels of body mass index or diastolic blood pressure were significantly different between patients (SZ) and controls (HC), they
did not demonstrate significant correlations with the levels of complement-associated components within each independent group. Hence, they
were not adjusted as covariates. (I-L) Western blot analysis of the activation of EV-derived Complement C3 and C4. Neoepitope-specific antibodies
of C3a and C4a were used. Human serum purified proteins of C3a des Arg and C4a des Arg were used as the positive controls. The last lane of each
membrane was the positive control. n=11 for each group. SZ = schizophrenia; HC = healthy controls.

C4BPA and PROS1 at baseline and after an average of 3 months of
antipsychotic treatment (Supplementary Table 4). We defined
treatment response as a PANSS reduction rate of >25% (Fig. 6D).
We found that the responders had a significantly higher reduction
rate in positive, negative and general psychological scores com-
pared to the non-responders (P<0.001, Fig. 6E-G). Additionally,

responders had a significantly higher baseline PDS than non-
responders (P <0.001, Fig. 6H). Furthermore, the baseline PDS was
significantly associated with the reduction percentage in PANSS to-
tal score, as well as positive, negative and general psychological
subscales (Fig. 6I-L). However, we did not observe such an associ-
ation between the baseline PDS and the baseline PANSS total and
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Consequently, they were not adjusted as covariates. SZ = schizophrenia; HC =

healthy controls; n.s. = not significant.
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Figure 5 XGBoost-based machine learning to classify patients with schizophrenia from healthy controls, BD and MDD. (A) The area under the curve
(AUC) of different combinations of four index biomarkers to discriminate patients with schizophrenia (SZ) and healthy controls (HC). (B and C) The
XGBoost-based modelling to discriminate schizophrenia from bipolar disorder (BD) and major depressive disorder (MDD) using extracellular vesicle

(EV)-based four indices.

subscale scores (Fig. 6M-P). In summary, the PDS developed from
cross-sectional case-control datasets was significantly associated
with individual treatment response in a longitude cohort, demon-
strating its prognostic ability at an individual level.

Discussion

Through a combination of EV proteome profiling and machine
learning, this study has successfully developed a novel EV-based
protein biomarker panel, comprised of EV-derived C3, C4, C4PBA
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Table 1 The AUC, accuracy, sensitivity, specificity, PPV and
NPV of four index biomarkers for different discrimination

SZ versus HC SZ versus BD SZ versus MDD

AUC 0.895 0.966 0.893
Accuracy 83.48 90.99 83.95
Sensitivity 85.32 91.08 80.51
Specificity 81.91 91.19 86.85
PPV 83.73 90.22 82.18
NPV 83.18 91.69 85.24

AUC = area under curve; BD =Dbipolar disorder; HC = healthy controls; MDD = major
depressive disorder; NPV = negative predictive value; PPV = positive predictive
value; SZ = schizophrenia.

and PROS1. This panel has proven to be highly effective to diagnose
chronic schizophrenia from healthy controls, with an 0.895 AUC,
83.5% accuracy, 85.3% sensitivity and 82.0% specificity. It also
accurately differentiates schizophrenia from BD and MDD.
Furthermore, we have established a PDS based on the panel, which
provides a personalized index for accurately discriminating schizo-
phrenia and predict their treatment response.

In this study, we used a stepwise proteomics analysis to identify
potential biomarkers for schizophrenia and conducted a validation
in another independent sample set. Encouragingly, all of these
EVs-derived biomarkers were successfully validated and showed
significant overexpression in patients with schizophrenia. Most of
these EV-derived biomarkers belong to the complement system,
and our study revealed an increased complement activation
mediated by EVs in schizophrenia patients. The complement sys-
tem plays key roles in bridging innate and adaptive immunity un-
der normal physiological conditions,**** and its overall activity is
tightly controlled. In the CNS, the complement system is involved
in synaptic pruning, neurogenesis and migration modulation.*®
Mounting evidence have suggested that the aberrant complement
system is a central pathway contributing to immune abnormalities
and dysregulated neuronal development in schizophrenia.**47:4®
Overall, our findings demonstrated the reliability of these
EV-based biomarkers and they have biological significance in the
pathogenesis of schizophrenia.

Previous studies on complement biomarkers for schizophrenia
have primarily focused on plasma proteins, with little attention
paid to EVs. However, the inconsistent and inconclusive findings
in plasma have raised doubts about the efficacy of these proteins
as diagnostic biomarkers.** Our study has unveiled a similar chal-
lenge, as two of the indexes failing to consistently replicate their re-
sults in plasma across different sample sets. Plasma proteins are
susceptible to protease and enzymatic degradation in the blood-
stream, which may account for their instability during preparation,
leading to inconsistent findings. In contrast, EV proteins are encap-
sulated within a lipid membrane, protecting them from degrad-
ation and potentially rendering them more stable and resilient. In
our study, we consistently observed elevated levels of EV-derived
indexes in patients across different sample sets. Additionally, evi-
dence suggest that EVs in the CNS can cross the blood-brain barrier
(BBB) and enter the peripheral blood.***! Our established
EV-derived biomarkers demonstrate a significant positive relation-
ship with brain-enriched proteins in patients with schizophrenia
but not in healthy individuals. This finding suggests that these
biomarkers may, to some extent, derived from the CNS in
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Table 2 The different expression pattern of extracellular
vesicles derived four indexes among SZ, BD and MDD patients
compared to matched healthy controls

SZversus  BD versus HC MDD versus HC
HC
C3_EVs Upregulated Downregulated Upregulated
C4_EVs Upregulated Downregulated Not significantly changed

C4BPA_EVs Upregulated Not significantly Not significantly changed
changed
PROS1_EVs Upregulated Downregulated Not significantly changed

BD =bipolar disorder; EV = extracellular vesicle; HC = healthy controls; MDD = major
depressive disorder; SZ = schizophrenia.

pathological conditions, carry valuable information regarding
brain pathology in schizophrenia. Similarly, previous studies
have demonstrated increased levels of astrocytic-derived EVs in
plasma for patients with Alzheimer's disease,”*** multiple sclerosis™*
or early psychosis,’® which may contribute to pathological
synaptic loss and neuronal damage. Overall, we propose that
EV-derived complement DEPs surpass their plasma counterparts in
terms of their stability and potential to reflect brain pathology,
making them superior candidates for schizophrenia biomarker
development.

A clinically valuable biomarker should have the capability to
provide informative data at the individual level. For this purpose,
we developed PDS based on the EV-derived biomarkers, which en-
ables specific diagnosis of schizophrenia in individual patients. An
individual assigned a positive PDS was predicted to have schizo-
phrenia. This scoring strategy is feasible for clinical transformation
and holds value in complementing current subjective diagnostic
criteria. Moreover, our PDS serves as a valuable tool for predicting
antipsychotic treatment response, facilitating guidance of indivi-
dualized treatment. For patients predicted to have a poor response,
more comprehensive therapeutic strategies, such as psychother-
apy and transcranial magnetic stimulation, could be implemented
at the early stage of treatment. Importantly, we found that the PDS
was significantly associated with the percentage reduction in
PANSS total and subscale scores, rather than their baseline scores.
These findings suggest that the PDS generated from the EV-derived
biomarkers possesses robust predictive capability, unaffected by
patients’ baseline condition.

Our study has several limitations that warrant consideration.
First, our findings are primarily based on a young and middle-aged
(16-64 years) population, so caution should be exercised when gen-
eralizing the results to older age groups. Second, while XGboost has
demonstrated its ability to generate reliable results in small sample
size, the clinical utility of EV-based biomarkers in predicting and
diagnosing schizophrenia still requires large-scale, prospective
longitudinal studies that include multicentred cohorts. Third, in
the longitudinal schizophrenia samples, all recruited individuals
received treatment with second-generation antipsychotics, with
80% receiving monotherapy and the remainder receiving a combin-
ation of two antipsychotics. However, due to the limited sample
size and the presence of combination therapy, further stratification
of patients into specific drug categories was not feasible.
Consequently, the potential influences of drug interactions and
heterogeneity could not be completely excluded. Therefore, the
PDS tool is primarily targeted towards second-generation
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Figure 6 The personalized discrimination score to diagnosis and predict antipsychotic treatment response of patients with schizophrenia. (A-C) The
Personalized Discrimination Score developed using the XGBoost-based machine learning strategy could significantly classify schizophrenia (SZ) from
matched healthy controls (HC). P < 0.001. However, it could not significantly separate patients with bipolar disorder (BD) or patients with major depres-
sive disorder (MDD) from their matched healthy controls. X-axis: the normalized discrimination score by z-score. P =0.84, P=0.76. (D-G) The compari-
son of reduction percentage of Positive and Negative Syndrome Scale (PANSS) total and subscale scores between the responders (Res) and
non-responders (Non-Res). All **P <0.001. (H) The comparison of discrimination score between the responders and non-responders. **P <0.001. (I-
L) The Spearman correlation analysis between the baseline PDS and the reduction percentage of PANSS total and subscale scores. Baseline PANSS total
and subscale scores were adjusted as the confounding covariates as needed, respectively. (M-P) The Spearman correlation analysis between the base-
line PDS and the baseline PANSS total and subscale scores. Responders: n = 14; non-responders: n=13.

antipsychotic medications, rather than specific drugs. Fourth, pa-
tients recruited for the followed-up study were symptomatic pa-
tients and the generalization and optimization of the PDS tool in

FEDN and acute patients require further investigation.

In summary, we have developed novel EV-based biomarkers
and a PDS tool for diagnosing schizophrenia, differentiating it
from BD and MDD, and predicting antipsychotic response. The inte-

gration of symptom assessment and EV-based biomarkers has the
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potential to enhance the accuracy of schizophrenia diagnosis and
guide the development of complement-directed therapies.
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