
Extracellular vesicle biomarkers for 
complement dysfunction in schizophrenia
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Schizophrenia, a complex neuropsychiatric disorder, frequently experiences a high rate of misdiagnosis due to sub
jective symptom assessment. Consequently, there is an urgent need for innovative and objective diagnostic tools.
In this study, we used cutting-edge extracellular vesicles’ (EVs) proteome profiling and XGBoost-based machine 
learning to develop new markers and personalized discrimination scores for schizophrenia diagnosis and prediction 
of treatment response. We analysed plasma and plasma-derived EVs from 343 participants, including 100 individuals 
with chronic schizophrenia, 34 first-episode and drug-naïve patients, 35 individuals with bipolar disorder, 25 indivi
duals with major depressive disorder and 149 age- and sex-matched healthy controls.
Our innovative approach uncovered EVs-based complement changes in patients, specific to their disease-type and status. 
The EV-based biomarkers outperformed their plasma counterparts, accurately distinguishing schizophrenia individuals 
from healthy controls with an area under curve (AUC) of 0.895, 83.5% accuracy, 85.3% sensitivity and 82.0% specificity. 
Moreover, they effectively differentiated schizophrenia from bipolar disorder and major depressive disorder, with AUCs 
of 0.966 and 0.893, respectively. The personalized discrimination scores provided a personalized diagnostic index for schizo
phrenia and exhibited a significant association with patients’ antipsychotic treatment response in the follow-up cohort.
Overall, our study represents a significant advancement in the field of neuropsychiatric disorders, demonstrating the po
tential of EV-based biomarkers in guiding personalized diagnosis and treatment of schizophrenia.
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Introduction
Schizophrenia is a severe psychiatric disorder, significantly affect
ing individuals’ well-being and imposing a substantial societal 

health burden.1 Its diagnosis primarily relies on subjective assess

ments of clinical symptomatology. However, this approach is prone 

to misdiagnosis due to symptom overlap with other severe mental 

disorders like bipolar disorder (BD) and major depressive disorder 

(MDD). In addition, patients’ subjective feelings and expressions 

can easily affect clinicians’ assessments. Epidemiologic studies 
have revealed a high misdiagnosis rate of nearly 25% in clinical 

practice.2 Meanwhile, there is high heterogeneity of response to 

antipsychotic drugs among patients.3 These clinical issues 

lead to delayed or inappropriate treatment for schizophrenia. 

Consequently, reliable and objective biomarkers that can guide clin

icians towards precise diagnoses and treatment is urgently needed. 
As an emerging form of liquid biopsy, the billions of extracellular ve

sicles (EVs) in peripheral circulation offer a valuable and non- 

invasive resource.4

EVs are bilayer membrane-enclosed nanoparticles secreted 
from cells and tissues, primarily divided into microvesicles 
(150–1000 nm) and exosomes (30–150 nm) depending on their size 
and biogenesis. They play critical roles in transporting cell-derived 
biomolecules for intracellular signalling and cell-to-cell communi
cation.5 EVs have recently been implicated in the pathogenesis of 
neurodegenerative diseases.6 They are enriched in proteins, some 
of which appear to change in amount during the pathogenic pro
cesses of neurodegenerative diseases.7-10 Pharmaceutical treat
ment could also alter the protein compositions of EVs.11,12

Therefore, mounting evidence suggests that EV proteins are effect
ive diagnostic and prognostic biomarkers in neurological diseases, 
including Parkinson's disease and Alzheimer's disease.13-15

Currently, research on EV-derived proteins in schizophrenia is 
limited and lacks comparative analyses with other psychiatric dis
orders exhibiting similar symptoms.16-18 Previous studies primarily 
detected individual EV proteins associated with mitochondrial ac
tivity and insulin signalling by electrochemiluminescence or 
ELISA assay.16-18 The EV proteome of schizophrenia remains largely 
unknown, which could provide more comprehensive biomarkers and 
insights into disease mechanisms. Furthermore, a potent approach is 
essential for training these biomarkers, yielding robust models for 
disease diagnosis and prediction. EXtreme Gradient Boosting 
(XGBoost) has been demonstrated as a powerful machine learning al
gorithm for generating accurate classifications and predictions, even 
with small sample sizes. It is an ensemble method that utilizes 
gradient-boosted trees and can handle high dimensional and sparse 
data.19 Herein, we conducted mass spectrometry-based analysis of 
the EV proteome and applied XGBoost-based machine learning to de
velop new EV-based biomarkers and yield personalized discrimin
ation scores (PDS) for schizophrenia diagnosis and prediction of 
antipsychotic responses (Supplementary Fig. 1A).

We isolated plasma and plasma-derived EVs from 343 partici
pants, including individuals with schizophrenia, BD, MDD and 
healthy controls. First, we examined the EV proteome of schizophre
nia in a sex- and age- matched case-control cohort. Second, potential 
EV-based biomarkers were validated in another schizophrenia co
hort. Plasma proteins were used as a comparison to EV proteins. 
Third, we applied XGBoost-based machine learning to train and 
test EV-based biomarkers in schizophrenia, BD and MDD cohorts. 
Finally, we used the optimized schizophrenia-specific biomarkers 
to build PDS for diagnosis and evaluating antipsychotic response at 
an individual level (Supplementary Fig. 1).

Our study successfully identified a panel of EV-based biomarkers 
that achieved high area under the curve (AUC), accuracy, specificity 
and sensitivity in distinguishing patients with schizophrenia from 
healthy control subjects, outperforming their plasma counterparts. 
Moreover, these EV-based biomarkers effectively discriminated 
schizophrenia from BD and MDD. Notably, the PDS we constructed 
exhibits high efficacy in individual-level schizophrenia diagnosis 
and antipsychotic response prediction, which holds significant clin
ical value. Our discovery provides a novel and objective approach for 
schizophrenia detection and treatment evaluation, providing valu
able insights into the pathophysiology of schizophrenia.

Materials and methods
Study design

The study aimed to develop novel EV-based protein biomarkers and 
PDS for specific diagnosis of schizophrenia and prediction of anti
psychotic response. We analysed plasma and plasma-derived EV 
samples from individuals with schizophrenia, BD, MDD and 
healthy controls. Participants were recruited from Shanghai 
Mental Health Center (SMHC) between 2017 and 2020. Consensus 
diagnosis of these illnesses was made by two experienced psychia
trists according to the Structured Clinical Interview for Diagnostic 
and Statistical Manual of Mental Disorders, fourth edition 
(DSM-IV). For longitudinal samples of schizophrenia, patients 
were treated with antipsychotic medication for ∼3 months. 
Treatment response was defined as a reduction rate of ≥25%20 in 
the Positive and Negative Syndrome Scale (PANSS).21 All partici
pants or their relatives provided informed consent and the study 
was approved by the Institutional Review Board of SMHC. The ex
periments were conducted in accordance with the Declaration of 
Helsinki. Participants who met the inclusion and exclusion criteria 
and were willing to provide a minimum of 10 ml of blood were in
cluded. To ensure comparability between groups, participants 
were matched on age and sex. Ultimately, this study included a to
tal of 100 individuals with chronic schizophrenia, 34 first-episode 
and drug-naïve (FEDN) patients, 35 individuals with BD, 25 indivi
duals with MDD and 149 healthy controls. This sample size was suf
ficient for analyses. All investigators involved in EV isolation and 
biomarker quantification were blinded until all measurements 
were made and the dataset was blocked for analysis.

Isolation and characterization of extracellular 
vesicles

Plasma-derived EVs were isolated by sequential ultracentrifuga
tion.22,23 Typical EV markers used were rabbit-anti-CD63 (Santa 
Cruz Biotechnology, SC-15363), mouse-anti-CD9 (Proteintech, 
60232-1-Ig), and rabbit-anti-Flotillin-1 (Proteintech, 15571-1-AP). 
Albumin was visualized by Ponceau S staining. The size distribu
tion and concentration of EVs were measured by nanoparticle 
tracking analysis (NTA) (Particle Metrix). Transmission electron 
microscopy (TEM) (FEI Company) with negative staining was per
formed to characterize EV morphology.

Analysis of extracellular vesicle proteome

EV proteins were extracted by sonication and RIPA lysis buffer. The 
filter aided sample preparation (FASP)24 was performed to prepare 
peptides. A Synapt G2-Si quadrupole time-of-flight mass spectrom
eter (MS) equipped with ion mobility option (Waters Corporation) 
was used for sample analysis. Data were acquired in the HDMSE 
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mode. MS raw spectra were processed in Waters Progenesis QI (QIP, 
version 3.0.2)25 searched against the UniProt human proteomic 
database (version 2020/06). Data normalization was performed at 
peptide levels. Proteins were quantified using the TOP 3 meth
od.26,27 Proteins whose intensities exceeded the range of mean ± 2 
sigma in each group were defined as outliers and removed. Only 
proteins identified in at least 50% samples in each group were re
tained for analysis. κ-nearest neighbour (κ-NN) imputation was ap
plied to impute the missing values. Three approaches were applied 
to identify differentially expressed proteins (DEPs): (i) Limma R 
package with Benjamini-Hochberg (BH) multiple correction; (ii) 
Samr R package with 1000 permutations and a false discovery 
rate (FDR) threshold of 0.0528; and (iii) Students’ t-test and BH mul
tiple correction. Proteins with a fold change of ≥|1.5| and an ad
justed P-value <0.05 across all three methods were defined as 
DEPs. Biological function analyses were performed in g:profiler 
(https://biit.cs.ut.ee/gprofiler/).29 Protein-protein interaction ana
lysis was conducted in STRING (https://string-db.org/)30 and visua
lized with Cytoscape 3.6.1.31 mRNA expression data enriched in 
brain were obtained from The Human Protein Atlas (http://www. 
proteinatlas.org/).32 Weighted gene co-expression network ana
lysis (WGCNA) package in R33 was used to build signed co- 
expression networks.

Quantification of complement DEPs in extracellular 
vesicles and plasma

Plasma-derived complement DEPs were quantified by ELISA assay. 
Complement C3 (C3, Cloud-Clone, SEA861Hu), Complement C4 (C4, 
Elabscience, E-EL-H6027), C4b-binding protein alpha chain (C4BPA, 
Cloud-Clone, SEB620Hu) and vitamin K-dependent protein S 
(PROS1, Cloud-Clone, SEB971Hu) were analysed. The C3 antibody 
recognizes the full-length of C3 and its fragments. The C4 antibody 
detects the full-length of the C4 protein.

EV-derived complement DEPs were quantified by Mesoscale 
Discovery electrochemiluminescence assays (MSD). Primary anti
bodies of C3 (21337-1-AP), C4 (22233-1-AP), C4BPA (11819-1-AP) 
and PROS1 (16910-1-AP) were used, which were all purchased 
from Proteintech Group, Inc. The C3 and C4 antibodies recognize 
the full-length of the proteins and their fragments. The C4 antibody 
does not differentiate between C4A and C4B.

Machine learning

Data processing and machine learning were performed in Python 
(version 3.7.3). The XGBoost package (version 0.90) was used for 
classification and prediction. Missing values were imputed with 
κ-NN using sklearn impute package. Features were selected using 
a decision tree. Cross-validation involved 5-fold training/test splits 
with 15 repetitions. Variables input into the XGBoost classifier were 
the normalized concentration of complement DEPs. Normalization 
was performed separately for each dataset and calculated as: (x −  
min) / (max − min). The XGBoost classifier was trained to predict 
disease probabilities, with the output being the predicted classes 
and their corresponding probabilities on a scale of 0 to 1. The prob
abilities were then transformed into z-scores, where a z-score > 0 
indicates a higher likelihood of schizophrenia for the participant.

Statistical analysis

Normality of continuous variables was assessed by Shapiro-Wilk 
test. The Levene test was used to examine the homogeneity of vari
ance. Two sample comparisons were performed with chi-square 

test, two-tailed Mann-Whitney U-test, Welch's test or Students’ 
t-test, as appropriate. Smoking was adjusted as a covariate in 
MDD compared with healthy controls, and analysis of covariance 
(ANCOVA) was applied. Pearson or Spearman correlation test was 
used as appropriate, adjusted covariates as needed. P < 0.05 was 
considered statistically significant. Data were represented as mean  
± standard deviation (SD) or displayed by box-and-whisker plots in 
which horizontal lines indicate the median. The rhombus indicates 
the mean. The hinges of the box denote the first and third quartiles 
above and below. The lower and upper whiskers represent 1.5 times 
the IQR (interquartile range). All statistical analyses were con
ducted in R package and visualized using ggplot2.

Results
Quality control of extracellular vesicles enriched by 
ultracentrifugation

In this study, we devised a step-wise approach to investigate plas
ma and plasma-derived EVs from 343 individuals, comprising both 
case and control groups. We isolated EVs using sequential ultracen
trifugation and assessed their quality by canonical EVs markers (i.e. 
CD9, CD63 and Flotillin1) and morphology via NTA and TEM ana
lysis (Supplementary Fig. 2A–C). To evaluate the potential contam
ination of EV samples by plasma proteins, we also examined the 
presence of albumin, a major plasma protein, and found it to be un
detectable in EV samples (Supplementary Fig. 2A). Furthermore, we 
identified a significant correlation between EV numbers and their 
protein amount (Supplementary Fig. 2D, R = 0.79, P < 0.0001). 
Overall, our results suggest a relatively pure isolation of plasma- 
derived EVs using ultracentrifugation.

The extracellular vesicle proteome was differentially 
expressed in schizophrenia and healthy controls

EV proteome profiling was compared between age- and 
sex-matched schizophrenia patients (n = 20) and healthy controls 
(n = 28) (Supplementary Table 1). Patient-derived EVs exhibited a 
significantly higher count and a smaller size compared to controls’ 
(all P < 0.05, Fig. 1A and B). Additionally, their EV numbers were 
associated with the disease course (Fig. 1C).

WGCNA clustered the total identified EV proteome (1262 pro
teins) into seven modules (Fig. 1D). Only the turquoise module 
showed a significant correlation with the disease state (R = 0.52, 
P < 0.001, Fig. 1E). The turquoise module also exhibits the highest 
proportion of DEPs compared to other modules, both in terms of 
the total proteins within the module and the total DEPs across all 
modules (Fig. 1F and G). For proteins to be considered as DEPs, 
they had to be identified by all three statistical methods (fold 
change ≥1.5 or ≤0.67, and Padjusted < 0.05) (Fig. 1H). Therefore, we 
proposed the turquoise module as the disease-modified module.

EV proteins in the turquoise module were generally highly 
expressed in patients compared to controls (ratio: 1.65 ± 0.68, P <  
0.001) (Fig. 1I) and they were primarily enriched in the complement 
network (Fig. 1J). Within this network, complement components 
such as C3, C4A, C4B, C4BPA and C4BPB were identified as DEPs. 
Additionally, C3, C4A and C4B were recognized as the hub genes 
within the network (Fig. 1K). Furthermore, through a literature re
view, we discovered that PROS1, a DEP in the turquoise module, 
forms a high-affinity complex with C4BP,34-38 which has been pro
posed to have an important link with the complement system. 
Therefore, we described PROS1 as a protein with potential link 
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with complement system and included it in the subsequent ana
lysis. Later, we will refer to C3, C4A, C4B, C4BPA, C4BPB and 
PROS1 as complement DEPs.

Characterization of extracellular vesicle-derived 
complement DEPs in patients with schizophrenia

We found that all of the EV-derived complement DEPs were signifi
cantly elevated in patients with schizophrenia compared to 

controls (Fig. 2A–F). Furthermore, when compared to non-DEPs 
within the complement network, these complement DEPs exhib
ited the highest number of significant correlations with the disease 
course (P < 0.0015, Fig. 2G–I). Additionally, we discovered significant 
correlations between these complement DEPs and DEPs of NOE1, 
KIRR3 and LMO4. Notably, such correlation was exclusively ob
served in schizophrenia patients rather than controls (Fig. 2M). 
These three DEPs showed predominant mRNA expression in brain 
tissue according to the Human Protein Atlas database32 (https:// 

Figure 1 Proteome profiles of the plasma-derived EVs compared between patients with schizophrenia and healthy controls. Plasma-derived extracel
lular vesicles (EVs) were enriched by the ultracentrifugation strategy. (A and B) Comparison of EV number and EV size between patients with schizo
phrenia (SZ) and healthy controls (HC). No confounding covariates were adjusted. *P = 0.038, Cohen's d = 0.71; **P = 0.0012, Cohen's d = 1.07. (C) Pearson's 
correlation between the disease course and EV number in patients with schizophrenia. (D) Weighted gene co-expression network analysis (WGCNA) 
analysis of co-expression of EVs proteins in patients with schizophrenia and healthy controls. Each protein in the module has a correlation of ≥0.4 with 
the module eigengene. (E) Heat map showing the association of each WGCNA module with the phenotypes. Only the significant associations were 
shown (top number: R-value; bottom number: adjusted P-value). (F) The proportion of differentially expressed proteins (DEPs) within a module relative 
to the total proteins in that module. (G) The proportion of DEPs within a module relative to the total number of DEPs across all modules. Numbers on top 
of each column represent the DEPs numbers in this module. (H) DEPs defined by three statistical methods: (i) Samr R package was employed with 1000 
permutations and a false discovery rate (FDR) threshold of 0.05; (ii) Limmar R package was used with Benjamini-Hochberg (BH) multiple correction; and 
(iii) Student’s t-test and BH multiple correction was applied. (I) Distribution of protein expression ratio of EVs in the turquoise module compared be
tween patients with schizophrenia and healthy controls. ***P < 0.001. (J) Biological network enriched in the turquoise module (protein-protein inter
action confidence ≥0.7). Query size = proteins involved in the network. Adjusted P-value <0.05. (K) Network of complement activation in the 
turquoise module. Dark blue = DEPs defined by three statistical methods; Grey = non-DEPs in the network; circle size = numbers of proteins interacted 
with the node; line thickness = confidence of protein-protein interaction. SZ, n = 20; HC, n = 28.
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Figure 2 Characteristics of EV-derived complement DEPs in patients with schizophrenia. (A) Comparison of C3 expression between patients with 
schizophrenia (SZ) and healthy controls (HC). *P = 0.039, Cohen's d = 0.78. (B) Comparison of C4A expression. ***P < 0.001, Cohen's d = 1.57. 
(C) Comparison of C4B expression. ***P < 0.001, Cohen's d = 1.24. (D) Comparison of C4BPA expression. **P = 0.0029, Cohen's d = 1.17. (E) Comparison 
of C4BPB expression. *P = 0.0129, Cohen's d = 0.88. (F) Comparison of PROS1 expression. ***P < 0.001, Cohen's d = 1.20. Although the levels of body 
mass index (BMI) and diastolic blood pressure (DBP) were significantly different between patients and controls, they did not demonstrate significant 
correlations with the levels of extracellular vesicle (EV)-derived complement associated components within each independent group. Hence, they were 
not adjusted as covariates. (G and H) The heat map of correlation analysis between EV-derived non-differentially expressed proteins (DEPs) and DEPs in 
the complement network and the disease course. Significant correlation was defined as absolute R values ≥0.4 and P-value <0.05 [−log10 (P) > 1.3]. 
Pearson or Spearman correlation was used as appropriate. (I) Box plot of the absolute R value of correlation analysis. **P = 0.0015, Cohen's d = 1.67. 
(J–L) Expression levels of NOE1, KIRR3 and LMO4 mRNA in different tissues; their mRNA expression were mostly enriched in brain. Data were extracted 
from the Human Protein Atlas. (M) Heat map of linear correlation results between the EV-derived complement DEPs and brain enriched proteins of 
NOE1, KIRR3 and LMO4 in patients and healthy controls. The number in each box and the legend represent the R-value. *P < 0.05; **P < 0.01; ***P < 0.001.
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www.proteinatlas.org) (Fig. 2J–L). Previous studies have reported 
the significance of these three DEPs in CNS development.39-42

Taken together, we hypothesize that these complement DEPs 
may synergistically participate in regulating CNS development 
and play crucial roles in the progression of schizophrenia.

Validation of extracellular vesicle-derived 
complement DEPs in patients with schizophrenia

Next, we validated these EV-derived complement DEPs using MSD 
technology in another independent set of age- and sex-matched 
samples (Set 2), comprising 26 patients with schizophrenia and 26 
healthy controls (Supplementary Table 1). Notably, C4A and C4B 
share high sequence similarity (≥95%) with only 10 different resi
dues. Although we could differentiate between the two variants 
through their unique identified peptides in our MS analysis, there 
were no available antibodies to distinguish between them. 
Therefore, during the MSD validation, we measured the total level 
of C4 instead. To make a comparison with the MSD results, we 
summed the intensities of C4A and C4B detected by MS as an esti
mate of the overall C4 level (Fig. 3C). The unavailability of a suitable 
antibody for C4BPB also precluded its inclusion in analysis. 
Consequently, our validation focused solely on EV-derived C3, C4, 
C4BPA and PROS1. As a result, they were all significantly upregu
lated in patients compared to controls (Fig. 3B, D, F and H), which 
supports our proteomic discovery (Fig. 3A, C, E and G). 
Furthermore, to evaluate complement activation in EVs, we used 
neoepitope antibodies targeting C3a and C4a. We found increased 
levels of C3a and C4a in patients compared to controls, 
indicating enhanced complement activation in EVs under the ill
ness (Fig. 3I–L).

Extracellular vesicle-derived complement DEPs 
outperform their counterparts from plasma as 
biomarkers

Plasma has been widely used as a convenient source for biomarker 
development in schizophrenia; however, the results have been in
consistent and inconclusive.43 In this study, we compared the ex
pression levels of C3, C4, C4BPA and PROS1 in both plasma and 
EVs between patients with schizophrenia and healthy controls. 
Our results showed that in plasma, none of these proteins dis
played statistically significant or consistent difference across the 
two sample sets (Fig. 4). Conversely, EV-derived C3, C4, C4BPA 
and PROS1 exhibited better consistency between sets compared 
to their plasma counterparts, where they were all significantly 
overexpressed in patients relative to controls (Fig. 3). Therefore, 
we suggest that EV-derived complement DEPs outperform their 
plasma counterparts and represent a superior source of biomarkers 
for schizophrenia.

Machine learning to develop diagnostic biomarkers 
for schizophrenia

Next, based on the four EV-derived complement DEPs, we used 
XGBoost-based machine learning to establish models for classifica
tion of schizophrenia. We utilized the aforementioned two samples 
sets of schizophrenia patients and controls, testing all possible 
combinations of the four indexes (

􏽐4
i=1 Ci

4 = 15). Five-fold training/ 
test splits and 15 repeats were applied for cross-validation. We 
found that combinations of two and more complement DEPs 
achieved an AUC of ≥84%. Notably, the combination of all four in
dexes demonstrated the highest AUC [0.895, 95% confidence 

interval (CI) = 0.882–0.908], with an accuracy of 83.5%, a sensitivity 
of 85.3% and a specificity of 82.0% (Fig. 5A and Table 1) for distin
guishing between schizophrenia and healthy controls.

Additionally, we assessed the performance of the four indexes 
in distinguishing FEDN schizophrenia patients and healthy con
trols in an age- and sex-matched case-control cohort (n = 34 each) 
(Supplementary Table 2). In this analysis, we did not observe any 
significant difference in the expression of EV-derived C3, C4, 
C4BPA and PROS1 between FEDN patients and controls 
(Supplementary Fig. 3A–E). Consequently, the four indexes were 
less effective in discriminating between FEDN patients and healthy 
controls, achieving only a 0.661 AUC, 62.4% accuracy, 64.9% sensi
tivity and 60.2% specificity (Supplementary Fig. 3F). However, the 
four indexes performed better in distinguishing between chronic 
and FEND patients, with a 0.881 AUC, 82.2% accuracy, 85.4% sensi
tivity and 78.7% specificity (Supplementary Fig. 3G).

Extracellular vesicle-based biomarkers were able to 
distinguish schizophrenia from bipolar disorder and 
major depressive disorder

Given the high rate of misdiagnosis of schizophrenia as BD and 
MDD, we investigated whether the EV-based four indexes could dif
ferentiate between these disorders. We recruited participants with 
BD (n = 35) or MDD (n = 26), and age- and sex- matched healthy con
trols (n = 35 and 25, respectively) (Supplementary Table 3). The ex
pression of EV-derived C3, C4, C4BPA and PROS1 were measured 
by MSD. We found that their expression patterns were specific to 
each disorder (Table 2 and Supplementary Fig. 4). The EV-based 
four indexes yield a 0.966 AUC, 91.0% accuracy, 91.1% sensitivity 
and 91.2% specificity for discriminating participants with schizo
phrenia from those with BD (Fig. 5B and Table 1). When differenti
ating between schizophrenia and MDD, the four indexes achieved 
an 0.893 AUC, 84.0% accuracy, 80.5% sensitivity and 86.9% specifi
city (Fig. 5C and Table 1). Collectively, these data suggest that the 
EV-based biomarkers could effectively distinguish schizophrenia 
from BD and MDD.

The Personalized Discrimination Score could 
diagnose schizophrenia at the individual level

An individualized assessment tool holds significance in clinical 
practice. We further utilized the XGBoost algorithm to construct a 
PDS based on the EV-based four indexes for individual diagnosis 
(schizophrenia versus control). The PDS was assigned polarity in 
such a way that individuals with a positive score were predicted 
to belong to the schizophrenia group. We observed that PDS had a 
significant ability to differentiate individuals with schizophrenia 
from healthy controls (Fig. 6A). However, it was unable to distin
guish healthy individuals from BD (Fig. 6B) or MDD (Fig. 6C). 
Therefore, we concluded that the discrimination score derived 
from the four indexes is highly sensitive and specific to schizophre
nia, highlighting its potential for individual diagnosis of schizo
phrenia and differentiation from BD and MDD.

The Personalized Discrimination Score is available 
for prediction of antipsychotic response at the 
individual level

Next, to determine whether the PDS is related to the antipsychotic 
response of schizophrenia patients, we recruited a follow-up cohort 
that included symptomatic schizophrenia patients (n = 27). We col
lected clinical assessments and the levels of EV-derived C3, C4, 
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C4BPA and PROS1 at baseline and after an average of 3 months of 
antipsychotic treatment (Supplementary Table 4). We defined 
treatment response as a PANSS reduction rate of ≥25% (Fig. 6D). 
We found that the responders had a significantly higher reduction 
rate in positive, negative and general psychological scores com
pared to the non-responders (P < 0.001, Fig. 6E–G). Additionally, 

responders had a significantly higher baseline PDS than non- 
responders (P < 0.001, Fig. 6H). Furthermore, the baseline PDS was 
significantly associated with the reduction percentage in PANSS to
tal score, as well as positive, negative and general psychological 
subscales (Fig. 6I–L). However, we did not observe such an associ
ation between the baseline PDS and the baseline PANSS total and 

Figure 3 Potential biomarkers validated in EVs in patients with schizophrenia and healthy controls. The concentration of extracellular vesicle 
(EV)-derived complement differentially expressed proteins were detected by proteomics (Set 1) and Mesoscale Discovery technology (Set 2). (A and 
B) C3 amount in EVs. Set 1: *P = 0.039, Cohen's d = 0.78. Set 2: **P < 0.001, Cohen's d = 1.13. (C and D) C4 amount in EVs. Set 1: ***P < 0.001, Cohen's d =  
1.36. C4 intensity was the combination of C4A and C4B intensity. Set 2: *P = 0.019, Cohen's d = 0.67. (E and F) C4BPA amount in EVs. Set 1: **P = 0.003, 
Cohen's d = 1.17. Set 2: ***P < 0.001, Cohen's d = 2.04. (G and H) PROS1 amount in EVs. Set 1: ***P < 0.001, Cohen's d = 1.20. Set 2: **P = 0.0023, Cohen's d  
= 0.90. Although the levels of body mass index or diastolic blood pressure were significantly different between patients (SZ) and controls (HC), they 
did not demonstrate significant correlations with the levels of complement-associated components within each independent group. Hence, they 
were not adjusted as covariates. (I–L) Western blot analysis of the activation of EV-derived Complement C3 and C4. Neoepitope-specific antibodies 
of C3a and C4a were used. Human serum purified proteins of C3a des Arg and C4a des Arg were used as the positive controls. The last lane of each 
membrane was the positive control. n = 11 for each group. SZ = schizophrenia; HC = healthy controls.
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subscale scores (Fig. 6M–P). In summary, the PDS developed from 
cross-sectional case–control datasets was significantly associated 

with individual treatment response in a longitude cohort, demon

strating its prognostic ability at an individual level.

Discussion
Through a combination of EV proteome profiling and machine 
learning, this study has successfully developed a novel EV-based 
protein biomarker panel, comprised of EV-derived C3, C4, C4PBA 

Figure 4 Potential biomarkers validated in plasma in patients with schizophrenia and healthy controls. The concentration of complement differen
tially expressed proteins in plasma were detected by ELISA. (A and B) Plasma concentration of C3. Set 1: P = 0.16, Cohen's d = 0.43. Set 2: P = 0.22, Cohen's 
d = 0.35. (C and D) Plasma concentration of C4. Set 1: P = 0.76, Cohen's d = 0.0005. Set 2: P = 0.72, Cohen's d = 0.098. (E and F) Plasma concentration of 
C4BPA. Set 1: P = 0.25, Cohen's d = 0.35. Set 2: *P = 0.03, Cohen's d = 0.27. (G and H) Plasma concentration of PROS1. Set 1: **P = 0.001, Cohen's d = 1.11. 
Set 2: P = 0.87, Cohen's d = 0.02. Although the levels of body mass index or diastolic blood pressure were significantly different between patients and 
controls, they did not demonstrate significant correlations with the levels of complement associated components within each independent group. 
Consequently, they were not adjusted as covariates. SZ = schizophrenia; HC = healthy controls; n.s. = not significant.

Figure 5 XGBoost-based machine learning to classify patients with schizophrenia from healthy controls, BD and MDD. (A) The area under the curve 
(AUC) of different combinations of four index biomarkers to discriminate patients with schizophrenia (SZ) and healthy controls (HC). (B and C) The 
XGBoost-based modelling to discriminate schizophrenia from bipolar disorder (BD) and major depressive disorder (MDD) using extracellular vesicle 
(EV)-based four indices. 
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and PROS1. This panel has proven to be highly effective to diagnose 
chronic schizophrenia from healthy controls, with an 0.895 AUC, 
83.5% accuracy, 85.3% sensitivity and 82.0% specificity. It also 
accurately differentiates schizophrenia from BD and MDD. 
Furthermore, we have established a PDS based on the panel, which 
provides a personalized index for accurately discriminating schizo
phrenia and predict their treatment response.

In this study, we used a stepwise proteomics analysis to identify 
potential biomarkers for schizophrenia and conducted a validation 
in another independent sample set. Encouragingly, all of these 
EVs-derived biomarkers were successfully validated and showed 
significant overexpression in patients with schizophrenia. Most of 
these EV-derived biomarkers belong to the complement system, 
and our study revealed an increased complement activation 
mediated by EVs in schizophrenia patients. The complement sys
tem plays key roles in bridging innate and adaptive immunity un
der normal physiological conditions,44,45 and its overall activity is 
tightly controlled. In the CNS, the complement system is involved 
in synaptic pruning, neurogenesis and migration modulation.46

Mounting evidence have suggested that the aberrant complement 
system is a central pathway contributing to immune abnormalities 
and dysregulated neuronal development in schizophrenia.43,47,48

Overall, our findings demonstrated the reliability of these 
EV-based biomarkers and they have biological significance in the 
pathogenesis of schizophrenia.

Previous studies on complement biomarkers for schizophrenia 
have primarily focused on plasma proteins, with little attention 
paid to EVs. However, the inconsistent and inconclusive findings 
in plasma have raised doubts about the efficacy of these proteins 
as diagnostic biomarkers.43 Our study has unveiled a similar chal
lenge, as two of the indexes failing to consistently replicate their re
sults in plasma across different sample sets. Plasma proteins are 
susceptible to protease and enzymatic degradation in the blood
stream, which may account for their instability during preparation, 
leading to inconsistent findings. In contrast, EV proteins are encap
sulated within a lipid membrane, protecting them from degrad
ation and potentially rendering them more stable and resilient. In 
our study, we consistently observed elevated levels of EV-derived 
indexes in patients across different sample sets. Additionally, evi
dence suggest that EVs in the CNS can cross the blood–brain barrier 
(BBB) and enter the peripheral blood.49-51 Our established 
EV-derived biomarkers demonstrate a significant positive relation
ship with brain-enriched proteins in patients with schizophrenia 
but not in healthy individuals. This finding suggests that these 
biomarkers may, to some extent, derived from the CNS in 

pathological conditions, carry valuable information regarding 
brain pathology in schizophrenia. Similarly, previous studies 
have demonstrated increased levels of astrocytic-derived EVs in 
plasma for patients with Alzheimer's disease,52,53 multiple sclerosis54

or early psychosis,16 which may contribute to pathological 
synaptic loss and neuronal damage. Overall, we propose that 
EV-derived complement DEPs surpass their plasma counterparts in 
terms of their stability and potential to reflect brain pathology, 
making them superior candidates for schizophrenia biomarker 
development.

A clinically valuable biomarker should have the capability to 
provide informative data at the individual level. For this purpose, 
we developed PDS based on the EV-derived biomarkers, which en
ables specific diagnosis of schizophrenia in individual patients. An 
individual assigned a positive PDS was predicted to have schizo
phrenia. This scoring strategy is feasible for clinical transformation 
and holds value in complementing current subjective diagnostic 
criteria. Moreover, our PDS serves as a valuable tool for predicting 
antipsychotic treatment response, facilitating guidance of indivi
dualized treatment. For patients predicted to have a poor response, 
more comprehensive therapeutic strategies, such as psychother
apy and transcranial magnetic stimulation, could be implemented 
at the early stage of treatment. Importantly, we found that the PDS 
was significantly associated with the percentage reduction in 
PANSS total and subscale scores, rather than their baseline scores. 
These findings suggest that the PDS generated from the EV-derived 
biomarkers possesses robust predictive capability, unaffected by 
patients’ baseline condition.

Our study has several limitations that warrant consideration. 
First, our findings are primarily based on a young and middle-aged 
(16–64 years) population, so caution should be exercised when gen
eralizing the results to older age groups. Second, while XGboost has 
demonstrated its ability to generate reliable results in small sample 
size, the clinical utility of EV-based biomarkers in predicting and 
diagnosing schizophrenia still requires large-scale, prospective 
longitudinal studies that include multicentred cohorts. Third, in 
the longitudinal schizophrenia samples, all recruited individuals 
received treatment with second-generation antipsychotics, with 
80% receiving monotherapy and the remainder receiving a combin
ation of two antipsychotics. However, due to the limited sample 
size and the presence of combination therapy, further stratification 
of patients into specific drug categories was not feasible. 
Consequently, the potential influences of drug interactions and 
heterogeneity could not be completely excluded. Therefore, the 
PDS tool is primarily targeted towards second-generation 

Table 1 The AUC, accuracy, sensitivity, specificity, PPV and 
NPV of four index biomarkers for different discrimination

SZ versus HC SZ versus BD SZ versus MDD

AUC 0.895 0.966 0.893
Accuracy 83.48 90.99 83.95
Sensitivity 85.32 91.08 80.51
Specificity 81.91 91.19 86.85
PPV 83.73 90.22 82.18
NPV 83.18 91.69 85.24

AUC = area under curve; BD = bipolar disorder; HC = healthy controls; MDD = major 

depressive disorder; NPV = negative predictive value; PPV = positive predictive 

value; SZ = schizophrenia.

Table 2 The different expression pattern of extracellular 
vesicles derived four indexes among SZ, BD and MDD patients 
compared to matched healthy controls

SZ versus 
HC

BD versus HC MDD versus HC

C3_EVs Upregulated Downregulated Upregulated
C4_EVs Upregulated Downregulated Not significantly changed
C4BPA_EVs Upregulated Not significantly 

changed
Not significantly changed

PROS1_EVs Upregulated Downregulated Not significantly changed

BD = bipolar disorder; EV = extracellular vesicle; HC = healthy controls; MDD = major 

depressive disorder; SZ = schizophrenia.
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antipsychotic medications, rather than specific drugs. Fourth, pa
tients recruited for the followed-up study were symptomatic pa
tients and the generalization and optimization of the PDS tool in 
FEDN and acute patients require further investigation.

In summary, we have developed novel EV-based biomarkers 
and a PDS tool for diagnosing schizophrenia, differentiating it 
from BD and MDD, and predicting antipsychotic response. The inte
gration of symptom assessment and EV-based biomarkers has the 

Figure 6 The personalized discrimination score to diagnosis and predict antipsychotic treatment response of patients with schizophrenia. (A–C) The 
Personalized Discrimination Score developed using the XGBoost-based machine learning strategy could significantly classify schizophrenia (SZ) from 
matched healthy controls (HC). P < 0.001. However, it could not significantly separate patients with bipolar disorder (BD) or patients with major depres
sive disorder (MDD) from their matched healthy controls. X-axis: the normalized discrimination score by z-score. P = 0.84, P = 0.76. (D–G) The compari
son of reduction percentage of Positive and Negative Syndrome Scale (PANSS) total and subscale scores between the responders (Res) and 
non-responders (Non-Res). All ***P < 0.001. (H) The comparison of discrimination score between the responders and non-responders. **P < 0.001. (I– 
L) The Spearman correlation analysis between the baseline PDS and the reduction percentage of PANSS total and subscale scores. Baseline PANSS total 
and subscale scores were adjusted as the confounding covariates as needed, respectively. (M–P) The Spearman correlation analysis between the base
line PDS and the baseline PANSS total and subscale scores. Responders: n = 14; non-responders: n = 13.
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potential to enhance the accuracy of schizophrenia diagnosis and 
guide the development of complement-directed therapies.

Data availability
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