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Abstract

Functional magnetic resonance imaging (fMRI) is used to capture complex and

dynamic interactions between brain regions while performing tasks. Task related

alterations in the brain have been classified as task specific and task general,

depending on whether they are particular to a task or common across multiple tasks.

Using recent attempts in interpreting deep learning models, we propose an approach

to determine both task specific and task general architectures of the functional brain.

We demonstrate our methods with a reference-based decoder on deep learning clas-

sifiers trained on 12,500 rest and task fMRI samples from the Human Connectome

Project (HCP). The decoded task general and task specific motor and language archi-

tectures were validated with findings from previous studies. We found that unlike

intersubject variability that is characteristic of functional pathology of neurological

diseases, a small set of connections are sufficient to delineate the rest and task

states. The nodes and connections in the task general architecture could serve as

potential disease biomarkers as alterations in task general brain modulations are

known to be implicated in several neuropsychiatric disorders.
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1 | INTRODUCTION

The study of functional self-organization of the human brain during

task performance is a widely researched area in cognitive neurosci-

ence. There is significant functional modulation in the brain during

task performance (Fox et al., 2005). Two types of task evoked alter-

ations are known to shape brain states: task specific and task general

alterations (Cole, Bassett, Power, Braver, & Petersen, 2014; Düzel

et al., 1999; Norman & Shallice, 1986; Nyberg et al., 1996). Task gen-

eral alterations are task independent alterations in the brain that occur

across multiple tasks whereas task-specific alterations depend on the

particular task being performed.

Aging (Meinzer et al., 2012) and multiple neurological disorders

such as major depressive disorder (MDD) (Hamilton et al., 2011;

Knyazev et al., 2018), attention deficit hyperactivity disorder (ADHD)

(Mills et al., 2018), mild cognitive impairment (MCI) (Melrose

et al., 2018), and schizophrenia (Haatveit et al., 2016) have been char-

acterized by anomalous task general architecture. Task general alter-

ations are further classified as task positive and task negative,

depending on whether the neurons and their connections in a region

are activated or deactivated during the task performance. We model

the alterations in the brain functional connectivity as positive task gen-

eral and negative task general depending on the presence or absence

of functional connectivity during task states relative to the rest-state.

Received: 1 July 2021 Revised: 1 February 2022 Accepted: 13 February 2022

DOI: 10.1002/hbm.25817

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2022;43:2801–2816. wileyonlinelibrary.com/journal/hbm 2801

https://orcid.org/0000-0002-8974-8482
https://orcid.org/0000-0001-7944-1658
mailto:asjagath@ntu.edu.sg
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/hbm


Advances in neuroimaging have made it easier to study dynamic

in vivo changes in regional relationships during different task and the

rest state. Multiple studies have investigated the modulations in brain

functional architecture during task performance. Betti et al. (2013)

used group averaged connectivity from magnetoencephalography

(MEG) and fMRI scans for 12 subjects to recover rest and task func-

tional connectivity and study the alterations during rest and task. They

concluded that although the resting-state and task network interac-

tions had similar network topography, clear differences existed in the

frequency domain. Krienen, Yeo, and Buckner (2014) acquired task

fMRI data from 48 subjects for 14 distinct sub-tasks (grouped into

passive, sensory, and motor tasks) and by performing correlation and

seed-based analysis on the group averaged data, found that the task

modulations varied around a common central tendency across all task

states. Cole, Bassett, et al. (2014) used two task datasets, one con-

taining 64 tasks and the other containing 7 tasks (from the Human

Connectome Project), and found that the central tendency for each

functional connection during varied tasks was the one represented

during the rest state. They found that a stable intrinsic functional net-

work architecture that is present across rest and tasks, and a few but

statistically significant alterations had shaped task states. In another

study, Cole, Ito, Bassett, and Schultz (2016) selected the first principal

component of task activation to detect task general architecture.

These studies suggest that although there are small-scale alterations

in the brain functional architecture, there is an intrinsic stable func-

tional backbone that remained unchanged during both the rest and

task state (Betti et al., 2013; Cole, Bassett, et al., 2014; Krienen

et al., 2014).

Although multiple recent studies (Gordon et al., 2017; Gratton

et al., 2018; Xie et al., 2018) have depicted the role of subject-level

characteristics, most previous efforts studying alterations in functional

connectivity involved studying alterations at the group level. Gratton

et al. (2018) used data for nine subjects with 10 hr of scan data per

subject (10 scans of 1 hr each containing resting state and four task

states) from the Midnight Scan Club (Gordon, Laumann, Gilmore,

Newbold, et al., 2017) and studied the dependence of functional con-

nectivity on task states, subjects, and scan sessions. They found that

while the task states and the sessions shaped the functional connec-

tivity patterns, common organizational principles, and subject-specific

features had a higher impact. Similarly, Xie et al. (2018) used task fMRI

scans and k-means clustering to separate the effects of subject-level

functional connectivity and tasks to determine what caused changes

in group functional connectivity. They found that subject-level func-

tional connectivity was the most dominant factor in group-level func-

tional connectivity variability. These results, combined with previous

studies on resting state brain functional architecture pointing towards

significant intersubject variability (Finn et al., 2015; Gordon

et al., 2017; Gordon, Laumann, Adeyemo, & Petersen, 2017; Mueller

et al., 2013; Wang et al., 2015) that necessitates consideration of sub-

ject variability in the functional connectome while studying alterations

during task performance. However, earlier studies had only consid-

ered group-level functional connectivity. In this study, instead of

studying group level alterations, we investigate intersubject variability

by explicitly modeling subject-level alterations.

Another concern with previous studies is that they only captured

linear relationships between functional connectivity at rest or at task.

In a recent study, He et al. (2020) used resting state functional con-

nectivity to predict behavior by using traditional machine learning

algorithms and multiple deep neural networks (DNNs) proposed for

functional connectivity based analysis. They demonstrated that kernel

regression applied on functional connectivity was sufficient and DNNs

did not bring additional value as far as predicting individual behavior

was concerned. We test this with classification of rest and task func-

tional connectivity by using traditional supervised learning models

along with the highly parametric DNNs. We trained classifiers on both

models on individual subject rest-state and task state data, and there-

after distinguished features responsible for different tasks from the

trained model. We refer to identification of salient features of the net-

work as decoding (different from the decoding performed in

autoencoders). We found that although all classifiers gave a high accu-

racy for classification, DNNs were able to classify with a better accu-

racy than the shallow models such as support vector machines (SVM).

We uncover the task general architecture by decoding a binary classi-

fier trained for classifying rest and multiple task states. Using such

obtained task general architecture, we demonstrated decoding of task

specific brain architectures for the motor and language tasks.

Recent attempts have been made to evaluate the salience given

to input features of neural network models classifying neuroimaging

data. Jang, Plis, Calhoun, and Lee (2017) used the trained weights in

different layers of a feedforward neural network and mapped them to

four sensorimotor task states. Several works using a gradient-based

decoder with different neural network architectures have culminated.

Using a gradient-based decoder on a trained long short-term memory

recurrent neural network, Li and Fan (2019) identified functional sig-

natures in rest and task states. Floren, Naylor, Miikkulainen, and

Ress (2015) identified brain regions involved in different visual

processing tasks. However, these studies did not validate their

derived feature set and issues like gradient saturation and discontinu-

ities due to bias terms have not been addressed before using

gradient-based decoders on neural networks (Shrikumar, Greenside, &

Kundaje, 2017).

Recent methods such as Integrated Gradients (Sundararajan,

Taly, & Yan, 2017), DeepLIFT (Shrikumar et al., 2017), and SHAP

(Lundberg & Lee, 2017) attempt to ameliorate the issues with

gradient-based approaches. These approaches find contributions of

the neurons at each layer from those at the output layer and then

backpropagate the contributions of all the layers to the input layer.

DeepLIFT is one of the approaches that gives consideration to both

negative and positive contributions, and computes the salience scores

efficiently in a single pass, thus addressing the issues confounded in

gradient based approaches. Gupta et al. (2019) used a DeepLIFT

based decoder to derive salient features for distinguishing Alzheimer's

disease and Autism patients from cognitively normal subjects. In the

present article, we use DeepLIFT to study the microscale and meso-

scale brain alterations that shape task related alterations in the brain

(Cole et al., 2016). We used the state-of-the-art resting state and

seven-task fMRI data from the Human Connectome Project (HCP)

dataset to demonstrate our methods.
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Using functional connectivity between brain regions as inputs to

train DNN, we made the following novel contributions in this work:

• With our experiments on different models for rest versus task clas-

sification, we show that DNNs outperform simpler models such as

SVM even with a few training samples. However, the classification

accuracy of SVMs improves with more training data.

• We proposed a novel method that uncovers salient task general

and task specific functional brain architectures. The task related

architectures detected by our method were validated with previ-

ous studies.

• We show that although there is pronounced intersubject variability

in task related brain architectures, the small subset of detected fea-

tures identified by our method were able to provide near 100% clas-

sification accuracy while distinguishing tasks from the rest states.

Using feature salience scores, we identified functional connec-

tions and functional modular interactions that characterize task gen-

eral, and motor and language task specific architectures of the brain.

We discovered widespread system reorganization during task perfor-

mance and were able to classify the rest versus all tasks, rest versus

motor task, and rest versus language task with high accuracies by

using a five-layer feedforward DNN. The high classification accuracy

was maintained even while taking only a subset of decoded features

classified as highly salient by our decoder. We confirmed that the

default mode network (DMN), commonly known for its deactivation

during task performance, formed positive correlations with the

salience network (SN) (Elton & Gao, 2015). Similarly, we found an

important role for the regions in the motor sub-systems for per-

forming the motor task and left lateral temporal regions in performing

the language task (Binder et al., 2011).

2 | METHODS

Let brain functional network G = (Ω, A) where Ω denotes the set of

brain regions of interest (ROI) or nodes and A = {aij}i,j�Ω denotes the

adjacency matrix of functional connectivity between different ROI.

We obtained a symmetric A for each fMRI scan and input features

x for the feedforward DNN were obtained by taking only the lower

half of elements of the adjacency matrix. We used rest and task data

gathered on healthy subjects in the HCP.

2.1 | Feedforward DNN

For each subject, we obtained (x, d) where x = (xi) is the input features

and d is the task label. The output y of the DNN gives the probability

of the input belonging to one of the labeled task classes from Table 1.

We consider a DNN of L layers with L � 1 rectified linear unit (ReLU)

layers and a final softmax layer.

Let the weights and biases of the layer l be given by Wl and bl,

respectively. The output hl of layer l=2{0, L} is given by

hl ¼ReLU WT
l hl�1þbl

� � ð1Þ

For the input layer l = 0, h0 = x. For the output softmax layer

l = L, the output y is given by the probability of a sample x belonging

to class k:

P y¼ kjxð Þ¼ softmax WT
LhL�1þbL

� � ð2Þ

where k �{1, …, K} represents the class label, the output layer weight

WL = [wk,L], and bias bL = (bk,L).

TABLE 1 Summary of HCP task and resting state data

Condition Number of subjects Number of time points Description

Resting 756 1,200 Participants were asked to lie flat, with eyes open and

maintain a relaxed fixation.

Emotion processing 806 176 Participants were tasked to match two simultaneously

presented faces or shapes on two screens.

Gambling 829 253 Participants were given incentive to guess the number

of a mystery card.

Language 805 316 Participants are presented with a question on short

narrated stories.

Motor 826 284 Participants were asked to either move their fingers,

toes or their tongue on cue.

Relational processing 802 232 Participants are presented with relational and control

matching task.

Social cognition 807 274 Participants were presented with short videos and

decided if the object movement were interrelated.

Working memory 828 405 Participants were asked to complete a two-back and a

zero-back working memory tasks.
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To learn the parameters of the network, the cross-entropy cost J

(θ) was minimized:

J θð Þ¼�Ex log P y¼ djx,θð Þ½ � ð3Þ

where Ex is expectation taken over all the scan samples x and θ¼
Wl ,blð Þf gLl¼1 denotes all the parameters in the network. We used min-

ibatch stochastic gradient descent learning with a fixed learning rate

to learn the parameters θ.

2.2 | Salience of input features

Let f be neural network function mapping input x to output y. Let g be

a simpler explanation model that is interpretable and an approximation

of the network mapping f. Let the number of neurons in layer l be nl.

Using an appropriate reference, let us assign to each neuron i at layer

l its contribution CΔhi,lΔhk,lþ1
to the change in the output of neuron k at

layer l+1. Then, the change Δhi,l in the activation of the ith neuron of

layer l due to the input relative to the reference is given by

Δhk,lþ1 ¼
X
i≤ nl

CΔhi,l ð4Þ

when l� 0,…,L�2f g and

Δy¼
X
i≤ nL�1

CΔhi,L�1
ð5Þ

when l = L � 1.

In order to determine the feature salience scores, we evaluate

three types of references; namely sample mean, sample mode, and

taking a sample which has the least L2 norm from the rest of the sam-

ples. We empirically determined the mean reference x to be the most

representative of the samples. Given the reference input x and the

original input x, we can substitute Δy¼ f xð Þ� f xð Þ and g(x) = f(x), giv-

ing us an equation for the model g:

g xð Þ¼ f xð Þþ
X
i, l

CΔhi,lΔy ð6Þ

where the contribution of neurons in each layer l to the output y is

given by CΔhi,lΔy (Shrikumar et al., 2017):

CΔhi,lΔy ¼Δhi,l
X
k, l

CΔhi,lΔhk,lþ1

Δhi,l
CΔhk,lþ1Δy

Δhk,lþ1
ð7Þ

where CΔhi,lΔhk,lþ1
can be computed from the Linear, Rescale, and

RevealCancel rule (Shrikumar et al., 2017). We can get contribution of

neurons in all layers 0≤ l < L to the output y by backpropagating con-

tributions of layers to the input, using the chain-rule given by

Equation (7).

The salience scores c for the input layer are evaluated as c¼
CΔhi,0Δy
� �

such that each element gives the contribution of the

corresponding input to the changes of the output. The DeepLIFT

method (Shrikumar et al., 2017) implements computation of feature

salience scores based on the changes of the output from a reference

input, allowing information to propagate across the network layers

even when the gradient is zero. We compute feature importance

scores using Equation (6):

c¼mean
x

f xð Þ�g xð Þ�
X

i, l � 1,…,L�1f g
CΔhi,lΔy

0
@

1
A ð8Þ

The salience vector c represents the salience scores for the input

features. The input features constitute the lower triangular matrix of

the adjacency matrix. Vector c is mapped to a salience matrix

S = {sij}i,j�Ω where sij represents the salience of the connectivity

between ROI i and j.

While the salience matrix S from the DeepLIFT algorithm gives

the salience of all connectivity features, we establish the validity of

the decoded features by performing recursive feature elimination

based on the salience scores of the features. If the features identified

by the DeepLIFT based decoder are indeed salient, a subset of the

most salient features will also give a high classification accuracy. In

fact, recent work by the authors based on the premise that only a sub-

set of regions and function connections are involved in task perfor-

mance has shown promise (Gupta et al., 2021).

The input features that were insignificant were recursively

removed by choosing connections whose salience jsijj < t between

brain regions i and j less than a threshold t and the neural network

was retrained on the reduced feature set. The threshold was corre-

spondingly set at the 90th percentile of significance. We repeated this

experiment until only 0.1% initial features were left. We did not go

below 0.1% as that corresponded to ≈34 features that were sufficient

to give an accuracy close to the initial accuracy with all the features.

The recursive elimination of irrelevant features not only tests the

validity of the features identified by the decoder but also gives us the

minimal subset of features needed for the classification.

2.3 | Decoding the task general brain architecture

We define decoding functional brain connectivity as identification of

salient functional connectivity features that are crucial for classifying

different brain states. The classification models are built using func-

tional connectivity features for rest and task data while the DeepLIFT

algorithm is used to find the salience of connectivity features.

Cole, Bassett, et al. (2014) used two task datasets, one containing

64 tasks and the other containing 7 tasks (from the Human

Connectome Project), and found that the central tendency for each

functional connection during varied tasks was the one represented

during the rest state. They found that a stable intrinsic functional net-

work architecture that is present across rest and tasks, and a few but

statistically significant alterations had shaped task states. In another

study, Cole et al. (2016) selected the first principal component of task

activation to detect task general architecture. These studies suggest

that although there are small-scale alterations in the brain functional
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architecture, there is an intrinsic stable functional backbone that

remained unchanged during both the rest and task state (Betti

et al., 2013; Cole, Bassett, et al., 2014; Krienen et al., 2014).

Multiple previous studies (Betti et al., 2013; Cole et al., 2016;

Cole, Bassett, et al., 2014; Krienen et al., 2014) point to the presence

of an intrinsic backbone that remains unchanged during task perfor-

mance. They also point to a common set of alterations that shape task

states. While a task state can be considered to be amalgamation of

both task general and task specific brain modulations over the rest

state, the task general modulations can be represented by a common

set of connectivity features that distinguish the brain at rest and dur-

ing varied task states. In our formulation, connectivity features are the

inputs to the DNN classifier and the task general architecture is

defined by salient input features classifying the rest task versus all the

tasks. We hypothesize that if we classify the brain at rest and during

multiple varied task states, then the set of most salient connectivity

features distinguishing the rest versus all the tasks represent the task

general architecture of functional connectivity. To test this hypothe-

sis, we identified the features with high salience scores distinguishing

between rest and multiple dissimilar task states.

The sign of salience sij of a connection determines whether the

presence or absence of functional connectivity between brain regions

i and j leads to the differentiation of the rest-state from the task

states. This information is in turn used to derive positive and negative

task general architectures such that the presence of a positive task

general connection during tasks is crucial in differentiating the task

states from the rest state and vice-versa. We derived the task general

architecture defined by the seven tasks in the HCP data.

2.4 | Decoding the task specific brain architectures

Once the task general architecture is derived, we obtain the task spe-

cific architecture with salient features obtained from a DNN trained

to classify rest and the task under investigation. The salient features

for the rest versus single task classification represent both task gen-

eral and task specific brain modulations. We hypothesize that the

salient connectivity features distinguishing a particular task from the

rest represents both the task general and task specific architectures.

Therefore, if we are able to compute task general architecture, we can

derive the task specific architecture from the salient features of the

DNN trained to classify some task and the rest state.

In order to demonstrate the determination of task specific archi-

tecture, we used the subject data from the motor and language tasks

and performed classification for rest versus motor and rest versus

language tasks. Let Srest/tasks denote the salience of connectivity fea-

tures representing the task general architecture. If the salience of

features in rest versus motor and rest versus language (containing

both task general and task specific modulations) are denoted by

Srest/motor and Srest/language, respectively, then the motor and lan-

guage task specific architectures are given by the salient features

highlighted by Srest/motor � Srest/tasks and Srest/language � Srest/tasks,

respectively.

2.5 | Salient interactions between functional
modules

Alterations in brain functional architecture are often discussed in

terms of changes between different brain functional modules. The

brain is organized into functional modules consisting of brain regions

involved in specialized functional tasks. We quantified the importance

of interactions among different brain functional modules with modular

salience maps. Given functional modules a and b, the salience of inter-

actions ma,b between them is obtained by

ma,b ¼ mean
i � a, j � b

si,j
� � ð9Þ

The modular salience map {ma,b} represents the average salience

of the nodal connections within (when a = b) and between (when

a ≠ b) brain functional modules. The modular salience map provides a

powerful framework to interpret and understand brain functional

alterations in terms of how the interactions between different func-

tional modules vary during different brain states (in this case, tasks).

2.6 | Intersubject variability in task related
functional architectures

Multiple studies have pointed out the pronounced intersubject vari-

ability in the brain functional architecture both during rest (Finn

et al., 2015; Gordon, Laumann, Adeyemo, Gilmore, et al., 2017; Gor-

don, Laumann, Adeyemo, & Petersen, 2017; Mueller et al., 2013;

Wang et al., 2015) and task performance (Gordon, Laumann, Gilmore,

Newbold, et al., 2017; Gratton et al., 2018; Xie et al., 2018). It is,

therefore, important that the detected task general and task specific

architectures consist of features that are stable across subjects. We

measure the intersubject variability in the feature salience scores for

different subjects as:

v¼ std
x

f xð Þ�g xð Þ�
X

i, l � 1,…,L�1f g
CΔhi,lΔy

0
@

1
A ð10Þ

where std measures the standard deviation of the salience scores over

multiple subjects. The mean of the salience scores is given by salience

vector c (given by Equation (8)). We perform regression on the mean

of c and the variability v of the salience scores to understand the rela-

tionship between the two sets of values.

3 | EXPERIMENTS AND RESULTS

3.1 | Dataset

We experimented with data from the Human Connectome Project

(HCP) (van Essen et al., 2013), comprising of fMRI data from

897 healthy adults (mean age = 28.1 years, 390 females). The HCP

currently hosts one of the largest open databases of fMRI data. We
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used both the task evoked fMRI (tfMRI) for seven tasks and the rest-

state fMRI (rfMRI) data of healthy subjects, collected from a Siemens

3 T Skyra scanner with TR = 720 ms, TE = 33.1 ms, flip angle = 52
�
,

FOV = 208 � 180 mm, 2 mm � 2 mm isotropic voxel and 72 slices.

We used the preprocessed data release that included removal of spa-

tial artifacts, motion correction, intensity normalization, and denoising

(Glasser et al., 2013). We further processed the task data to fit a finite

impulse response (FIR) model to each of the 24 subtasks for the seven

tasks (emotion processing, gambling, language, motor, relational

processing, social cognition, and working memory) and removed the

mean task evoked activation from time-series data. This step is neces-

sary as these task related activations have been found to inflate task

state functional connectivity inappropriately (Cole et al., 2019), espe-

cially with fMRI data. We also removed the rest periods from the task

related time series before computing functional correlations

between them.

Table 1 summarizes the available data for each task and the rest-

state. The average number of time points for the task fMRI scans was

277. We divided each fMRI resting state BOLD scan of 1,200 time

points into four scans of 300 time points each. From each of these

truncated BOLD time series, we obtained four functional connectivity

matrices. We obtained 690 subjects having scans for all seven tasks

and the resting state since not all subjects had been able to complete

every task and resting state scans. For each subject, by considering

one for each encoding direction, we obtained eight resting state func-

tional connectivity matrices and 14 task state matrices.

For each functional network, we selected anatomically and func-

tionally diverse 264 ROIs identified by Power et al. (2011) and calcu-

lated the mean time series of all voxels within a sphere of radius

2.5 mm to represent activation of each ROI. We considered the Pear-

son correlation between time-series to derive the functional connec-

tivity between the 264 ROIs covering the entire cerebral cortex.

3.2 | Building the classifiers

Using the functional connectivity between 264 ROIs identified by

Power et al. (2011) as inputs, we trained classifiers on both task fMRI

(tfMRI) and rest-state (rfMRI) data. We ensured that all the resting

state and task scans of a subject are either in the test or the train set.

We used Tensorflow (Abadi et al., 2016) and Keras (Chollet, 2018)

python libraries to implement the DNN. Since there was a class imbal-

ance with ≈9,650 task samples and ≈8,300 resting state samples, we

also computed the mean absolute error (MAE), the mean of the abso-

lute errors between the predicted outputs and the ground-truth

labels. We first split the dataset into a train and test set in the ratio

4:1 and then performed fivefold cross validation to select the best

model parameters on the train set. We ensured that all the samples

for each subject were either in the train or test set (and note that the

samples from the same subject were in the same fold during fivefold

cross validation). We implemented different classifiers using the

feedforward neural networks (FFN), convolution neural network

(CNN) (Brown, Kawahara, & Hamarneh, 2018; Meszlényi, Buza, &

Vidnyánszky, 2017) and support vector machines (SVM). The details

of the different configurations for the models can be found in the

Appendix S1.

For all the experiments (rest vs. all tasks and rest vs. specific

tasks), we found that all the classifiers achieved classification accuracy

above 90% (refer Table 2). However, SVM based classifiers gave lower

accuracies while the FFN and CNN based classifiers gave similar accu-

racies for the same number of parameters. We, therefore, used FFN

based classifiers with optimal hyperparameters for feature selection

and decoding. We used the best FFN model after performing hyper-

parameter tuning on the train set for five different FFN parameter ini-

tializations. Since the accuracies for all the classifiers were high, we

performed additional experiments to determine the time taken for

error convergence for the SVM and the FFN classifiers and their per-

formances for different subset of training samples (refer

corresponding figures in the Appendix S1). We found that the test

performance for the FFN converged faster than the corresponding

SVM classifier for all the cases (refer corresponding figures in the

Appendix S1).

3.3 | Decoding the task general brain architecture

We obtained the best set of hyperparameters for the rest versus all

tasks classification as described in the previous section. For the best

FFN model, the configuration is given in Table 3. Using the trained

classifier, we computed the salience for the input connectivity fea-

tures by using DeepLIFT. The salience scores were computed using

samples from the train set. It was observed that the majority of fea-

tures had positive salience (number: 31,381, range: 0 to 1891.6,

TABLE 2 Performance of the FFN and the SVM (on the test set)
for rest versus all task classification using different fractions of
features (MAE denotes mean absolute error)

FFN SVM

% features Accuracy MAE Accuracy MAE

100% 99.81 0.0048 98.35 0.0164

10% 99.88 0.0022 98.80 0.0118

1% 99.98 0.0004 98.38 0.0161

0.1% 99.98 0.0011 93.43 0.0657

TABLE 3 Parameters of the four layer FFN used for classification

of rest versus all tasks and rest versus language task

Parameter Value

Input nodes 34,716

Hidden nodes (each layer) 34,716–100–32–2

Learning rate 0.0001

Batch size 8

Optimizer Adam

Dropout 0.1
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average: 81.96 ± 124.2) in comparison with features with negative

salience (number: 3,335, range: 0 to �259.60, average: �29.62

± 31.42). The histogram for distribution of salience scores and the fea-

ture salience score matrix Srest/tasks are available in Appendix S1

(Figure S1a,b).

In order to validate the decoded task general architecture, we

recursively eliminated the input features, using the salience scores

obtained from the FFN on the train set (refer Table 4). The connec-

tions in the task general architecture are shown in Figure 1. The mod-

ular salience maps highlighting the task general connections are

shown in Figure 2a,b. The functional modules were derived from

Power et al. (2011). Connections with positive and negative salience

scores in Srest/tasks correspond to positive task general and negative

task general connections, respectively. Using salient modular interac-

tion scores, we computed statistically significant interactions having

p-value <.05. We report significant task positive and task negative

modular interactions in Table 5. It can be seen that the DMN, FP task

control, and dorsal attention networks are involved in both task posi-

tive and task negative interactions.

3.4 | Decoding motor task specific brain
architecture

In the motor task adapted from Buckner, Krienen, Castellanos, Diaz,

and Yeo (2011), participants were asked to either tap their left or right

TABLE 4 Performance of different classification models on the HCP data with five-fold cross-validation (the individual tasks were classified
against the rest task)

Classes FFN accuracy FFN MAE CNN accuracy CNN MAE SVM accuracy SVM MAE

Rest versus all tasks 99.75 0.0066 99.98 0.0011 98.26 0.0164

Emotion 99.70 0.0053 99.93 0.0020 97.06 0.0274

Gambling 99.78 0.0043 99.91 0.0017 97.31 0.0229

Language 99.88 0.0096 99.96 0.0017 98.78 0.0052

Motor 99.63 0.0068 99.94 0.0024 97.25 0.0217

Relational 99.57 0.0051 99.97 0.0015 97.08 0.0249

Social 99.72 0.0051 99.92 0.0025 97.40 0.0225

Working memory 99.53 0.0055 99.95 0.0021 97.18 0.0237

F IGURE 1 The decoded task general brain architecture obtained from consensus over multiple runs. Edge thickness corresponds to the
number of runs these connections were classified as relevant for distinguishing rest and task states, and the node color corresponds to the node's
modular membership
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fingers, or squeeze their left or right toes, or move their tongue on

cue. Each block of movement style lasted 12 s and is preceded by a

3 s cue. In each run, there were 13 blocks of which there were two

tongue movements, four hand movements, four foot movements and

three 15 s fixation blocks.

The configuration of the best FFN model derived for classifying

rest versus motor task is given in Table 6. We achieved an average

accuracy of 99.65 and 97.82% by using all the features for the rest

versus motor task with the FFN and SVM (linear kernel, C = 0.001)

models, respectively. We show the results for the recursive feature

elimination experiments with both FFN and SVM in Table 7. In order

to obtain the task specific architecture, we used the salience scores of

the connections for the rest versus motor task and subtracted the task

general scores. We averaged the feature salience scores Srest/motor for

all the seeds and subtracted Srest/tasks from Srest/motor. In Figure 3, we

show the top 0.1% relevant task specific features corresponding to

the motor task computed as consensus over multiple runs.

Using the task specific salience scores, we obtained the module

salience maps for both the positive and negative task specific features

for the motor task (refer Figure S2a,b) and obtained the significant

modular interactions (with p-value <.05). The significant task specific

motor modular interactions involved the somatomotor mouth,

somatomotor hand, CO Task Control, Dorsal attention, and the FP

Task Control modules (Table 8).

F IGURE 2 The task general architectures in the brain at the modular level. The part figures (a: negative task general) and (b: positive task
general) depict the modular salience matrices for negative and positive task general connections, respectively

TABLE 5 Significant task general modular interactions

Module Module p-value

Positive task general

Motor mouth Motor mouth <10�3

Visual Visual <10�3

Memory retrieval Memory retrieval <10�3

Negative task general

Cerebellar Salience <10�3

Salience Salience <10�2

Salience FP task control <0.02

Motor hand Motor hand <0.02

Default mode FP task control <0.02

Cerebellar FP task control <0.03

FP task control Motor hand <0.03

Default mode Motor hand <0.04

Default mode Ventral attention <0.05

CO task control FP task control <0.05

FP task control FP task control <0.05

TABLE 6 Parameters of the five layer FFN used for classification
of rest versus motor task

Parameter Value

Input nodes 34,716

Hidden nodes (each layer) 34,716–20–10–8–2

Learning rate 0.0001

Batch size 8

Optimizer Adam

Dropout 0.1
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3.5 | Decoding language task specific brain
architecture

The language task was proposed by Binder et al. (2011), where partici-

pants were presented with short narrated stories and given a two-

alternative forced-choice question about the topic of the story. The

two runs that were interleaved with four blocks of a story task and

four blocks of a math task. Story blocks presented brief sentences

from Aesop's fables, followed by two-choice questions querying the

topic of the story, whereas math blocks were presented aurally and

required the subject to compute addition and subtraction problems

and chose the result among the two choices by a finger tap feedback.

For the rest versus language task, the best FFN configuration was

the same as rest versus all tasks (given in Table 3). For five seeds, we

achieved an average accuracy of 99.86% using all the features for the

language task classification. For the selected SVM model (linear

kernel, C = 1.0), we were able to achieve a high classification accuracy

with the whole feature set. We averaged the feature salience scores

Srest/language for all the seeds and obtained the language task specific

feature salience scores by subtracting Srest/tasks from Srest/language. The

result of the recursive feature elimination experiments is given in

Table 9. We computed the top 0.1% relevant language task specific

features (shown in Figure 4).

Since the language network is not delineated clearly in the Power

Atlas networks, we also computed the salience of connections

between different anatomical regions by mapping regions from the

Power atlas to regions in the Crossley atlas (Crossley et al., 2013),

with known anatomical labels, using their Euclidean distance. We

computed the salience between the functional connectivity of differ-

ent regions by averaging the salience for connections between multi-

ple Power atlas regions mapped to the same region from the Crossley

atlas (shown in Figure 5). Using the task specific salience scores, we

obtained the module salience maps for both the positive and negative

task specific features for the language task (refer Figure S2c,d) and

obtained the significant modular interactions (with p-value <.05,

shown in Table 10).

3.6 | Intersubject variability in task related
architectures

We measured the intersubject variability in the feature salience scores

by considering the mean of the salience scores, c, and the intersubject

variability v in the salience scores. The scatter plots for the normalized

TABLE 7 Performance of the FFN and the SVM for rest versus
motor task classification using different fraction of features

FFN SVM

% features Accuracy MAE Accuracy MAE

100% 99.65 0.0051 97.82 0.0217

10% 99.63 0.0042 98.14 0.0185

1% 99.81 0.0025 98.51 0.0149

0.1% 99.94 0.0010 97.58 0.0242

Abbreviation: MAE, mean absolute error.

F IGURE 3 The motor task specific architecture in the brain. Figure shows the top 0.1% task specific connections for the motor task. The
edge thickness corresponds to the salience score and the node color corresponds to the node's modular membership
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mean and standard deviation scores are given in Figure 6. While the

green markers represent all the features, the decoded task general

(Figure 6a) and task specific architectures (Figure 6b for motor and

(Figure 6c for language task) are represented by features in blue color.

Furthermore, we regressed salience scores against decoded task spe-

cific and task general feature values and found that a quadratic poly-

nomial model (sum of squared errors for task general: 24.14, language

task specific: 27.13, motor task specific: 47.19) was a better fit than a

linear model (sum of squared errors for task general: 25.00, language

task specific: 29.87, motor task specific: 49.33). The best fitted qua-

dratic polynomials are shown with red curves in the figures. On com-

puting the correlation between the mean c and the intersubject

variability cstd in the salience scores, we found that these two are

weakly but positively correlated (Pearson's correlation for task gen-

eral = 0.43, motor task specific = 0.56, and language task

specific = 0.21). It can be observed that the decoded task related

architectures consist of features that have a high salience score and

low variability across subjects. However, some features that were on

the lower end of the salience scores and had a low variability across

subjects were also included. This can be discerned from the fact that

most of the decoded features are below the quadratic polynomial

curve fit for the respective task.

4 | DISCUSSION

4.1 | Classification of rest and task brain functional
scans

We performed classification for rest versus all tasks and rest versus

individual tasks (for tasks besides motor and language, refer to

Appendix S1) and found that deeper models are able to achieve a

higher accuracy even with a small subset of connectivity features than

the shallow models such as SVM. This points to the presence of

nonlinear and hierarchical relationships between functional connectiv-

ity and the tasks, which were better captured by DNN. The decoded

task related functional brain architecture is composed of a small set of

functional connections that were realized through elimination of insig-

nificant features. The small fraction of salient connections between

brain regions was found to be capable of accurately distinguishing

brain resting and task states.

Recursive feature elimination experiments with SVM models

deteriorated in classification performance when the connectivity fea-

tures were reduced. This could be due to the fact that SVM models

are not able to learn complex brain architecture due its shallow repre-

sentations while DNN capture the complex and hierarchical relation-

ships among functional connections. Our results differ from the

results from He et al. (2020) which showed that simple models trained

on functional connectivity could achieve comparable accuracy as com-

plex deep models for their behavior prediction task. Also, our previous

works (Gupta et al., 2019, 2021) using functional connectivity for dis-

ease prediction have shown that DNNs had a significantly better per-

formance than SVM based shallow models for disease detection.

Although we removed the resting state time segments from the

time series of the task data, a limitation of this study arises from the

fact that we did not consider the different subtasks in each task state

separately. The subtasks exist in each state, were assumed to be simi-

lar to each other, and involved in similar cognitive processing. But

these subtasks may invoke different brain regions. If we consider

component tasks separately, we are left with fewer time points that

leads to poor signal-to-noise ratio and could ultimately degrade detec-

tion of functional activity (Birn et al., 2013). We, therefore, used the

whole task scan as one specific task for our modeling.

Recent studies have used salience backpropagation to prune the

neural network neurons by removing irrelevant features to prevent

network overfitting (Gupta et al., 2019, 2021). However, application

of such methods for brain decoding does not succeed if individual var-

iations are not properly accounted for. This is due to the

TABLE 8 Significant modular interactions specific to the
motor task

Module Module p-value

Positive motor task specific

Motor hand FP task control <10�3

Motor mouth Motor mouth <10�3

Dorsal attention Default mode <10�3

Motor hand Default mode <10�2

Memory retrieval Memory retrieval <10�2

CO task control Default mode <10�2

Visual Visual <10�2

Motor hand Salience <10�2

CO task control FP task control <0.05

Negative motor task specific

Visual Visual <10�3

FP task control FP task control <10�2

Dorsal attention Dorsal attention <10�2

Motor mouth Auditory <10�2

Memory retrieval Memory retrieval <10�2

Motor mouth Motor mouth <0.02

Motor mouth Motor hand <0.03

Motor mouth FP task control <0.05

TABLE 9 Performance of the FFN and the SVM for rest versus
language task classification using different fraction of features

FFN SVM

% features Accuracy MAE Accuracy MAE

100% 99.86 0.0067 99.47 0.0082

10% 99.79 0.0098 99.51 0.0098

1% 99.82 0.0055 99.34 0.0064

0.1% 99.92 0.0030 98.10 0.0189

Abbreviation: MAE, mean absolute error.
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heterogeneity in disease pathology across participants, whereby a

small set of features cannot account for disease across all the partici-

pants in the ensemble. However from our results, we conclude that

although healthy subjects have pronounced intersubject variability in

functional architecture (Mueller et al., 2013), a small set of common

distinguishing features characterize task related alterations across

F IGURE 4 The language task specific architecture in the brain. Figure shows the top 0.1% task specific connections for the language task.

The edge thickness corresponds to the salience score and the node color corresponds to the node's modular membership

F IGURE 5 The salient anatomical connections for the task specific language architecture in the brain. The part figures (a: Language positive
task specific) and (b: Language negative task specific) depict the salient connections between regions for the positive and negative language task
specific connections, respectively
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subjects. From our experiments, we infer that there are roughly two

sets of features in the selected task related architectures, one that

had a high salience and high variability, and another that had a moder-

ate salience and low variability. We inferred that these two together

help classify the rest and task states with an almost perfect accuracy,

with the former handling variations while the latter form a stable core

connectivity across all tasks. This has an important implication in aging

(Meinzer et al., 2012) and detection of various neurological disorders

that are characterized by impairments/alterations in the task general

architecture.

4.2 | Task general architecture

The positive and negative task general alterations found by our

approach do not refer to activations/deactivations of regions but to

the presence or absence of the connectivity during task performance

with respect to the rest state. We found that the positive task general

modulations are more wide-spread and apparent than negative task

general modulations, that is, most of the salient task general connec-

tions during task performance are absent during rest (positive task

general), while few salient task general connections are present during

rest but absent during task (negative task general). It is to be noted

that the positive and negative task general architectures only refer to

the presence and absence of the connections during tasks and do not

refer to the polarity (positive/negative) or magnitude (strong/weak) of

the correlations.

TABLE 10 Significant modular interactions specific to the
language task

Module Module p-value

Positive language task specific

Motor hand Motor hand <10�3

FP task control FP task control <10�3

Dorsal attention Dorsal attention <10�3

Motor hand Motor mouth <10�3

Salience Salience <10�2

Ventral attention Ventral attention <0.03

Motor hand CO task control <0.03

Motor hand Dorsal attention <0.04

Negative language task specific

Motor mouth Motor mouth <10�3

Visual Visual <10�3

Dorsal attention Default mode <10�3

Memory retrieval Memory retrieval <10�2

CO task control Default mode <10�2

Motor hand FP task control <0.02

Motor hand Default mode <0.03

Motor hand Salience <0.04

F IGURE 6 Intersubject variability in task related architectures.
Figures (a: Task general features; b: Motor task specific features; c:
Language task specific features) shows the scatter plot for the mean
and variability in the task general and task specific salience scores
across subjects. The blue markers represent the decoded task related
features selected and the red curve represents the quadratic
polynomial regression fit for the selected features
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With our recursive feature elimination experiments, we observed

that although the classifier performance slightly deteriorated, the clas-

sifier was able to achieve more than 99% accuracy even with just

0.1% of initial number of features. For SVM, we also performed recur-

sive feature elimination based on the corresponding weights obtained

for the best SVM model (linear kernel, C = 0.001). The SVM classifica-

tion accuracy dropped when feature set was reduced to 0.1%. The

respective MAE and accuracies for both FFN and the SVM classifiers

can be discerned from Table 2. The recursive feature elimination

experiments validate the correctness of the salience scores derived

from our decoder. More importantly, it derived a small subset of fea-

tures that was sufficient to distinguish between the rest and task

states across subjects. For the FFN, we obtained the consensus of the

0.1% (34) remaining connections from each run and show the dec-

oded features in Figure 1. As seen, the task general salient connec-

tions consist of the DMN, fronto-parietal (FP) task-control, SN,

cingulo-opercular (CO) task-control, and somatomotor hand modules.

The functional brain has been shown to be composed of groups

of brain regions performing specialized tasks. In order to analyze the

task general changes, we performed the analysis at the modular level,

whereby each module contains regions performing similar task

(Gupta & Rajapakse, 2020). We analyzed the task general changes

between (and within) the modules and found that different interac-

tions from the same module could be part of negative and positive

task general alterations. For negative task general alterations, we

found that it was primarily the connections of the regions in the DMN

(posterior cingulate cortex, precuneus, medial prefrontol cortex, and

middle temporal gyrus), the fronto parietal task control (prefrontol and

intraparietal sulcus) and the salience (anterior insula and dorsal ante-

rior cingulate cortex) modules that were altered. However, for positive

task general, it is primarily the connections with the somatomotor

mouth, the visual and the memory retrieval modules that were altered.

It is well-known that the cerebellum contains multiple somatomotor

representations and relays information between the sensory neurons

to the corresponding motor neurons in the cerebrum (Buckner

et al., 2011). Since all tasks involved visually presented cues and the

participant responses by motor movement (finger tap in all except

social cognition task which involved a verbal response), our results on

the task general architecture have invariably included the modulations

between the cerebellar, motor, and visual systems.

The DMN has been characterized as a “task negative” network

and it plays a role in extended support of internal mentation processes

(Fox et al., 2005; Kelly, Uddin, Biswal, Castellanos, & Milham, 2008)

and observing internal and/or external environment (Gao, Gilmore,

Alcauter, & Lin, 2013). The CO task control, FP task control, and the

salience networks help in configuring the brain to different brain

states, and configuring information processing in response to different

task demands. These networks thus support varied cognitive func-

tions including sensory perception and motor control. The FP task

control network acts as a flexible hub for cognitive control facilitating

special attention to trial specific information (Marek &

Dosenbach, 2018) whereas the CO task control network maintains

alertness during task performance and correction based on feedback

from each trial (Cocchi, Zalesky, Fornito, & Mattingley, 2013). The

salience network determines the importance given to different stimuli

for the brain to act and is known to be widely activated across differ-

ent tasks (Seeley et al., 2007). Our results are thus in line with the

widely known task related deactivations that are observed in the

DMN (Buckner, Andrews-Hanna, & Schacter, 2008) and the memory

retrieval systems (Fox et al., 2005; Power et al., 2011) while the FP

task-control, CO task-control and ventral attention systems are

known for their task related activations (Cole, Repovš, &

Anticevic, 2014; Corbetta, Kincade, Ollinger, McAvoy, &

Shulman, 2000; Power et al., 2011).

4.3 | Task specific architectures

We investigated task specific modulations for tasks that involved

more perceptual and fewer cognitive processing systems so that we

did not only identify task specific modulations but also can also verify

them. The task specific alterations for both the motor and the lan-

guage tasks were found to be limited to primarily the somatomotor,

attentional, task control, and the salience systems.

For the recursive feature elimination experiments with the motor

task, the MAE improved with fewer features and the accuracy for

classification with just 0.1% features was the highest (and close to

100%) for the FFN. For the SVM, the accuracy and MAE improved ini-

tially, but there was a deterioration when the feature set was reduced

to 0.1%. As a result, we were able to find a set of 34 task specific con-

nections from the FFN that were important for the classification task.

These consist of correlations between the somatomotor hand, SN,

dorsal attention, FP Task control, and DMN (prefrontal cortex) subsys-

tems. Besides moving the hand and feet, the motor task also involved

tongue movements. These are reflected in the connectivity of multiple

systems with somatomotor hand and mouth systems being classified

as crucial. While the FP task control (Zanto & Gazzaley, 2013) net-

work is known to alter its functional connectivity with nodes of other

networks based on task goals, the dorsal attention (Corbetta

et al., 2000) and the CO task control (Sadaghiani & D'Esposito, 2015)

networks are involved in voluntary attention and are altered when

directed attention and alertness is required.

As seen, the motor task specific alterations within visual, motor

mouth and memory retrieval modules are reported as both positive

and negative. It is known that the motor task leads to an increased

local, within module functional connectivity and a decrease in global

integration (Cohen & D'Esposito, 2016). Our results for the motor

modules show that there is heterogeneity in how the within motor

modules connections are altered, since some connections are positive

task specific while others are negative task specific. This is notewor-

thy since the motor areas are known for their high within module

functional connectivity during rest (Biswal, Kylen, & Hyde, 1997;

Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995) and that there is

intrinsic information processing in these regions even in the absence

of tasks or during rest (Biswal et al., 1997; Cordes et al., 2000;

Greicius, Krasnow, Reiss, & Menon, 2003). The present results
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demonstrate that the performance of the motor task alters functional

connectivity differently for different regions. It can also be seen that

most of the negative motor task specific alterations were limited to

connections within the respective module (motor, visual, FP task con-

trol, dorsal attention, and memory retrieval), which points to the

absence of the connections during task performance.

For the language task, we performed recursive feature elimination

and found that the accuracy for classification with just 0.1% features

was higher than the accuracy for 100% features (refer Table 9). How-

ever, the performance with SVM deteriorated with fewer features

both in terms of accuracy and MAE. The top 0.1% language task spe-

cific features (shown in Figure 4) are from the auditory (mostly left: L

temporal), FP task-control (angular L and right: R), DMN (inferior pari-

etal L and R, and frontal), SN (anterior cingulum), somatomotor hand

(post central gyrus), and visual (occipital lobe) subsystems. Anatomi-

cally, the most distinguishing connections were from regions in the

supramarginal gyrus, occipital lobe, angular gyrus, lingual gyrus,

cuneus, temporal gyrus, and the frontal orbital lobe. While the sup-

ramarginal gyrus, angular gyrus, lingual gyrus and cuneus are well

known for their role in language and visual processing tasks, multiple

studies (Binder et al., 2011; Crinion, Lambon-Ralph, Warburton, How-

ard, & Wise, 2003; Flinker, Chang, Barbaro, Berger, & Knight, 2011;

Meschyan & Hernandez, 2006) have reported extensive activations in

different areas of the temporal lobe along with areas in the lateral

occipital lobe and the frontal lobe during language processing. The sig-

nificant task specific language modular interactions involved the visual

module (regions from the occipital lobe), the SN (anterior insula and

dorsal anterior cingulate cortex), somatomotor hand, somatomotor

mouth, dorsal and ventral attention modules, memory retrieval

(precuneus and posterior cingulate cortex) modules (Table 10).

Thus, we have not only shown that a small set of features is able

to classify the rest and task states but also verified that these feature

sets have been deemed important by previous studies. More impor-

tantly, our work inferred the task general and task specific architec-

ture from fMRI scans.

5 | CONCLUSION

We detected task general and task specific brain architectures by

decoding the DNNs trained to classify rest-state and cognitive task

states fMRI data. Using a small subset of functional connectivity

between functionally diverse brain regions as features for a five-layer

feedforward DNN, we were able to reliably classify rest-state and

seven tasks and rest-state from motor task scans of 690 subjects from

the HCP with nearly 100% accuracy. Using a salience bac-

kpropagation based decoder, we identified connections that formed

the task general and task specific brain architecture in the brain. We

also studied what modular interactions are altered during task perfor-

mance. We validated the results of our decoder by showing that a

small subset of features deemed important by the decoder gives us a

high accuracy. We also studied the intersubject variability in the task

related functional architectures. Our method has a strong potential of

replication in brain state classification and identification of distinctive

biomarkers between the healthy and diseased brain states.
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