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Abstract

Loading of the MCM replicative helicase at origins of replication is a highly regulated process

that precedes DNA replication in all eukaryotes. The stoichiometry of MCM loaded at origins

has been proposed to be a key determinant of when those origins initiate replication during

S phase. Nevertheless, the genome-wide regulation of MCM loading stoichiometry and its

direct effect on replication timing remain unclear. In order to investigate why some origins

load more MCM than others, we perturbed MCM levels in budding yeast cells and, for the

first time, directly measured MCM levels and replication timing in the same experiment.

Reduction of MCM levels through degradation of Mcm4, one of the six obligate components

of the MCM complex, slowed progression through S phase and increased sensitivity to repli-

cation stress. Reduction of MCM levels also led to differential loading at origins during G1,

revealing origins that are sensitive to reductions in MCM and others that are not. Sensitive

origins loaded less MCM under normal conditions and correlated with a weak ability to

recruit the origin recognition complex (ORC). Moreover, reduction of MCM loading at spe-

cific origins of replication led to a delay in their replication during S phase. In contrast, over-

expression of MCM had no effects on cell cycle progression, relative MCM levels at origins,

or replication timing, suggesting that, under optimal growth conditions, cellular MCM levels

are not limiting for MCM loading. Our results support a model in which the loading capacity

of origins is the primary determinant of MCM stoichiometry in wild-type cells, but that stoichi-

ometry is controlled by origins’ ability to recruit ORC and compete for MCM when MCM

becomes limiting.

Author summary

The coordinated replication of complex eukaryotic genomes is primarily regulated at the

level of replication initiation. Therefore, how initiation is regulated in time and space is an

active field of research. A leading hypothesis is that the stoichiometry of MCM, the repli-

cative helicase, at replication origins is a significant determinant of initiation timing.

However, how MCM stoichiometry at origins is regulated is unknown. We tested two

hypothetical mechanisms for the control of MCM stoichiometry: Origin capacity, in

which MCM stoichiometry is constrained by the varying capacity of individual origins to
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load MCM, and ORC activity, in which MCM stoichiometry is regulated by the varying

activity of ORC, the MCM loader, at individual origins. We find that neither mechanism

is consistent with our data, but that a hybrid of the two mechanisms is.

Introduction

The initiation of DNA replication is an exquisitely orchestrated and highly conserved process.

Although the molecular biochemistry of initiation at individual origins continues to be eluci-

dated in great detail [1,2], the mechanism governing the time at which different regions of the

genome replicate has remained largely elusive [3]. Nonetheless, replication timing has been

implicated in a number of important processes, including gene expression, mutation rates,

and chromatin structure [4–7]. Which molecular mechanisms underlie the replication timing

patterns, how they establish it, and what the consequences are when those mechanisms go

awry is still a matter of active research [8].

Origin licensing, the establishment of potential origins of replication in G1, is separated

from replication initiation through a variety of biochemical mechanisms, which are particu-

larly well-understood in budding yeast [1,9]. In late M and G1, the Minichromosome Mainte-

nance (MCM) complex, the heterohexameric catalytic core of the replicative helicase,

composed of Mcm2-7, is shuttled into the nucleus with the help of Cdt1 [10]. In the nucleus,

the Origin Recognition Complex (ORC), which loads MCM at origins, recognizes and binds

origins at their ARS Consensus Sequence (ACS) [11,12]. After binding of its Cdc6 subunit,

ORC recruits MCM-Cdt1 to the origins and loads MCM onto double stranded DNA

(dsDNA), at which point Cdt1 is released and a second MCM is coordinately loaded [13]. The

resulting MCM double hexamer (MCM-DH) establishes an origin that can be activated for

replication through the action of the replication kinases CDK and DDK and accessory initia-

tion factors [14].

Although the biochemical mechanisms of MCM activation appear to be uniform across ori-

gins, the timing of MCM activation varies from origin to origin. The observation that MCM

activation is regulated by limiting initiation factors [15] has led to the model that the competi-

tion between origins for these limiting initiators establishes the relative efficiency of MCM

activation, which in turn determines the average firing time for each origin. This model raises

the question of why some origins compete more efficiently for the limiting factors. Hetero-

chromatin reduces origin activation efficiency, perhaps by restricting access to limiting initia-

tors, but also by recruiting phosphatases that antagonize the required S-phase kinases [16].

Conversely, origins can by programed for early activation by recruiting limiting factors. An

early example was the demonstration that fission yeast recruits DDK to centromeres to

advance their activation [17].

Although the simplest models of origin function posit exactly one MCM-DH loaded at each

origin, many studies have reported that the levels of MCM signal at origins vary by over ten

fold [12,18–21]. Moreover, MCM stoichiometry (that is, the average MCM loading at an ori-

gin, relative to other origins) has been proposed as an important determinant of replication

timing [20–22]. In particular, if MCMs are activated stochastically, then an origin that has

higher MCM stoichiometry has a greater probability of firing and thus, on average, will fire

earlier in S phase [23]. Combining evidence for the regulation of origin activation efficiency by

trans-acting factors with evidence for the effect of MCM stoichiometry on origin activation

efficiency leads to a unified model in which the probability of an origin firing, and thus its
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average firing time in S phase, is a product of an origin’s MCM stoichiometry and the activa-

tion efficiency of that MCM, regulated by trans-acting factors.

There are two ways in which MCM stoichiometry could vary at origins. In the one-MCM

scenario, an origin either has one or zero MCM-DH loaded. Therefore, the population-based

average can range from 0 to 1, a parameter that has been referred to as competency [24–26]. In

the multiple-MCM scenario, more than one MCM can be loaded at an origin and so MCM

stoichiometry can range from 0 to many [20,22]. As elaborated in the Discussion, distinguish-

ing between the one-MCM and many-MCM scenarios is an area of active research. However,

the hypotheses tested here—regarding whether variable MCM stoichiometry affects replica-

tion timing and how variable MCM stoichiometry is established—are independent of whether

the range of variation is from 0 to 1 or 0 to many.

Regardless of the absolute stoichiometry of MCM loading at origins, it remains unclear

how relative loading dynamics are regulated at individual origins genome-wide. In order to

investigate the mechanisms regulating the level of MCM loading and to determine the effect

that such changes in levels have on replication timing, we performed experiments under con-

ditions in which cellular MCM levels were either increased or decreased. We aimed to test two

general models of the regulation of MCM loading: the ORC Activity model, in which the rela-

tive activity of ORC at individual origins regulates MCM occupancy, and the Origin Capacity

model, in which the intrinsic capacity of each origin for MCM loading regulates MCM occu-

pancy. Importantly, we performed both MCM ChIP-seq and replication timing assays in the

same experiments, such that the density of MCM loaded in late G1 could be directly correlated

to replication timing at specific origins. Furthermore, we used MNase ChIP-seq, which pro-

duces much higher resolution data than standard ChIP-seq, allowing us to localize where

MCMs are loaded within origins with close to base-pair resolution. Using genome-wide

MNase ChIP-seq and replication timing assays, we found that lowering cellular MCM levels

caused differential loading of MCM, with MCM loading at some origins being sensitive to

intermediate reductions of cellular MCM levels and loading at other origins being largely resis-

tant. Importantly, reduction in MCM levels correlated with delays in replication timing. Con-

versely, increasing the MCM levels in budding yeast had no effects on MCM loading onto

DNA or replication timing in S phase, indicating that MCM loading under normal conditions

is saturated. These results suggest that loading of MCM at origins in G1 is a dynamic process

and that relative levels of helicase at origins are dependent on the origins’ abilities to recruit

MCM as well as the levels of MCM pools in the cells. In particular, as described in the Discus-

sion, our results are consistent with a hybrid model combining regulation by both ORC activ-

ity and origin capacity.

Results

Auxin-induced reduction in cellular MCM levels causes a dose-dependent

reduction in viability and slower progression through S phase

To test the effects of reduced MCM pools on helicase loading and replication timing we

employed the auxin-inducible degron (AID) system optimized for budding yeast [27,28]. In

order to reduce the cellular pool of MCM, we tagged the endogenous copy of Mcm4 with the

AID degron cassette (IAA17) followed by GFP at its C terminus. The MCM hexamer requires

all six components for nuclear localization [29]. In addition, degradation of any single compo-

nent of the hexamer causes destabilization of the rest [29]. Therefore, degradation of Mcm4 is

expected to reduce the total cellular pool of MCM. As previously reported, continual exposure

to increasing amounts of auxin caused a dose-dependent lethality in cells harboring degron-

PLOS GENETICS Origin capacity regulates MCM stoichiometry

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009467 March 25, 2021 3 / 28

https://doi.org/10.1371/journal.pgen.1009467


tagged Mcm4 (S2A Fig) [27]. However, cells maintain viability under our specific experimen-

tal conditions (S2B Fig).

We determined the effect of lowered MCM levels on genome-wide loading and replication

timing in synchronized cells. We synchronized the cells and reduced MCM levels prior to G1

in order ensure that MCM was not removed from active replisomes or pre-loaded origins. We

first synchronized cells in metaphase using nocodazole, followed by release into α-factor for a

G1 arrest (S1 Fig). Mcm4 was degraded through the addition of auxin, first for 30 minutes

during nocodazole arrest, then during the majority of the α-factor arrest. Following a 30 min-

ute period of equilibration in the absence of auxin at the G1/S boundary, samples were col-

lected for MCM ChIP-seq analysis, and the rest of the culture was released into S phase (Fig

1A). Immunoblots monitoring the levels of Mcm4-IAA17-GFP revealed that Mcm4 is effi-

ciently degraded after addition of auxin in a dose-dependent manner (Fig 1B). Quantification

of Mcm4 levels revealed that, compared to untreated cells, 30 μM auxin reduced Mcm4 levels

to 14% of the endogenous levels, whereas 500 μM auxin reduced those levels to 7%. The obser-

vation that cells released onto plates containing the replication stress drug hydroxyurea (HU)

showed an auxin dose-dependent increase in sensitivity to HU suggests that lowered Mcm4

levels reduce MCM function and cell viability (S2B Fig). We performed flow cytometry analy-

sis on S-phase-synchronized cells treated with 0 μM, 30 μM, and 500 μM auxin and found that

degradation of Mcm4 also causes a dose-dependent delay in progression through S phase

(Figs 1C and S1). Together, this data show that the AID system can be used to reduce Mcm4

levels in a dose-dependent manner and that reduction of Mcm4 causes reduced viability,

slower progression through S phase, and lower resistance to replication stress.

Reduced MCM levels cause a reduction in helicase loading at many, but not

all origins of replication

Previous studies using ChIP have shown that MCM abundance at origins of replication varies

throughout the genome [12,18–21]. To test how lowered MCM pools affect the dynamics of

helicase loading and abundance at origins of replication, we used α-factor-arrested cells to per-

form ChIP-seq using a polyclonal antibody against the full MCM hexamer on micrococcal

nuclease- (MNase) digested chromatin [30]. MNase digestion has the advantage, relative to the

standard ChIP approach of shearing by sonication, of cleaving the chromatin into much

smaller fragments. Because the MCM-DH complex protects about 70 bp of DNA, using

MNase ChIP-seq, we can map MCM footprints with almost nucleotide resolution.

Fragments of the genome associated with MCM were pulled down, sequenced, and their

abundance was normalized to read depth and no-immunoprecipitation input controls. Using

this method, we found that MCM peaks localize to known origins of replication (Fig 1D), are

reproducible (r = 0.97–0.99, S3A Fig) and correlate well with previously reported levels

(r = 0.78–0.82, S3B Fig). Quantitation of origin peaks revealed changes to MCM loading

throughout the genome in response to reduction of MCM levels (Fig 2 and S1 Table). Many

origins exhibited a reduction in MCM abundance in auxin-treated cells, as seen by a shift away

from the diagonal line in Fig 2A. The level of reduction was dose-dependent, as cells treated

with 500 μM auxin showed greater reduction in MCM abundance than those treated with

30 μM auxin. Plotting the percent of MCM abundance that is lost in response to auxin treat-

ment showed that some origins lose most of their MCM signal after 30 μM auxin treatment,

while others are resistant to the changes in MCM levels even after 500 μM auxin treatment

(Fig 2B). Origins that have lower levels of MCM in control cells are more prone to lose MCM

signal in response to even intermediate levels of auxin treatment compared to origins that

have high levels of MCM (Fig 2B). These results indicate that levels of MCM pools in cells
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affect loading at origins of replication throughout the genome in significant and dissimilar

ways.

To investigate the reason that reduced MCM levels delayed bulk S-phase progression, we

examined we examined the distribution of MCM signal and inter-origin distances in the three

conditions. We calculated the smallest number of origins required to account for 50% of the

total MCM signal for each condition and measured the inter-origin distances between these

Fig 1. Reduction of MCM pools through auxin-mediated degradation of Mcm4. a) Experimental outline for MCM reduction experiments. yFS1059 cells were first

synchronized with nocodazole, then released into α-factor for a G1/S arrest, prior to release into S phase. Flask symbol indicates filtering and release into new media,

with additives as indicated. b) Western blot showing the levels of auxin-inducible cells (yFS1059) at the indicated time points of the experiment, probed using an anti-

GFP antibody tracking GFP-tagged Mcm4. Noc = nocodazole arrest, Aux = maximum auxin degradation, α = α-factor arrest. Boxed value indicates quantitation of

Mcm4-IAA17-GFP levels in α-factor arrested cells treated with 0 μM, 30 μM, or 500 μM auxin relative to levels of 0 μM auxin cells. c) Quantitation of flow cytometry

data as cells progress from α-factor arrest through S phase. d) Normalized MNase-ChIP-seq coverage on Chromosome VII in 1 kb bins. ARS-annotated origins are

shown as black lines whereas potential, non-experimentally-confirmed origins are shown as orange lines/boxes [63].

https://doi.org/10.1371/journal.pgen.1009467.g001
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Fig 2. Reduction of cellular MCM levels causes a reduction in helicase loading at origins of replication. a) yFS1059 cultures were

synchronized and released into S phase as shown in Fig 1A. MCM ChIP-seq signal in 1 kb bins around ARS-annotated origins from the

indicated auxin treatments at the α-factor arrest point (x = y line drawn in blue for reference). b) Percent of MCM ChIP-seq signal lost

upon treatment with 30 μM or 500 μM auxin. (20 pt moving average fit. y = 100 line drawn in blue for reference). c) MCM ChIP-seq

signal at 0 μM auxin treatment compared to 30 μM and 500 μM auxin for origins of replication characterized as ‘DNA-dependent’,
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major origins. If MCM pools are reduced and loading is decreased significantly for some ori-

gins, others would be expected to replicate larger tracts of the genome, leading to an increase

in the time required to complete S phase (Fig 1C). As seen in S2 Table, the smallest number of

origins required to make up 50% of the MCM signal in each condition decreases as MCM

pools are decreased (0 μM = 110, 30 μM = 85, 500 μM = 72), consistent with the observation

that origins which load less MCM under control conditions lose a higher fraction of their

MCM signal in response decreases in MCM pools. The in-silico-calculated average inter-origin

distance between these top origins increases from 96 kb for 0 μM, to 118 kb for 30 μM, and to

136 kb for 500 μM auxin treatment, suggesting that they need to replicate larger tracts of the

genome. In addition, a larger portion of origins replicate shorter tracts at 0 μM auxin, while a

larger portion replicates longer tracts for 30 μM and 500 μM auxin treatments (S4 Fig). Over-

all, this data indicates that, in response to reduced MCM pools, origins that load higher levels

of MCM are responsible for replicating larger tracts of DNA, leading to an increase in the

amount of time required to complete DNA replication.

‘Weak’ origins are more prone to reduced MCM loading

Previous analysis of various replication origins in budding yeast classified origins based on

their affinity for ORC in vivo, as measured by ChIP-seq, and in vitro, as measured by gel shift

assays [31]. Origins for which high in vitro ORC affinity explained their high in vivo affinity

were classified as DNA-dependent. Origins whose high in vivo affinity could not be explained

by their in vitro affinity were classified as Chromatin-dependent. Origins that displayed low

ORC affinity both in vivo and in vitro were classified as Weak. Importantly, the three classes of

origins have similar distributions of efficiency (0.64±20, 0.69±19, 0.66±17, respectively) [32]

and replication timing (21.8±2.1’, 20.6±2.7’, 21.4±2.1’, this paper), showing that all three clas-

ses can support early/efficient and late/inefficient origins. To gauge the effect of lowered MCM

pools on loading dynamics between these origin classes, we compared MCM levels for cells

treated with 0 μM auxin to those treated with 30 μM or 500 μM auxin (Fig 2C). The compari-

son shows that DNA-dependent and Chromatin-dependent origins maintain most of their

endogenous levels of loading in response to auxin treatment and therefore are more resistant

to changes in MCM pools compared to Weak origins. As expected, Weak origins lose more of

their signal in response to reductions in MCM pools compared to DNA- and Chromatin-

dependent origins (Fig 2D). This analysis suggests that origins with low ORC affinity are out-

competed by origins with higher ORC affinity (due to sequence or chromatin differences)

when the pool of available MCM is reduced.

MCM associates with flanking nucleosomes and the nucleosome-free

region (NFR) of origins

Studies using MNase footprinting indicate that MCM associates with well-positioned nucleo-

somes flanking the ACS at origins of replication [19]. To assess the location of MCM signal in

our data, we constructed strand-specific V plots centered at the ARS consensus sequence

(ACS) [11]. V plots map the abundance of reads and their length relative to their genomic loca-

tion. Mapping MCM ChIP-seq reads from control cultures shows that MCM is mostly found

within 2–3 nucleosomes from the ACS, with signal decreasing with distance away form the

‘chromatin-dependent’, and ‘weak’ in Hoggard et al. [31]. The regression lines are in the same colors as the data points they fit. x = y is

shown in blue for comparison. d) MCM ChIP-seq signal for untreated cells plotted against the MCM ChIP-seq signal lost at the

indicated auxin treatments for the origins indicated in c).

https://doi.org/10.1371/journal.pgen.1009467.g002
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ACS (Fig 3A). Examination of individual origins shows a similar distribution of MCMs (S5A

Fig). The signal includes MCM-DH-sized reads (~68bp) as well as larger, nucleosome-sized

reads (~146bp) (Fig 3A). Although most of the MCM ChIP-seq signal is associated with nucle-

osomes, as previously reported [19], the increased resolution of our approach also allowed us

to detect MCM signal in the nucleosome-free region (NFR) of origins, as predicted by recent

in-vitro cryo-EM structures [33]. In particular, the smaller, MCM-sized fragments, populate

the NFR (Figs 3A and S5B). This observation was dependent on the degree of MNase diges-

tion, as Replicate #1, which had a lower degree of digestion, lacked the smaller fragments, in

agreement with similar studies involving transcription factors (S6 Fig)[34].

In order to gauge changes in MCM signal around origins in response to reduction in MCM

levels we constructed read density profiles. To do so, we used the midpoint of ACS-annotated

origins and quantified read densities based on their genomic location around these origins

[11]. As expected, there was a reduction in MCM ChIP-seq read density at origins in response

to both 30 μM and 500 μM auxin (Fig 3B). In contrast, there was a much smaller but reproduc-

ible increase in read density for the +1 and -1 nucleosome positions for input DNA, indicating

a possible increase in nucleosome occupancy as MCM loading is reduced at these origins (S7A

Fig). However, in a 1kb window around the origins there was no significant difference in read

density for input samples (r = 0.96–0.98, S7B Fig). Given the differential response of origins in

response to auxin, we separated origins in quartiles based on the percent of MCM signal that

they lost in response to 500 μM auxin. As seen in Fig 3C, origins which are least affected by

MCM pool reduction tend to have higher levels of MCM loaded under control conditions and

do not lose any signal in response to intermediate levels of auxin. On the other hand, origins

which are most affected by reduced MCM pools tend to have less MCM loaded under control

conditions and upon intermediate auxin treatment lose most of their signal. This data eluci-

dates sets of origins that are distinct in how they are affected by MCM levels, identifying ori-

gins that are resistant to intermediate reductions in MCM levels and others that are sensitive.

ORC binding to the ACS and subsequent MCM loading is a directional process dependent

on an ACS-site and a similar but inverted nearby sequence [12,35]. To determine whether the

directionality of MCM loading is maintained throughout G1 in relation to the dominant anno-

tated ACS sites, we separated origins based on the magnitude of signal upstream or down-

stream of the ACS. The 253 origins tested were split nearly evenly between higher signal

upstream or downstream of the annotated ACS (129 to 124, respectively; S8 Fig). The MCM

signal was largely independent of ACS directionality, as a previously noted [19]. Only 50% of

higher-upstream-signal origins and 44% of higher-downstream-signal origins correlated with

ACS directionality. This data supports a model where, once loaded, MCM is able to passively

slide in either direction on double stranded DNA, consistent with previous in vitro findings

[33,36].

Auxin-induced reduction in MCM loading causes significant delays in

replication timing at corresponding origins

Reduction of MCM pools via auxin-induced Mcm4 degradation caused significant changes to

MCM loading at origins. To test whether these changes in MCM abundance have an effect on

replication timing, we measured replication timing in cells released into S phase after treat-

ment with 0 μM, 30 μM, or 500 μM auxin, using the same cultures as those used for our ChIP-

seq experiments. Briefly, using the sync-seq approach, we measured replication timing by mea-

suring genome-wide copy number at multiple points after synchronous release into S phase

[37]. From this data, we extracted the parameter Trep, the time at which 50% of cells have repli-

cated a specific locus. Fig 4A shows the Trep profile of Chromosome V along with the
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corresponding ChIP-seq profiles for treated and untreated cells. Trep values for cells expressing

control levels of MCM correlate well with values obtained from previously published studies

(r = 0.91, S3C Fig) [37]. A comparison of Trep values between untreated and auxin-treated

conditions indicates that reduction of MCM levels leads to delays in replication timing across

the genome and that these delays increase with higher auxin concentrations (Fig 4B).

Together, this data demonstrates that reduction of cellular pools of MCM and subsequent

reduction of MCM levels loaded at origins has direct implications for replication timing at spe-

cific origins in yeast.

Overlaying the Trep profiles reveals that some origins that are active in untreated cells

become inactive in auxin-treated cells. Loss of origin activity from these origins correlates with

a decrease in MCM signal by ChIP, as is evident for ARS512 and ARS520 (Fig 4A, black

boxes). In contrast, other origins, such as ARS511 and ARS16, are less affected by auxin treat-

ment (Fig 4A, gray boxes). To investigate the extent of this correlation, we examined it genome

wide (Fig 4C and 4D). The replication timing of many origins throughout the budding yeast

genome is controlled by specific mechanisms involving trans-acting factors and chromosomal

location, such as Rif1, Rpd3, Fkh1, and Ctf19 binding, or telomere proximity, [16,38–41]. We

measured Trep values and MCM abundance for the 46% of origins of replication that exclude

those known to be affected by specific mechanisms of origin regulation [20]. Comparison of

Trep values and MCM abundance for these origins under endogenous conditions indicated a

small negative correlation between MCM abundance and timing of replication, suggesting

that origins with higher MCM levels replicate earlier in S phase (Fig 4C, 0 μM auxin). The cor-

relation increased and the slope became more negative in conditions where MCM levels were

reduced via auxin (Fig 4C, 30 μM and 500 μM auxin). Furthermore, comparing changes in

Trep with changes in MCM abundance as a result of auxin treatment revealed a positive corre-

lation, indicating that larger decreases in MCM loading correlate with stronger delays in repli-

cation timing (Fig 4D). The analysis is complicated by the fact that Trep convolves origin firing

time and passive replication. For instance, the MCM signal at ARS501 is greatly reduced and

its replication-timing peak is lost (Fig 4A). However, its Trep value does not change much,

because it is passively replicated by ARS511, which remains early-firing. Such passive replica-

tion reduces the effect seen in Fig 4C and 4D. Nonetheless, taken together, these results sug-

gest that decreases in MCM loading lead to delays in replication timing at origins of

replication. The 54% of origins that are known to be affected by trans-acting factors display a

much weaker correlation between MCM signal and replication timing (r = 0.08, S9A Fig), but

that correlation becomes stronger upon MCM depletion (r = 0.25–0.30, S9B and S9C Fig),

suggesting that MCM loading affects the timing of these origins, as well.

Cells overexpressing MCM are viable

Reduction of MCM pools leads to significant changes in MCM loading and replication timing.

In order to investigate the effects of the converse condition of increased MCM pools, we

employed the galactose overexpression system. The six genes encoding MCM were expressed

from bidirectional Gal-1,10 promoters integrated into the genome, in addition to their endog-

enous copies [13]. The overexpressed copy of Mcm7 was tagged at its C terminus with GFP in

Fig 3. MCMs associate with the origin-adjacent nucleosomes and the NFR and show differential loading dynamics at origins. a) V plots of MCM MNase-

ChIP-seq and input (non-IP) reads from yFS1059, plotted based on their length on a 700 bp window centered at 253 ACS-annotated origins [11]. b)

Normalized MCM MNase-ChIP-seq density profiles centered at ACSs for the indicated auxin treatments. c) ACS-annotated origins were separated in quartiles

based on the percent of signal lost in response to 500 μM auxin treatment compared to 0 μM auxin. The normalized coverage density profiles for the sets of

origins displaying the largest reductions (‘Most MCM lost at 500 μM auxin’) and smallest reductions in MCM levels (‘Least MCM lost at 500 μM auxin’) are

shown for all three treatments. Color scheme as in b).

https://doi.org/10.1371/journal.pgen.1009467.g003
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Fig 4. Delays in replication timing correlate with reductions in MCM levels. a) Chromosome V Trep values for the 0 μM, 30 μM, and 500 μM

auxin-treated yFS1059 was calculated in 1kb windows, LOESS-smoothed, and plotted based on their genomic location. “Overlaid Trep” values have

been overlaid in order to compensate for delays in replication initiation and facilitate comparison between samples. Black boxes indicate two origins

that display strong correlation between the loss of MCM signal and delay in replication timing. Gray boxes indicate two origins that display strong

correlation between the maintenance of MCM signal and maintenance in replication timing. ARS-annotated origins are indicated in black dashes on
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order to monitor its overexpression levels. To test whether cells overexpressing MCM are via-

ble, we performed serial dilution assays on YP-Raffinose and YP-Galactose plates. Overexpres-

sion of the complete hexamer, with or without the added GFP tag on Mcm7, did not affect cell

viability (S10A Fig). However, overexpression of the MCM hexamer in conjunction with the

loading factor Cdt1, but not overexpression of Cdt1 alone, reduced viability. This data shows

that Mcm2-7 overexpression by itself is not lethal and can be used to increase cellular pools of

MCM helicase.

Overexpression of MCM during a G1 arrest does not affect progression

through S phase

We assayed whether overexpression of MCM leads to changes in helicase loading prior to S

phase, and whether such changes affect replication timing. We synchronized cells in meta-

phase using nocodazole then released them into media containing α-factor for synchroniza-

tion at the G1/S boundary (Figs 5A and S1). In addition to α-factor, the media was

supplemented with galactose or raffinose, to induce Mcm2-7 overexpression or not, respec-

tively. Induction of MCM was monitored via western blot using a polyclonal antibody against

MCM. After two hours, a ~5-fold overexpression of the hexamer was observed (Fig 5B). A

portion of the α-factor arrested culture was collected for ChIP-seq analysis while the rest was

released into S phase to monitor replication timing. As seen in Fig 5C, cells overexpressing

MCM during a G1 arrest show a slight delay in replication initiation in S phase. However, a

control strain that did not overexpress MCM showed similar results, indicating that the delay

was likely due to the switch in carbon source (S10B Fig). Therefore, overexpression of MCM

does not appear to cause any significant changes to cell cycle progression.

Increased MCM levels do not alter relative levels of helicase loading at

origins

In order to measure MCM loading in cells overexpressing the full hexamer, we performed

MNase ChIP-seq on α-factor arrested cells as outlined in Fig 5A. Fragments of the genome

that were associated with MCM were pulled down, sequenced, and their abundance was nor-

malized to an S. pombe spike-in control, resulting in peaks that correspond to previously anno-

tated origins of replication (Fig 5D). In addition, the signal of MCM peaks correlates well with

data from the MCM-depletion experiments, as well as previous publications (r = 0.78–0.93,

S11A and S11B Fig).

To gauge whether increased cellular pools of MCM helicase lead to changes in loading dur-

ing G1, we compared MCM abundance at origins of replication in cells overexpressing MCM

and those that did not (S1 Table). MCM signal at origins in cultures overexpressing MCM

show a ~41% decrease in abundance compared to cultures with endogenous MCM levels (Fig

6A and 6E). However, this difference is almost perfectly uniform throughout all origins

assayed (r = 0.99, Fig 6A), and shows no apparent difference in MCM ChIP-seq reads (Fig

6D), pointing to technical reasons involving ChIP or non-MCM-specific biological conse-

quences of the overexpression. This result was not due to an insufficient amount of time

allowed for loading, as three hours of MCM overexpression in α-factor produced similar

the bottom axis, whereas orange boxes denote unconfirmed origins from OriDB [63]. b) Trep values of ARS-annotated origins for untreated cells are

plotted against values observed for 30 μM and 500 μM auxin treatments. c) Correlation between MCM signal and replication timing for origins that

are not known to be affected by specific replication timing control factors [20]. d) Correlation between delay in replication timing as a result of auxin

treatment and reduction in MCM signal, for origins plotted in c).

https://doi.org/10.1371/journal.pgen.1009467.g004
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loading levels (r = 0.99, S12A Fig). As a result, we conclude that overexpression of Mcm2-7

does not alter relative helicase loading in G1.

MCM requires Cdt1 to enter the nucleus and to be loaded onto origins of replication [10].

Although Cdt1 disassociates from the MCM complex after it is loaded onto DNA, it doesn’t

fully exit the nucleus until late G1/early S phase. Therefore, although Cdt1 likely shuttles in

and out of the nucleus in some equilibrium during the α-factor arrest in our experiments, it

may not be able to accommodate nuclear import for all of the overexpressed MCM2-7 hexam-

ers. To address the possibility that overexpressed MCM is not imported into the nucleus and

therefore not loaded onto DNA due to substoichiometric levels of Cdt1, we overexpressed

MCM2-7 along with Cdt1. However, we did not observe any significant changes in relative

MCM loading (r = 0.98, S12C Fig). Furthermore, the lack of any changes was not due to the

inability of the overexpressed hexamer to enter cell nuclei, as microscopy confirmed the pres-

ence of overexpressed Mcm7 in cell nuclei (S13 Fig). All together, these results indicate that

overexpression of MCM helicase does not cause altered loading dynamics in G1.

Fig 5. Galactose-induced MCM overexpression. a) Experimental outline for MCM overexpression experiments. yFS1075 cells were first synchronized with

nocodazole, then released into α-factor for a G1/S arrest, prior to release into S phase. Flask symbol indicates filtering and release into new media, with or without

galactose and additives as indicated. b) Western blot of yFS1075 cells showing the levels of MCM at the indicated time points of the experiment, probed using anti-

Mcm2-7 polyclonal antibody UM174. Noc = nocodazole arrest, α = α factor arrest. Boxed values indicate quantitation of Mcm2-7 levels in α-factor arrested cells with or

without galactose induction, relative to Mcm2-7 levels of uninduced cells. c) Quantitation of flow cytometry data of the replicating population of yFS1075 cells as they

progress from α-factor arrest through S phase. d) Normalized MNase-ChIP-seq coverage on Chromosome VIII at the α factor arrest point in 1 kb bins. ARS-annotated

origins of replication are shown as black lines whereas unconfirmed origins are shown as orange lines/boxes.

https://doi.org/10.1371/journal.pgen.1009467.g005
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Overexpression of MCM does not affect replication timing

To test whether the increase in cellular MCM abundance led to changes in the replication tim-

ing program, we performed sync-seq experiments. Trep values for cells expressing endogenous

levels of MCM correlate well with values obtained from the MCM-depletion experiments as

well as previously published data (r = 0.92, S11C Fig) [37]. Moreover, origin replication times

for cells overexpressing MCM do not significantly differ from control cells, beyond a brief and

global delay attributed to the switch in carbon source (Figs 6B and 5C). Moreover, changes in

replication timing do not correlate with changes in MCM signal (Fig 6C). Altogether, this data

shows that overexpression of the MCM helicase does not affect replication timing.

Discussion

A unifying model of the mechanisms involved in establishing replication timing in eukaryotes

remains elusive. Numerous cis- and trans-acting factors have been shown to affect timing, but

Fig 6. MCM overexpression does not cause changes to helicase loading or replication timing. a) yFS1075 cultures were synchronized and released into S phase as

shown in Fig 5A. MNase-ChIP-seq signal at ARS-annotated origins at the α factor arrest point, with or without galactose-induced MCM overexpression. b) Trep values

for cultures released into S phase as in Fig 5A, with or without prior galactose-induced MCM overexpression. c) Correlation between delays in replication timing and

changes in MCM signal as a result of galactose-induced MCM overexpression. d) V plots of the MCM MNase-ChIP-seq reads, plotted based on their length on a 700 bp

window centered at 253 ACS-annotated origins [11]. e) Normalized MCM MNase-ChIP-seq density profiles centered at ACSs with and without galactose-induced MCM

overexpression.

https://doi.org/10.1371/journal.pgen.1009467.g006
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the mechanism by which they do so is unclear [8]. Since replication timing is primarily deter-

mined by the timing of origin firing, these factors are thought to affect the timing of MCM

activation. However, it has also been noted that regulating MCM occupancy at origins would

affect replication timing, because higher MCM occupancy at an origin would lead to a higher

probability of it firing and thus an earlier average firing time [22,23,26]. Variable MCM occu-

pancy could occur in one of two scenarios. The first is the single-MCM scenario, in which an

origin can either be loaded with an MCM-DH complex or not. MCM occupancy at a specific

origin would, in this scenario, be the fraction, from 0 to 1, of cells in which an MCM complex

is loaded at that origin, a parameter that has been referred to as origin competency [21,24–26].

Alternatively, in the multiple-MCM scenario, more than one MCM-DH complex could be

loaded at a single origin, so MCM occupancy could range from 0 to many [20,22,42].

Quantification of MCM components in budding yeast using a variety of techniques has

yielded a wide range of values for the number of MCMs in each cell [43–45]. A meta-study

using data from 21 publications reported median value estimates for MCM components that

ranged from 2774–5360 molecules per cell for each of the components of the MCM helicase

[46]. This analysis suggests that MCM is present in cells at levels that allow for loading of

many more than one MCM at each of the 400 or so origins that are present in the genome.

Moreover, measurements of in vivo chromatin binding in budding yeast indicate that MCM is

loaded at a much higher number than accounted by the loading of a single MCM-DH at

known origins [44].

Indeed, studies from various eukaryotic organisms have shown that MCM is loaded onto

the genome at levels that are higher than necessary for replication under optimal conditions

[47,48]. However, the excess of loaded MCM appears to be necessary under conditions that

lead to elevated levels of replication stress. In Xenopus egg extracts, excess MCM loading

becomes essential for successful replication under conditions of replication stress, indicating

that dormant, excess MCM molecules are activated to salvage stalled replication forks that

result from replication stress [49]. In C. elegans, worms only become susceptible to low doses

of HU when their MCM levels are reduced [49]. Similarly, studies using human cells have sug-

gested a mechanism where excess MCM hexamers that are loaded and not used during unper-

turbed replication become vital for successful replication after treatment with replication-

stress-inducing agents [50,51]. Finally, MCMs were originally isolated based on the fact that

reducing MCM number causes loss of minichromosomes, which are more sensitive to origin

function than regular chromosomes [52,53]. Altogether, this data suggests that eukaryotes load

more MCM onto DNA in G1 than is needed during an unperturbed S phase.

Although excess loading of MCM is important for a successful S phase under conditions of

replication stress, it has also been implicated in contributing to the replication timing program

under normal conditions. Genome-wide MCM mapping experiments in budding yeast have

shown that MCM is loaded at origins in different amounts, and that the level of MCM loading

correlates with the time in S phases at which an origin fires [20,21]. In addition, mutation of

the B2 element in ARS1, which has been shown to be important for MCM loading at that ori-

gin, causes reduced MCM loading and a delay in replication timing [20,54]. This data points

to a model where the more MCMs that are available for activation at an origin in S phase, the

higher the likelihood that the specific origin will initiate early. Indeed, this MCM-stoichiome-

try model fits well with kinetic modeling of replication, which predicts that stochastic firing

arising from differences in the availability of MCM in the presence of limiting initiation factors

can give rise to the observed replication kinetics seen in budding yeast cells [21,22,26]. It is

important to note that the MCM-stoichiometry models are equally valid whether MCM stoi-

chiometry varies from 0 to 1 or 0 to many.
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Our previous work supports a model in which multiple MCMs are loaded at origins

[20,22]. Furthermore, overexpression of origin-activating factors in S phase causes most all ori-

gins to fire early in S phase, consistent with most origins having at least one MCM loaded [55].

Our MNase approach to MCM ChIP-seq reported here further supports the multiple-MCM

model by producing high-resolution maps of MCM locations that identify MCMs at multiple

locations across origins. We find MCM ChIP-seq signal distributed around origins up to three

nucleosomes away from the ACS, similar to previous lower resolution results [19], in addition

to signal inside the origin NFR (Fig 3A). The location of MCMs in the NFR and the surround-

ing nucleosomes support a model in which MCMs are mobile after being loaded and can slide

past nucleosomes during nucleosome exchange. Indeed, this data is consistent with observa-

tions that early origins, which tend to have more MCM signal by ChIP-seq ([20] and Fig 4C),

display higher rates of nucleosome exchange [56]. Furthermore, the fact that we find MCM

with equal frequency upstream and downstream of origins suggests that ORC does not prevent

MCM from diffusing past the ACS, consistent with ORC having a short dwell time at origins

[13,57]. Nonetheless, because our current ChIP-seq data only represents an average of MCM

locations, it cannot formally exclude the possibly that no more that one MCM-DH complex is

ever loaded at a single origin—albeit at varying locations—and thus our current data does not

discriminate between the single- and multiple-MCM scenarios. However, for all the analyses

presented here, the two scenarios are formally equivalent and make the same predictions

about how competition between origins for MCM loading affects replication timing.

Regardless of stoichiometry, the possibility of variable MCM occupancy raises interesting

questions about how MCM occupancy is regulated and how it affects replication timing. We

considered two hypotheses for how varying MCM occupancy between origins could be regu-

lated. The first hypothesis, which we refer to as the ORC Activity model, posits that the rate at

which ORC loads MCM varies among origins. ORC activity at an origin could vary due to

ORC occupancy, which could be affected by ORC affinity for the ACS or by the local chroma-

tin environment [31], or due to local regulation of ORC specific activity, which could be

affected by local activators or repressors. The second hypothesis, which we refer to as the Ori-

gin Capacity model, posits that origins have an intrinsic capacity for MCM loading that varies

among origins, and that once that capacity is achieved, no more MCMs can be loaded. To dis-

tinguish between these models, we varied cellular MCM levels, reasoning that changes in cellu-

lar MCM levels would lead to predictable changes in the level of MCM loaded at origins,

depending on the mechanism that regulates origin loading. In particular, in response to a

reduction in cellular MCM levels, the Origin Activity model predicts that all origins would be

proportionally reduced in MCM occupancy, because origins will load at the same relative rates

but the MCM pool will be depleted sooner. On the other hand, the Origin Capacity model pre-

dicts that origins with low capacities will fill up as normal, but that origins with higher capaci-

ties will fail to reach regular capacities if the MCM pool is depleted (Fig 7A).

Our results are not consistent with either the simple ORC Activity or Origin Capacity

model (Figs 2A and 7A). Instead, we propose a hybrid model, in which both ORC activity and

origin capacity vary at each origin (Fig 7B). In the hybrid model, origin capacity is the primary

effector of MCM occupancy in wild-type cells. ORC activity does vary among origins, but

because neither time during G1 nor MCM amount is limiting, all origins are loaded to their

full capacity. However, when MCM levels become limiting, not all origins can be fully occu-

pied. In this case, origins with high ORC activity (bright red in Fig 7B) outcompete other ori-

gins and are still loaded to their full capacity, whereas origins with progressively lower ORC

activity (light red and pink in Fig 7B) load MCM to progressively lower proportions of their

full capacity before the MCM pool is exhausted. Therefore, although origin competition does
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not appear to play a decisive role in MCM loading in wild-type cells, its appearance when

MCMs become limiting offers insight into the dynamics of MCM loading.

Our hybrid model is consistent with the behavior of three classes of origins previously char-

acterized by ORC affinity and origin activity ([31] and Fig 2C). These three classes—DNA-

dependent, chromatin-dependent and weak—show the behavior predicted by the hybrid

model, with the strong, DNA-dependent origins maintaining close to full MCM loading (109–

94%), the somewhat less strong, chromatin-dependent origins showing an intermediate reduc-

tion (100–77%), and the weak origins showing the greatest reduction in MCM loading (74–

48%). Our hybrid model is also consistent with our MCM over-expression experiments. We

find no change in the relative MCM ChIP-seq signal at origins in response to a five-fold

increase in cellular MCM levels (r = 0.99, Fig 6A). This result is consistent with the conclusion

that origins in wild-type cells are loaded to their full capacity and that MCM is normally in

excess in budding yeast [44].

Although we find no relative difference in MCM ChIP-seq signal in our MCM overexpres-

sion experiments, we find an absolute reduction of 41% (Fig 6A). This result was dependent

on overexpression constructs being present in the cells, because a control strain with no over-

expressing genes did not display any reduction in MCM ChIP-seq signal in response to galac-

tose (S12B Fig). This result does not appear to be due to a uniform increase in background

signal, which might be expected if excess MCM was loaded with low specificity at many sites

across the genome, because the data was normalized to an S. pombe spike-in to allow for abso-

lute quantitation. It could be that the overexpression of MCM titrates away an interacting

component that is crucial for MCM loading or nuclear import. However, in that case we

would expect to see an effect similar to reducing MCM levels, which does not affect all origins

uniformly (Fig 2A). Alternatively, although the antibody is added in saturating amounts, anti-

body-binding dynamics of chromatin-bound MCM could be altered due to the presence of

excess MCM. In any case, given the lack of a plausible biological and mechanistic explanation

Fig 7. Models for how changes in the cellular levels of MCM affect their loading dynamics at origins of replication and replication timing.

a) Expected results if an ORC Activity model or an Origin Capacity model governs how MCM is distributed genome-wide. b) A combined

model shows that, if there is a range of ORC activities and origin capacities, in normal cells ORC activity has little effect and MCM loading is

largely determined by origin capacity because neither time nor MCM abundance are limiting. However, when MCM abundance becomes

limiting, ORC activity becomes important because origins with more active ORC can load MCM faster.

https://doi.org/10.1371/journal.pgen.1009467.g007
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for reduced MCM loading in response to MCM overexpression, and the nearly perfect correla-

tion between plus and minus overexpression conditions, we conclude that increased MCM

levels do not cause altered MCM loading in yeast.

In addition to the lack of changes in MCM loading, overexpression of MCM did not affect

cell viability, bulk S-phase progression, or replication timing (Fig 6). In contrast, overexpres-

sion of MCM along with Cdt1, but not Cdt1 alone, was lethal if constitutively expressed (S8A

Fig), resulting in dumbbell-shaped terminal phenotype and suggesting a metaphase arrest.

This result does not appear to be related to MCM loading or replication timing (at least in the

window of one cell cycle) as levels of MCM loading and replication timing remained largely

unchanged in MCM/Cdt1-overexpressing cells (S11C Fig). Although this points to a synergis-

tic effect between MCM and Cdt1 in causing cell death, the exact mechanism for the lethality

remains unclear.

Reduction of MCM levels caused a delay in progression through bulk S phase (Figs 1C and

4A). The slower progression through S phase is consistent with less MCM being loaded onto

some origins, resulting in fewer origins being activated in S phase. If MCM levels at all origins

were uniformly reduced, we would not expect any change in replication timing because repli-

cation initiation in budding yeast is regulated by competition for a limited a set of initiation

factors [15,58]. If MCM loading were lowered in uniform proportions, the relative competition

for initiation factors, and thus replication timing, would be maintained. However, because the

reduction of MCM loading is not uniform, and because low MCM origins tend to lose more

MCM than high efficiency ones (Fig 2B), the distribution of MCM is more heterogeneous,

leading to larger distances between efficient origins and thus longer S phase (S4 Fig and S2

Table).

Our combination of MCM ChIP-seq and replication timing data also allow us to directly

confirm in a single experiment previous conclusions, drawn from comparing data collected in

different studies, that replication timing correlates with levels of MCM loading [20,21].

Although the correlation between MCM levels and replication timing is robust (Fig 4C,

p> 10−5), it is clearly not the only determining factor (r = 0.29–0.52). Therefore, we conclude

that MCM loading is a significant effector of replication timing, but one that is modulated by

other factors that affect the specific activity of loaded MCMs. Nonetheless, by manipulating

MCM levels and showing that replication changes concomitantly, we confirm genome-wide

that MCM levels directly regulate replication timing (Fig 4D), an experiment that had previ-

ously been done only at a single locus [20].

In this study, we show that some origins are efficient at recruiting MCM, while others

depend on excess levels of the helicase to display the loading observed in wild type cells. These

results indicate that the relative levels of MCM loaded at origins are not simply static, but

rather a dynamic balance dependent on cellular MCM levels, origin MCM recruiting ability,

and origin MCM capacity. In addition, our data suggests that wild-type MCM abundance is

saturating, such that increasing levels further does not lead to increased loading. Altogether,

this work suggests that MCM loading homeostasis in wild type cells, and subsequently replica-

tion timing, is dependent on MCM being in excess. In future studies, it will be interesting to

dissect the specific cis- and trans-acting factors that make origins sensitive or resistant to

changes in MCM levels. The rapid evolution of origins within the Saccharomyces sensu stricto
clade provides a rich resource for a genome-wide approach to such studies [59,60]

Materials and methods

Strains used are listed in Table 1. Standard techniques were used for strain constructions. Cul-

tures were grown in YP-Dextrose (YPD) at 30˚C, unless otherwise noted.
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Auxin degradation experiments

S. cerevisiae strain yFS1059 (MCM4-AID-GFP) was grown to an OD of ~0.2. Nocodazole was

added to a final concentration of 7.5 μg/ml for two hours. 1.5 hours into the nocodazole arrest,

cultures were supplemented with auxin (Indole-3-acetic acid sodium salt, Sigma I5948) to

final concentrations of 500 μM, 30 μM, or 0 μM. After two hours total in nocodazole, cultures

were vacuum-filtered and cells were resuspended in fresh YPD supplemented with 5 μg/ml α-

factor (Biomatik) and auxin to a final concentration of 500 μM, 30 μM, or 0 μM, as before fil-

tration. After 1.5 hours, cultures were vacuum filtered and cells were resuspended in fresh

YPD supplemented with 500 μM, 30 μM, or 0 μM, as before filtration, for 30 minutes. Cultures

were vacuum-filtered a final time and cells were resuspended in fresh YPD for S phase

progression.

For ChIP sample collection, α-factor-arrested cells were crosslinked with formaldehyde

and collected as previously described (Wal & Pugh 2012).

Galactose overexpression experiments

S. cerevisiae strains yFS1075 (GAL-MCM), yFS1021 (GAL-MCM, GAL-CDT1), and yFS1020

(WT) were grown in YP-Raffinose (YP-Raf) at 30˚C to an OD of ~0.2. Nocodazole was added

to a final concentration of 10 μg/ml. After two hours, cultures were vacuum-filtered and cells

were resuspended in fresh YP-Raf supplemented with α-factor (Biomatik) to a final concentra-

tion of 25 nM, as well as either galactose to a final concentration of 2% or an equal volume of

water. Cells were allowed to arrest in α-factor for either two or three hours, followed by release

via vacuum filtration into fresh YPD supplemented with 0.2 mg/ml pronase (Sigma P6911).

Table 1. Strains used.

Strain Genotype Source

yFS105 h- leu1-32 ura4-D18 Lab WT pombe
strain

yFS833 α leu2-3,112 ura3 trp1-1 ade2-1 can1-100 his3-11,15 GAL+ ssd1-d2 RAD5+ [37]

yFS1020 a leu2-3,112 ura3-1 trp1-1 ade2-1 can1-100 his3-11,15 bar1-Δ lys2::HisG Pep4Δ [13]

yFS1021 a leu2-3,112 ura3-1 trp1-1 ade2-1 can1-100 his3-11,15 bar1::HisG lys2::HisG Pep4Δ
Trp1::Gal1,10-MCM6,MCM7 His3::Gal1,10-MCM2,MCM3 Lys2::Gal1,10-MCM4,

MCM5 Ura3::Gal1,10-Cdt1,Gal4

[13]

yFS1044 a leu2-3,112 ura3-1::ADH1-osTIR1-2-9myc (URA3) trp1-1 ade2-1 can1-100 his3-

11,15

[27]

yFS1059 a leu2-3,112 ura3-1::ADH1-osTIR1-2-9myc (URA3) trp1-1 ade2-1 can1-100 his3-

11,15 MCM4::MCM4-IAA17-GFP(HPH)

This study

yFS1062 a his3-11,15 leu2-3,112 ura3-1::ADH1-osTIR1-2-9Myc(URA3) trp1-1 ade2-1 can1-100

Mcm4::Mcm4-IAA17(kanMX)

This study

yFS1075 a leu2-3,112 ura3-1 trp1-1 ade2-1 can1-100 his3-11,15 bar1-Δ lys2::HisG Pep4Δ Trp1::

Gal1,10-MCM6,MCM7-GFP His3::Gal1,10-MCM2,MCM3 Lys2::Gal1,10-MCM4,

MCM5

This study

yFS1076 a leu2-3,112 ura3-1 trp1-1 ade2-1 can1-100 his3-11,15 bar1-Δ lys2::HisG Pep4Δ Trp1::

Gal1,10-MCM6,MCM7 His3::Gal1,10-MCM2,MCM3 Lys2::Gal1,10-MCM4,MCM5

This study

yFS1080 a leu2-3,112 ura3-1 trp1-1 ade2-1 can1-100 his3-11,15 bar1-Δ lys2::HisG Pep4Δ Ura3::

Gal1,10-Cdt1,Gal4

This study

yFS1081 a leu2-3,112 ura3-1 trp1-1 ade2-1 can1-100 his3-11,15 bar1-Δ lys2::HisG Pep4Δ Ura3::

Gal1,10-Cdt1,Gal4 Trp1::Gal1,10-MCM6,MCM7 His3::Gal1,10-MCM2,MCM3 Lys2::

Gal1,10-MCM4-GFP,MCM5 Ura3::Gal1,10-Cdt1,Gal4

This study

yFS1082 a leu2Δ0 ura3Δ0 his3Δ1 met15Δ0 MCM4-GFP(his3mx6) [65]

yFS1083 a leu2Δ0 ura3Δ0 his3Δ1 met15Δ0 MCM7-GFP(his3mx6 [65]

https://doi.org/10.1371/journal.pgen.1009467.t001
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For ChIP sample collection, α-factor arrested cells were crosslinked with formaldehyde and

collected as previously described (Wal & Pugh 2012). After formaldehyde quenching, S. cerevi-
siae cells were combined with log-phase wild-type S. pombe cells (yFS105, also crosslinked) at

a 9:1 ratio.

Fluorescence microscopy

Cultures were grown and supplemented with 2% final galactose as in Fig 5A. At the α-factor-

arrest point, 1ml cells were fixed by the addition of 10ml methanol which was pre-chilled in

dry ice, then stored at -80˚C until imaging. To prepare for imaging, fixed cells were equili-

brated to 4˚C from their -80˚C storage, centrifuged, and all but 1ml supernatant was removed.

The remaining mix was washed 2x with 2 ml ice cold PBS. Cells were then resuspended in

150 μl Vectashield+DAPI (Vector Laboratories H-1200) and imaged using a Zeiss Axioskop 2

Plus microscope fitted with DIC, GFP, and DAPI filters.

Spot assays

Yeast was grown in YPD (auxin strains) or YP-Raf (Galactose-overexpression strains) over-

night at 30˚C. Log phase cells were collected by brief centrifugation, washed twice with PBS,

serially diluted five-fold starting with 4x106 cells, then spotted onto the specified medium.

Plates were incubated at 30˚C for at least 36 hours before imaging.

Western blots and quantitations

Standard western blot techniques were used [61]. Mcm2-7 was probed with polyclonal UM174

(gift from Bell lab, MIT—[62]) and anti-rabbit HRP conjugate secondary (Promega W401B),

tubulin was probed with monoclonal anti-tubulin antibody (Sigma T5168) and anti-mouse

HRP conjugate secondary (Promega W402B), and GFP was probed with the monoclonal JL8

antibody (Takara) and anti-mouse HRP conjugate secondary (Promega W401B). Probing of

Mcm2-7 using UM174 antibody was performed using 12% gels in order to compress signal

from the six MCMs into a compact region to facilitate quantification. Signal was detected

using SuperSignal West Dura chemiluminescent HRP substrate (Thermo 34076) and GE

Amersham Imager 600. Quantitation of gel images was carried out using ImageJ (NIH, Mary-

land, USA).

ChIP experiments

ChIP experiments were carried out as described previously with modifications noted below

(Wal & Pugh 2012). MNase was titrated for each sample to determine concentrations that

would yield ~80–90% mononucleosomal digestion. Immunoprecipitation was carried out

using 95% of the MNase digested sample (v/v) and 4 μl of anti-MCM2-7 polyclonal antibody

(UM174, gift from Bell lab, MIT—[62]). The remaining 5% of MNase digested sample was

processed as ‘input’ and was treated with Proteinase K and RNase A to prepare libraries for

deep sequencing.

Flow cytometry

0.25 ODs of fixed cells (see below) were washed once with water, resuspended in 250 μl RNase

A solution (100 μg/ml RNase A, 50 mM Tris pH 8.0, 15 mM NaCl), and incubated overnight

at 37˚C. Cells were then collected and resuspended in Proteinase K solution (125 μg/ml Pro-

teinase K, 50 mM Tris pH 8.0) for 1 hour at 50˚C. The samples were then collected by centrifu-

gation, resuspended in 1 ml staining solution (1 μM Sytox green–ThermoFisher S7020, 50
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mM Tris pH8.0), sonicated briefly using a microtip sonicator, and analyzed for flow cytometry

using a Guava easyCyte instrument.

Sync-seq replication timing experiments

Experiments to monitor replication timing consisted of measuring population movement

through S phase by flow cytometry and measuring genome-wide replication timing by deep

sequencing [37]. To do so, 3 ODs of cells were collected for each time point and arrested by

the addition of sodium azide to 0.1% and EDTA to 20mM. From these samples, 0.25 ODs

were used for flow cytometry and the rest was used for genome-wide copy number analysis by

deep sequencing.

To prepare genomic DNA for deep sequencing, cells were lysed as for ChIP experiments.

Lysates were treated with proteinase K and RNase A, followed by two consecutive extractions

with phenol-chloroform-IAA (25:24:1, Fisher). DNA was purified by ethanol precipitation and

resuspended in 135 μl water in preparation for shearing. A Covaris machine was used to shear

the DNA to an average size of ~200bp, following manufacturer’s instructions. DNA was then

purified by DNA Clean and Concentrator Columns (Zymo Research) before making libraries.

Library preparation and sequencing

Libraries were prepared using NEBNext Ultra II kits (NEB) following the manufacturer’s pro-

tocol. Following library preparation, ChIP samples were purified as described [30], while input

samples were purified using a 2:1 ratio of AmpureXP (GE) beads to library. Following PCR

amplification, all samples were purified using AMpure XP beads with 0.9:1 beads to PCR ratio.

Samples were sequenced using the Illumina NextSeq 500 platform with paired ends. See S3

and S4 Tables for library statistics.

Data analysis

The sequencing data from this study have been submitted to the NCBI Sequence Read Archive

under accession number PRJNA663099. For MNase-ChIP experiments, sequencing reads

were mapped to SacCer3 using Bowtie1, a 650bp upper limit cutoff, and exclusion of reads

mapping to more than one genomic location. Duplicates were removed using Samtools 1.4.1.

ACS-centered density profiles were constructed using coverage files normalized as indicated

in the paragraph below. V plot intensities were normalized to counts per million (CPM) and

generated by taking into account strand specificity of the ACSs [11] using R and modified in-

house scripts (courtesy of Nils Krietenstein). Heatmaps were generated using Deeptools 3.0.2

without taking strand specificity into account. Quantification of MCM signal at origins of rep-

lication was done using a 1 kb window centered at the origin or ACS midpoints. Correlation

coefficients and slopes were calculated for origins displaying normalized MCM signal greater

than zero for untreated cells. The set of origins displaying ARS activity in plasmid assays from

OriDB [63] was used for all quantitations, unless otherwise stated. For the MCM depletion

experiments, all analyses were preformed on both replicates with similar results. Results from

Replicate #1 are presented for all analyses because it displayed a better separation between the

30 and 500 μm datasets. The exception is the V plots, for which the higher resolution Replicate

#2 is presented.

Coverage files for auxin degradation experiments were normalized to CPM and to the non-

origin background signal in 25 bp windows. Input signal was then subtracted from the nor-

malized ChIP coverage files to account for MNase digest-induced background oscillations. For

galactose induction experiments, ChIP coverage files were normalized in 25 bp windows to the

total number of reads mapped to the S. pombe spike-in control. Normalized input signal was
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then subtracted from the normalized ChIP coverage to account for background oscillations in

the data.

For replication timing experiments, coverage files were generated using LocalMapper

scripts and Trep was calculated in 1000 bp bins genome wide using Repliscope. Both packages

were shared by Dzmitry Batrakou of the Nieduszynski Lab and are available at https://github.

com/DzmitryGB/ [64]. Trep data generated from Repliscope was LOESS-smoothed in windows

of ~50kb using Igor (Wavemetrics, Lake Oswego, OR, USA). Trep data for subtelomeric origins

residing within 15 kb of chromosome ends was discarded due to large amount of noise. At

least seven samples covering S phase progression were used to estimate Trep.

Supporting information

S1 Fig. Progression of synchronized cultures through S phase as monitored by flow cytom-

etry. yFS1059 cultures (replicates 1 and 2) were treated and synchronized as shown in Fig 1A

before being released into S phase for replication timing measurements. yFS1075, yFS1020,

and yFS1021 cultures were treated and synchronized as indicated in Fig 5A before being

released into S phase for replication timing measurements. For yFS1075, flow cytometry data

is shown for experiments where galactose-induced overexpression was performed for two

hours or three hours. For yFS1020 and yFS1021, overexpression was performed for two hours.

(PDF)

S2 Fig. Auxin-induced degradation of Mcm4 causes reduced viability. a) For chronic down-

regulation of MCM, exponentially-growing cultures of the indicated genotypes were serially

diluted and spotted on plates containing 0 μM, 30 μM, or 500 μM auxin, with or without 100

mM hydroxyurea. OsTIR (yFS1044) refers to the background of the strain required for auxin-

mediated degradation. WT = yFS833; MCM4-IAA17 = yFS1062;

MCM4-IAA17-GFP = yFS1059; MCM4-GFP = yFS1082. b) For acute down-regulation of

MCM, yFS1059 cultures were arrested at G1/S using α-factor as outlined in Fig 1A, washed,

then serially diluted on YPD plates with or without 100 mM HU.

(PDF)

S3 Fig. MNase-ChIP-seq and replication timing results from the MCM reduction experi-

ments are reproducible. a) MCM ChIP-seq signal at ARS origins in two biological replicates

of yFS1059 for 0 μM, 30 μM, and 500 μM auxin treatments. b) Comparison of MCM signal at

origins between the 0 μM auxin condition in this study and other publications [18,42]. c)

Genome-wide replication timing correlation in 1 kb windows between the 0 μM auxin condi-

tion in this study and [59].

(PDF)

S4 Fig. Genome-wide reduction in MCM loading leads to larger inter-origin distances. a)

The smallest number of origins required to make up 50% of the total MCM signal was calcu-

lated for each condition. The inter-origin distances for these sets of origins were calculated

and plotted as a fraction of the total number of inter-origin distances for each condition.

(PDF)

S5 Fig. Effects of MCM depletion on MCM loading at origins. a) MCM signal at well-known

and example single origins in response to auxin treatment (yFS1059—Replicate 2). Signal at

the well-known ARS1 and ARS501 origins of replication shows slight reductions in response

to treatment with 0 μM, 30 μM, and 500 μM auxin. ARS512 loses most of its MCM signal in

response to auxin treatment, while ARS516 signal remains largely the same. b) Normalized

MCM MNase-ChIP-seq density pro les centered at ACSs for the indicated auxin treatments
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(yFS1059—Replicate 2) for all, MCM-sized (50–90 bp) or nucelosome-sized fragments (125–

165 bp).

(PDF)

S6 Fig. Fragment analyzer results for the two MCM reduction replicates shows different

degrees of MNase digestion. Fragment Analyzer (Advanced Analytical Technologies) results

of sequencing-ready input libraries show the different degrees of digestion for Replicates #1

and #2 of yFS1059. Replicate #2 displays higher mononucleosome-sized (146bp nuc-fragment

+ sequencing adapters and primers = ~284bp) content and therefore a stronger digestion.

(PDF)

S7 Fig. Input density profiles and origin coverage quantitations do not change significantly

after auxin-induced Mcm4 degradation. a) Input (non-IP) read coverage density profiles at

ARS origins of replication for Replicates #1 and #2 of yFS1059 for the indicated auxin treat-

ments. b) Comparison of input coverage within 1 kb of ARS origins between 0 μM versus

30 μM and 500 μM auxin treatments.

(PDF)

S8 Fig. ACS-annotated origins separated by magnitude of signal upstream or downstream

of ACS. MCM ChIP-seq signal in yFS1059 was quantified 500 bp upstream and downstream

of ACSs. Origins were separated based on the dominant signal. Heatplots were generated for

the set of origins displaying higher MCM signal upstream of the ACS as well as for the set of

origins displaying higher signal downstream of the ACS.

(PDF)

S9 Fig. Correlation of MCM signal and replication timing for origins that are affected by

specific timing mechanisms. Correlation between MCM signal and replication timing for ori-

gins that are known to be affected by specific replication timing control factors [20].

(PDF)

S10 Fig. MCM overexpression does not affect cell viability. a) Serial dilution assay of expo-

nentially growing cultures of the indicated overexpressing genotypes, grown in the presence of

raffinose or galactose. (-) = yFS1020, MCM2,3,4,5,6,7(GFP) = yFS1075; MCM2,3,4,5,6,7,

CDT1 = yFS1021; CDT1 = yFS1080; MCM2,3,4,5,6,7 = yFS1076. b) Cultures of yFS1020, a

control strain with no overexpression vectors, were treated as in Fig 5A and released into S

phase. Flow cytometry quantitation shows the S phase progression of cells supplemented with

glucose during the α-factor arrest versus those there were not.

(PDF)

S11 Fig. MNase-ChIP-seq and replication timing results from the MCM overexpression

experiments are reproducible. a) MCM ChIP-seq signal at ARS origins for the two main

‘untreated’ samples in this study: 0 μM auxin condition (Fig 1A–yFS1059) versus (-) galactose

condition (Fig 5A–yFS1075). b) Comparison of MCM signal at origins between the (-) galac-

tose condition in this study (yFS1075) and other publications [18,42]. c) Replication timing

correlation between the (-) galactose condition (yFS1075) and: i) 0 μM auxin condition for

ARS origins, and ii) genome-wide 1 kb windows from Mueller et al [59].

(PDF)

S12 Fig. Overexpression of MCM for longer times or along with Cdt1 does not alter load-

ing levels at origins or replication timing. a) Quantitation of MCM signal at ARS origins

when MCM is overexpressed as in Fig 5A but for 3 hours (yFS1075). b) Quantitation of MCM

signal at ARS origins for a control strain that does not overexpress any genes (yFS1020). c)
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Quantitation of MCM signal and Trep at ARS origins when MCM is overexpressed along with

Cdt1 as in Fig 5A (yFS1021).

(PDF)

S13 Fig. Overexpressed MCM is able to enter the nucleus during α-factor arrest. WT

(yFS1020), MCM7-GFP (yFS1083), MCM2, 3, 4, 5, 6, 7-GFP overexpressing (yFS1075), and

MCM2, 3, 4-GFP, 5, 6, 7 and CDT1 overexpressing (yFS10810) cultures were grown as in Fig

5A in the presence of galactose and visualized at the α factor arrest time point using DAPI to

stain DNA and GFP fluorescence to visualize MCM quantity and localization.

(PDF)

S1 Table. Quantification of MCM signal at origins of replication and Trep data for ARS-

annotated origins (OriDB).

(XLS)

S2 Table. Smallest number of origins that make up 50% of total MCM signal for each con-

dition, as well as the interorigin distances between those sets of origins.

(XLS)

S3 Table. Mnase-ChIP Sequencing Statistics.

(XLS)

S4 Table. Replication Timing Sequencing Statistics.

(XLS)

S5 Table. Numerical data for all figures.

(XLS)
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