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Abstract

Hand-eye calibration is an important step in controlling a vision-guided robot in applications

like part assembly, bin picking and inspection operations etc. Many methods for estimating

hand-eye transformations have been proposed in literature with varying degrees of com-

plexity and accuracy. However, the success of a vision-guided application is highly impacted

by the accuracy the hand-eye calibration of the vision system with the robot. The level of this

accuracy depends on several factors such as rotation and translation noise, rotation and

translation motion range that must be considered during calibration. Previous studies and

benchmarking of the proposed algorithms have largely been focused on the combined effect

of rotation and translation noise. This study provides insight on the impact of rotation and

translation noise acting in isolation on the hand-eye calibration accuracy. This deviates from

the most common method of assessing hand-eye calibration accuracy based on pose noise

(combined rotation and translation noise). We also evaluated the impact of the robot motion

range used during the hand-eye calibration operation which is rarely considered. We provide

quantitative evaluation of our study using six commonly used algorithms from an implemen-

tation perspective. We comparatively analyse the performance of these algorithms through

simulation case studies and experimental validation using the Universal Robot’s UR5e

physical robots. Our results show that these different algorithms perform differently when

the noise conditions vary rather than following a general trend. For example, the simulta-

neous methods are more resistant to rotation noise, whereas the separate methods are bet-

ter at dealing with translation noise. Additionally, while increasing the robot rotation motion

span during calibration enhances the accuracy of the separate methods, it has a negative

effect on the simultaneous methods. Conversely, increasing the translation motion range

improves the accuracy of simultaneous methods but degrades the accuracy of the separate

methods. These findings suggest that those conditions should be considered when bench-

marking algorithms or performing a calibration process for enhanced accuracy.
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Introduction

Robots are leading the way in today’s growing need for automation and improved efficiency in

the industry. This stems from their high level of repeatability, large payload capability and

speed of operation. The International Federation of Robotics (IFR) predicted over 1.7 million

new industrial robots’ deployments in 2021 [1], and many of these successes can be found in

applications such as chicken deboning in the food industry [2–4], drug manufacturing in the

pharmaceutical industry [5,6], and aircraft engine construction in the aerospace industry [7–

9]. During the deployment of robots for automation, the level of autonomy given to a robot

may vary depending on application and required flexibility. For some applications, like in the

production of some specialised parts, robots are usually programmed to carry out a specific

sequence of tasks repetitively with little or no variation. In these applications the velocity,

acceleration, and direction of motions are predetermined and fed to the robot. In other appli-

cations, the robot is given more autonomy during its operation. This flexibility enables the

robot to sense and react to its environment dynamically based on feedback from its sensors.

For example, for more precise guidance, a vision sensor or camera can be attached to the robot

to provide information for obstacle detection and avoidance, dynamic position acquisition of

target for accurate tracking etc. The feedback from the vision sensor is used to improve the

control implementation of the robot. These are called vision-guided-robots (VGR).

Generally, the configuration of the robot and camera can be one of two forms, namely, eye-

to-hand configuration, and eye-in-hand configuration. In the eye-to-hand configuration, the

camera is mounted in a fixed position, providing a fixed field of view throughout the entire

robot operation. On the other hand, in the eye-in-hand configuration, the camera is attached

directly on the robot such that new images can be acquired by changing the field of view of the

camera through the robot motion. However, the robot can only perceive the 3D world based

on its own base frame. For a robot to obtain an accurate estimate of the 3D position and orien-

tation of a part relative to its own base within the work volume, it is necessary to know the rela-

tive position and orientation between the hand and the robot base, between the camera and

the hand, and between the object and the camera. These three tasks require the calibration of

robot [10,11], camera [12,13], and robot hand-to-camera (hand-eye) [14,15] to obtain the nec-

essary accuracy. Robot calibration is needed because, even though robots have very good

repeatability, they are poor when it comes to absolute accuracy, due to inherent differences

between the ideal and actual kinematic parameters. This can be as a result of manufacturing

and assembly tolerances, geometry of the robot components such as orthogonality or parallel-

ism, or the position of the reference frame. Errors from the robot can also arise due to stiffness,

backlash, elasticity, and impact of temperature [16–18]. Camera intrinsic calibration is

required to ensure that the images captured are of accurate dimensions and free of lens distor-

tion, which would otherwise introduce errors in the measurement estimates that are fed back

to the robot during operation. Hand-eye calibration ensures that the measurements made by

the camera is converted to the reference used by the robot for measurement. The focus of this

paper is on hand-eye calibration and its associated challenges to robotic vision system.

Hand-eye calibration is an absolute necessity for the accurate control of vision-based

robotic systems. It enables the robot to obtain direct measurements of its environment via a

camera to accurately perform its tasks. Hand-eye calibration estimates the pose (rotation and

translation) of the robot’s end-effector (hand) with respect to the camera (eye) used for vision.

This pose information is usually in the form of a homogeneous transformation matrix X
between the end-effector frame and the camera frame and is usually formulated as Ab

aX ¼ XBb
a

[14], where Ab
a and Bb

a are the homogenous transformation matrices of the movement of the

camera and the robot hand from frame a to b respectively.

PLOS ONE Accuracy evaluation of hand-eye calibration techniques for vision-guided robots

PLOS ONE | https://doi.org/10.1371/journal.pone.0273261 October 19, 2022 2 / 26

https://doi.org/10.1371/journal.pone.0273261


A homogeneous transformation matrix Hb
a provides a convenient way of representing the

relative rigid body transformation between two reference frames a and b. The matrix Hb
a is

composed of rotation Rb
a of frame b with respect to frame a, and the translation tba of frame b

with respect to frame a. Hence, a point Pb in frame b can be expressed relative to frame a as

Pb ¼ Hb
a Pa ð1AÞ

Pb ¼
Rb

a tba
0T 1

 !

Pa ð1BÞ

where Rb
a is a 3 x 3 matrix, tba is a 3 x 1 vector and 0T is a 1 x 3 zero vector. The properties of

homogeneous transformation enable the realisation of arbitrary transformations by linking

known transformations. In vision-guided robots, for example, the position of the surrounding

objects relative to the robot base is usually required for appropriate robot control. As shown in

Fig 1A, if the transformation Hb
e from the robot base frame FB to the robot hand frame FE, the

transformation He
c from the robot hand frame to the camera frame FC, and the transformation

Hc
w from the camera to the world frame FW are known, then the position of the object in the

world frame Pw can be obtained in the robot’s base frame Pb as Pb ¼ Hb
e He

c Hc
w Pw. The trans-

formation from the robot base to the robot hand Hb
e can be directly obtained through the

robot forward kinematics [19,20], while the transformation from the camera to the world Hc
w

can be obtained through the use of algorithms such as the Perspective-n-Point (P-n-P) [21],

structure from motion [22] or other pose measurement algorithms [23], from a calibrated

camera [24]. On the other hand, the process of obtaining the transformation from the robot

hand to the camera He
c referred to as the hand-eye transformation, forms what is known as the

problem of hand-eye calibration [14]. The reliance of the hand-eye calibration on the robot

[25–27] and camera information indicates the need for proper calibration of the robot and the

camera [12,13,28].

Based on the work of Shiu and Ahmad [14], the hand-eye transformation can be obtained

by solving the homogeneous transformation equation given by

AX ¼ XB ð2Þ

where, A and B are the homogeneous transformation matrices representation of the relative

motions of the attached camera and the robot hand between two points, respectively, while X
is the required homogeneous transformation between the robot hand and the camera as

shown in Fig 1B. Eq (2) can be represented in a matrix form as

RA t!A

0T 1

 !
RX t!X

0T 1

 !

¼
RX t!X

0T 1

 !
RB t!B

0T 1

 !

ð3Þ

which can further be expanded to the rotation and translation parts as

RARX ¼ RX RB ð4AÞ

ðRA � IÞ t!X ¼ RX t!B � t!A ð4BÞ

where R is a 3 x 3 rotation matrix, t! is a 3 x 1 translation vector and the subscripts A, B and X
refers to the camera, robot and hand-eye pose respectively. Hence, the calibration operation

involves obtaining sets of robot hand and camera poses. While the hand poses can easily be

obtained from the robot forward kinematics using the joint encoder readings, the camera pose
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is usually estimated by observing a set of 3D points provided by a calibration object and their

corresponding 2D images using the P-n-P algorithm [21,29]. While this formulation shows a

more intuitive way to represent and solve the hand-eye problem, estimating the hand-eye

transformation based on Eq (2) is not trivial. This is because the Special Euclidean SE(3) group

structure of the homogeneous matrices must be preserved in the solution.

Several techniques have been proposed to solve the calibration problem, and they can

broadly be classified as either the separated methods or the simultaneous methods. In the sepa-

rated methods, the rotation parameter is first estimated from Eq (4A), then the translation

parameter is estimated based on the estimated rotation using the linear Equation in Eq (4B).

Shiu and Ahmed [14] and Tsai and Lenz [30] employed axis-angle parameterisation for the

estimation of the rotation parameter while Chou and Kamel [31] and Park and Martin [32]

used unit quaternions and Lie-algebra respectively to represent the rotation parameter.

Fig 1. Component frames for vision-guided robot. (A) Frame relationships. (B) Hand-eye setup.

https://doi.org/10.1371/journal.pone.0273261.g001
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Because the separated methods required estimating the translation parameter from the

rotation parameter, errors from the rotation estimates are directly propagated to the transla-

tion estimates. Moreover, the separation of the rotation and translation parameters loses the

inherent coupling between both parameters [33]. These arguments necessitated the need for

simultaneous solutions to the hand-eye calibration problem. Chen [33] provided the first

simultaneous solution to the hand-eye calibration problem. His method based on screw theory

described the calibration problem as the rigid transformation between the screw axis of the

hand and the camera. Zhao and Liu [34] extended the screw motion approach by representing

the rotation with unit quaternions and formed a system of linear equations that were solved

using Singular Value Decomposition (SVD). Daniilidis and Bayro-Corrochano [35] intro-

duced the method of dual quaternion for solving the rotation and translation components

simultaneously. Li et al. [15] applied Kronecker product in their approach but required addi-

tional orthogonalisation step to ensure a rotation matrix is realised.

In this study, we provide a systematic evaluation of how different factors (rotation noise,

translation noise, rotational motion, translational motion) can impact the hand-eye calibration

algorithms, through simulation with synthetic data and real experiment data. We also evaluate

the computation time of each algorithm as a way to assess their relative complexities. Using six

algorithms (Tsai and Lenz [30], Chou and Kamel [31], Park and Martin [32], Daniilidis and

Bayro-Corrochano [35], Lu and Chou [36], and Li et. Al. [37]) as references, we comparatively

show that the impact of those aforementioned factors does not follow a similar trend. The

choice of these six algorithms is based on the performance evaluation from recent studies in

comparison to other algorithms. From [38], the method from Park and Martin [32] showed

the second-best accuracy based on Reconstruction Accuracy Error (RAE), while providing the

best computation time based on the comparison of 4 hand-eye calibration algorithms. From

[39] the methods form Daniilidis and Bayro-Corrochano [35], and Chou and Kamel [31] pro-

vided the best and second-best accuracies respectively in terms of relative pose error based on

comparison of 10 hand-eye calibration algorithms. Based on the experimental results from

[40], with increasing number of dataset, the method from Tsai and Lenz [30] provided the sec-

ond best rotation accuracy, based on comparison with 5 other hand-eye calibration methods.

The choice of the method from Li et.al. [37] was based on the fact that it provided the best

accuracy when evaluated against two other methods that employed Kronecker product tech-

nique based on the relative rotation and translation errors. This was thus chosen as a candidate

method for the evaluation of algorithms that utilise Kronecker product implementation. Fur-

thermore, they also form the base idea on the development of most of the proposed hand-eye

calibration algorithms, making them widely used for benchmarking [39,41] which gives them

their popularity. These chosen algorithms also cover the different methods (separated and

simultaneous) of generating solutions to the hand-eye calibration problem. In particular, the

simultaneous methods are more resistant to rotation noise, whereas the separated methods are

better at dealing with translation noise. Furthermore, while increasing the robot rotation

motion span during calibration enhances the accuracy of the separated methods, it has a nega-

tive effect on the simultaneous methods. On the other hand, increasing the translation motion

range improves the accuracy of simultaneous methods but degrades the accuracy of the sepa-

rated methods. These findings suggest that those conditions should be considered when

benchmarking algorithms or performing a calibration process for enhanced accuracy. The

research contributions of this work are summarised as follows:

1. We provided insight on the effect of rotation and translation noise acting in isolation, on

the estimated hand-eye calibration parameters. We went further to use the different algo-

rithms to quantitatively assess the impacts. Insights from this assessment would spur
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further studies on how this can be used to an advantage in minimising estimation errors.

For instance, restricting the robot motion to either rotation or translation while performing

hand-eye calibration.

Previous studies have mainly considered pose noise which is a combination of both rotation

and translation noise.

2. We provided insight on the effect of the range of robot motion used during the hand-eye

calibration operation. This has rarely been a criterion for benchmarking hand-eye calibra-

tion algorithms. Our results show that the range of motions (rotation and translation) used

during the calibration operation has a significant impact on the accuracy of the hand-eye

calibration parameter. Our results also suggest that the rotation motions have different

effect on the accuracy from the translation motions. We reckon this would be an applica-

tion constraint, for instance in applications where size and mass are a premium such as in

space applications. As such, the result from this comparison would be helpful as a guide in

selection of algorithm or inform future benchmarking of proposed algorithms.

Materials and methods

Nomenclature

R: 3 x 3 rotation matrix

t!: 3 x 1 translation vector

½ v!��: Skew of vector v! such that ½ v!�� ¼

0 � v3 v2

v3 0 � v1

� v2 v1 0

0

B
@

1

C
A

qðq0; q!Þ: Unit rotation quaternion made up of a scalar part q0 and a vector part q!

q±: Representation of a quaternion to aid matrix multiplication such that

q� ¼
q0 � q!T

q! q0I � ½ q
!��

 !

;

where I is the identity matrix

q0: The dual of a quaternion

sign(x): Defines the sign of a value such that

signðxÞ ¼
� 1; x < 0

1; x � 0

(

vec(A): Vectorization of matrix A
�: Kronecker product

Hand-eye calibration methods

The hand-eye calibration methods can be categorised based on the representation of the rota-

tion parameter such as angle-axis, quaternions, dual-quaternions, Lie group, etc. They can also

be described based on the parameter estimation procedure as a separable solution or simulta-

neous solution. In this section, we provide an overview of the six hand-eye calibration algo-

rithms which will be evaluated in this study from the perspective of easy-of-implementation

and reproducibility of the presented algorithms. These six algorithms are Methods of Tsai and

Lenz [30], Chou and Kamel [31], Park and Martin [32], which are the separated methods and

Methods of Daniilidis and Bayro-Corrochano [35], Lu and Chou [36], and Li et.al. [37], which

PLOS ONE Accuracy evaluation of hand-eye calibration techniques for vision-guided robots

PLOS ONE | https://doi.org/10.1371/journal.pone.0273261 October 19, 2022 6 / 26

https://doi.org/10.1371/journal.pone.0273261


are the simultaneous methods. These methods have been chosen for this study because they

not only form the foundations of many hand-eye calibration algorithms but are frequently

used for benchmarking newer hand-eye calibration methods. For a complete overview of these

algorithms, the readers are encouraged to see the accompanying references.

Method of Tsai and Lenz (1989) [30]

The Method of Tsai and Lenz [30] (hereinafter termed Method Tsai) provides a separable solu-

tion to the hand-eye calibration problem using the angle-axis representation of the rotation

parameter RX given by

RX ¼ Rotð n!X; yXÞ ð5Þ

where n!X is the axis of rotation and θX is the angle of rotation. Using this method, the rotation

axis and angle can be computed by

½ n!A þ n!B�� n!0X ¼ n!A � n!B n!X ¼
2 n!0Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k n!0Xk2

q ð6AÞ

yX ¼ 2tan� 1ðk n!0X kÞ ð6BÞ

where n!A and n!B are the axes of rotation in the camera and hand frames, respectively.

The rotation matrix RX can be obtained by

RX ¼ 1 �
k n!Xk

2

2

� �

� I þ 0:5½ n!X � n
!T

X þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� k n!Xk
2

q

Þ½ n!X��� ð7Þ

The motivation of this approach is to provide a solution by solving a fixed linear system of

equations, as the earlier approach [14] required an increasing number of equations for each

additional robot motion used in the calibration.

Method of Chou and Kamel (1988)

Chou and Kamel [31] (hereinafter termed Method Chou) represented the rotation with unit

quaternions and formulated the calibration Eq (6A) as

qAqX ¼ qXqB ð8Þ

where qAða0; a!Þ; qBðb0; b
!
Þ and qXðx0; x!Þ are the unit quaternions representing rotations in

the camera, robot, and hand frames, respectively. Using quaternion matrix multiplication, Eq

(8) can be written as

ðqþA � q�B ÞqX ¼ 0 ð9Þ

or

GqX ¼ 0 ð10Þ

where

G ¼
a0 � b0 � ð a!� b

!
Þ
T

a!� b
!
ða0 � b0ÞI þ ½ a

!�
�
þ ½ b
!
�
�

0

@

1

A

The solution to the hand-eye transformation can easily be obtained from Eq (10) via SVD.
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Method of Park and Martin (1994) [32]. Park and Martin [32] (hereinafter termed

Method Park) formulated a computationally more efficient and linearised method by parame-

terising the rotation with Lie-group. This provides a logarithmic mapping from the SO(3)

group to the corresponding so(3) Lie algebra, where SO(3) and so(3) represent the special

orthogonal group matrices of size 3 x 3 and the corresponding Lie algebra matrix of size 3 x 1,

respectively. Given that

log Rð Þ ¼
y

2siny
R � RTð Þ ð11Þ

such that θ satisfies 1+2cosθ = tr(R), where tr(R) is the trace of R. The rotational part of the cali-

bration Eq (4A) can be represented by its logarithmic mapping as

RXbi ¼ ai ð12Þ

where α and β are log(RA) and log(RB), respectively. RX can be obtained by least-square mini-

misation such that

RX ¼ ðM
TMÞ�

1
2MT ð13AÞ

M ¼
PN

i¼1
bia

T
i ð13BÞ

where N is the number of data points.

While this method is computationally efficient and does well in the presence of noise, the

computation of log(RA) and log(RB) imposes a restriction that RA and RB must be rigid trans-

formations, otherwise, it becomes impossible to compute their logarithms.

Method of Daniilidis and Bayro-Corrochano (1996) [35]. Daniilidis and Bayro-Corro-

chano [35] (hereinafter termed Method Daniilidis) provided an algebraic interpretation of the

screw motion approach to hand-eye calibration [33] using dual quaternion representation. For

a unit quaternion qðq0; q!Þ representing the rotation in a rigid body transformation, its dual

q0ðq00; q!0Þ is given as

q0 ¼
1

2
tq ð14Þ

where t is the translation component of the transformation. Using only the vector part of the

dual quaternion representation of the camera and robot transformation, i.e,

aið0; a!iÞ; a0ið0; a!0iÞ and bið0; b
!

iÞ; b0ið0; b
!
0iÞ, respectively, Eq (2) can be formulated as

a!� b
!

½ a!þ b
!
�
�

03�1 03�3

a!0 � b
!
0 ½ a!0 þ b

!
0�
�

a!� b
!
½ a!þ b

!
�
�
03�103�3

0

@

1

A
qx

q0x

 !

¼ 0 ð15Þ

This matrix has two singular vectors u!T
1
¼ ð v!T

1
; w!T

1
Þ and u!T

2
¼ ð v!T

2
; w!T

2
Þ that span the

null-space and hence satisfy the equation

qx

q0x

 !

¼ l1

v!1

w!1

 !

þ l2

v!2

w!2

 !

ð16Þ

PLOS ONE Accuracy evaluation of hand-eye calibration techniques for vision-guided robots

PLOS ONE | https://doi.org/10.1371/journal.pone.0273261 October 19, 2022 8 / 26

https://doi.org/10.1371/journal.pone.0273261


To ensure the result is a unit dual quaternion, Eq (16) must be solved together with the con-

straints given by

qT
x qx ¼ 1 ð17AÞ

qT
x q
0

x ¼ 0 ð17BÞ

This leads to the formation of two quadratic equations in λ1 and λ2 from which ðqx; q0xÞ can

be determined.

Method of Lu and Chou (1995) [36]. Lu and Chou [36] (hereinafter termed Method Lu)

proposed a simultaneous solution by formulating a linear system of equations using quater-

nion given by

P Q

Q 0

 !
qx

t0x

 !

¼ 0 ð18Þ

where qxðq0x
; q!xÞ is the unit quaternion representation of the rotation and the translation

component tx is given by

t0x ¼ ETt ð19Þ

where E ¼ ð� q!xq0x
I þ ½ q!x��Þ while P and Q are given by

P ¼ q�b ðt
þ

b � t�a Þ ð20AÞ

Q ¼ qþb � q�a ð20BÞ

where qa and qb are the quaternion representation of the rotation of the camera frame and

robot hand frames respectively, ta and tb are the quaternion representation of the translation of

the camera frame and robot hand frames, respectively. This system must be solved with the

constraint given by

qT
x qx ¼ 1 ð21AÞ

qT
x t
0

x ¼ 0 ð21BÞ

Method of Li et. Al. (2018) [37]. To simultaneously solve for the rotation and translation

components Li et. Al., [37] (hereinafter termed Method Li) described the calibration given in

Eq (4) using the relationship between matrix vectorisation and the Kronecker product. The

vectorisation of the product of matrices A, B and C can be written as

vecðABCÞ ¼ ðCT � AÞvecðBÞ ð22Þ

Eq (4) can thus be written as

I9 � ðRB � RAÞ 09�3

tTB � ½tA�� ½tA��ðI3 � RAÞ

 !
vecðR̂XÞ

t̂X

 !

¼
09�1

tA

 !

ð23Þ

Eq (23) is thus a linear system that can be solved by the well-known least-squares method.

To ensure that the recovered rotation meets the constraints that its determinant is 1, a
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proportionality constant ω can be calculated as

o ¼ signðdetðR̂XÞÞdetðR̂XÞ
� 1

3 ð24Þ

The recovered rotation and translation can thus be given as

RX ¼ oR̂X ð25AÞ

tX ¼ ot̂X ð25BÞ

Performance evaluation metrics

The following evaluation metrics were used to comparatively evaluate the performance of the

different algorithms, each of which has its property and usefulness.

Relative transformation error. The relative transformation error Ern is unitless and is

derived from Eq (2). It evaluates how close the rigid transformation on the left side of the equa-

tion is to the right side of the equation based on the estimated hand-eye transformation X. The

relative transformation error is given by

Ern ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

k AiX � XBik
2

s

ð26Þ

Rotation error. Two forms of rotation errors are utilised for this evaluation: the relative

rotation error ER, and the mean absolute rotation error ERx
These are given by

ER ¼
1

N

XN

i¼1

angle½ðRXRBi
Þ
T
ðRAi

RXÞ� ð27AÞ

ERx
¼

1

N

XN

i¼1

angleðR̂ � 1

Xi
RXÞ ð27BÞ

where R̂Xi
is the rotation estimate value of the hand-eye transformation during simulation.

The relative rotation error, Eq (27A), is suitable for evaluation with real data where the

ground-truth hand-eye transformation is not available. For simulation study where the

ground-truth data is available, then, it becomes more useful to use the mean absolute rotation

error ERx
given in Eq (27B).

Translation error. Following the rotation errors, the relative translation error ET and the

mean absolute translation error ETx
are used in this study for real data and simulation studies,

respectively, and they are given by

ET ¼
1

N

XN

i¼1

k ðRAi
tXÞ � tX � ðRXtBi

Þ þ tAi
k ð28AÞ

ETx
¼

1

N

XN

i¼1

k tX � t̂X k ð28BÞ
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Materials and methods

Real dataset collection

For this experiment, we used a UR5e robot arm rigidly mounted on the floor to provide the

robot pose data and a Microsoft AzureKinect camera secured to the last link of the robot for

the image acquisition which is used to compute the camera poses. A 32mm, 11 by 8 checker-

board pattern was used as the calibration target. During the experiment, the robot arm was

moved to a range of positions with the calibration pattern still in the view of the camera for

image acquisition. The control of the robot motion was achieved through an interface with

RoboDK running a script written in Python. This ensured a high-level interaction with the

robot which makes for easy implementation. During the experiments, software checks was

implemented to detect and avoid configuration changes in the robot. Also, the motion of the

robot was restricted such that the rotational angle was below 180 degs. This ensures that the

issue of singularity was avoided during the computation of the hand-eye calibration parame-

ters which occurs close to or at this threshold [14,30]. The robot poses were obtained directly

from the robot pendant while the camera poses were estimated using the P-n-P algorithm

from the OpenCV library [42]. The setup is shown in Fig 2. A demo video of the calibration

operation can be found in S1 Video in S1 Appendix. For the evaluation of hand-eye calibration

algorithms, a total of 101 robot poses and images of size 1280 x 720 pixels were acquired.

During the camera pose computation, we noted that the position of the origin as detected

by the P-n-P algorithm from the OpenCV library was sensitive to the orientation of the

Fig 2. Hand-eye calibration setup. (A) Camera-End-Effector setup. (B) Camera. (C) Calibration pattern. (D)

Experiment setup (E) Poses of robot and camera view representing camera pose during calibration process.

https://doi.org/10.1371/journal.pone.0273261.g002
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calibration pattern in the image when both the rows and columns used are of even or odd

number as shown in Fig 3. Fig 3 shows the origin of the target reprojected on the image after

pose estimation with the OpenCV P-n-P library. In Fig 3A, the origin is located at position 1H

on the chessboard. However, when the chessboard is rotated sufficiently as in Fig 3B, the origin

location changes to position 7A. This leads to a loss in the actual computed rotation.

This change in the origin affected the actual camera pose estimate. Using odd and even

numbers of rows and columns in the calibration pattern, however, forced the algorithm to be

consistent in the position of the origin for every pose acquisition as shown in Fig 3C and 3D.

Simulation dataset generation

Using real dataset ensures that the overall dynamics and uncertainties in the system are cap-

tured. However, because it is impossible to get the ground truth data for the hand-eye transfor-

mation, it becomes impossible to make an absolute evaluation of the performances of the

different algorithms based on their true rotation and translation estimates. As such, syntheti-

cally generated data becomes useful for the study. This also allows for a quick, easy, and in-

Fig 3. Change in position of origin (red, green, and blue axes) with change in orientation of target for an odd

number of rows and columns. (A) Origin at position 1H. (B) Origin at position 7A. (C) Origin at the bottom right.

(D) Origin at the bottom right after rotation.

https://doi.org/10.1371/journal.pone.0273261.g003
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depth study of various scenarios for hand-eye calibration where the parameters can be

controlled.

For the simulation study, random ground truth data was chosen for X in terms of its trans-

lation vector tX, tY, tZ and rotation (Euler) angles RX, RY, RZ. These values were then converted

to the required homogeneous transformation matrix. The same procedure was followed for

generating the various robot pose data B and the position of the world coordinate W. The cam-

era pose Ai for each robot pose Bi was then calculated using Ai = WBiX−1.

Pose error generation

During hand-eye calibration of an actual robot-camera system, the two sources of errors are

from the robot and the camera. Because the data are in the form of poses, these errors must

also pose errors, which can be interpreted as the transformation δB that moves the robot hand

from their measured position B̂ to their actual position B, such that dB ¼ B̂ � 1B. For the camera

motion, the error δA is the transformation that moves the camera from its expected position A
to its measured position Â, such that dA ¼ A� 1Â. During the calibration operation, the robot

poses are obtained from the robot forward kinematics, which is generally available from the

robot control interface or pendant. As such only the measured pose of the robot is available.

However, the robot pose error can be modelled by reflecting it in the camera pose measure-

ments. This error in camera pose dAB
from the reflection of robot pose error δB can be

expressed as dAB
¼ XdBX� 1. Hence, during the simulation study, defining total simulation

pose error de ¼ dAB
dA, then the following equation, AdAB

dAX ¼ XB can be used to estimate the

hand-eye transformation X in the presence of pose error in the robot and camera, with A and

B are the ideal relative camera and robot poses respectively.

Results and discussions

Simulation study

In our simulation study, we generated the robot and camera pose data as described in the pre-

vious section. The robot poses were based on a uniform distribution, such that the Euler rota-

tions [θX, θY, θZ] 2 U(−180,180) (deg) and translation [tX, tY, tZ] 2 U(−1000,1000) (mm). To

study the sensitivity of various algorithms to noise in the robot and camera pose measure-

ments, we generated random noise poses with Gaussian distribution in the rotation based on

the Euler angles (deg) and translation (mm) with zero mean μ and varied the standard devia-

tion σ. The converted homogeneous transformation noise δe was then added to the pose data.

We conducted the simulation by executing 100 simulation runs at each estimation step, sam-

pling the noise from its Gaussian distribution. The choice of 100 simulation runs follows from

[43,44] and provides a trade-off between total simulation time and statistical significance that

arise from a large number of experiments. All simulations are based on a Python implementa-

tion of the algorithms and evaluation techniques running on a Windows PC with Intel i7-

2.7GHz CPU and 16GB of RAM.

Effect of number of robot motions. We evaluated the performance of the various algo-

rithms based on the number of robot poses used for the calibration. For this study, we per-

formed a total of 100 simulation runs while keeping the standard deviation of the rotation σr

and translation σt noise fixed at 0.5 and 1, respectively. Given that the minimum number of

robot poses for a valid computation of the hand-eye parameter is 3 [14], we varied the number

of robot poses from 3 to 200. Fig 4 shows the result of the simulation using the relative trans-

form error evaluation Ern.
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From Fig 4, we can observe that for an increasing number of robot motions used in the cali-

bration operation, all the evaluated algorithms show an increase in the accuracy given by the

relative transformation error. Furthermore, the result makes it evident that as the number of

robot motions used increases, the gain in estimation accuracy becomes minimal. For the num-

ber of 3 to 50 robot motions, the result shows a significant drop in the error. However, after 50

robot motions, only a minimal decrease in the error is observed. For other simulation studies,

the number of 100 robot motions will be used as it is evident that all the algorithms perform

better at a higher number of robot motions.

Effect of rotation noise. For this simulation study, we aim to observe how the rotation

and translation estimates are affected by noise from the rotation component alone. We set the

number of robot motions to 100 and varied the standard deviation of the rotation noise σr

from 0 to 2 without any translation noise (σt = 0). For each noise sampling, we performed a

total of 100 simulations and computed the mean absolute rotation and translation errors. Fig

5A and 5B show the result of the simulation, where we observe the accuracy of the rotation

estimates based on absolute rotation error decrease with increasing rotation noise as expected.

However, from Fig 5A, the rotation estimates based on Method Daniilidis showed the best per-

formance with increasing rotation noise. While the performance of Method Chou and Method

Park are not far off from Method Daniilidis, that of Methods Li and Lu which were similar

became significantly worse as the rotation noise increases. The performance of Method Tsai

on the other hand appeared to be very sensitive to rotation noise and provided large rotation

error even at lower rotation noise.

Considering the effect of the rotation noise on the estimates of the translation parameter,

Fig 5B suggests that the translation estimates provided by Method Daniilidis, Method Chou

and Method Park based on absolute translation error also remained more robust to translation

noise than the other methods in the absence of rotation noise, with Method Daniilidis showing

slightly better translation estimates. The translation estimates of Method Li, Method Lu and
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Fig 4. Effect of the number of robot motions on relative transformation error Ern(σr = σt = 0.5). The inset shows

the zoomed in accuracy level between Ern of 0 and 0.001.

https://doi.org/10.1371/journal.pone.0273261.g004
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Method Tsai progressively became worse as the rotation noise increased, with the latter pro-

viding the best translation estimate of the three at low rotation noise (σr<0.5). At higher rota-

tion noise however, the translation estimates of Methods Tsai became the worst. Since the only

noise present is from the rotation component, the errors in the translation components are

propagated from the rotation components as argued in numerous literature on hand-eye cali-

bration as a need for simultaneous solution [35,45,46]. However, it becomes apparent that for

simultaneous methods, as seen in the performance of Method Daniilidis and Method Lu (Fig

5B), errors can be induced in the translational component as well in the presence of rotation

error.

Effect of translation noise. To study the effect of translation noise on the calibration

accuracy, we used 100 motions of the robot with no rotation noise (σr = 0) while varying the

standard deviation of the translation noise σt from 0 to 5. We then performed 100 simulation

runs and calculated the mean absolute rotation and translation errors as shown in Fig 5C and

5D. Fig 5C shows the accuracy of the rotation estimate in the presence of translation noise.

Based on the observed result, the separated methods (Method Chou, Method Park and Method

Tsai) show robustness against the translation noise from the robot motion. This is expected as

the rotation parameter is computed without the translation component.

For the methods with the simultaneous solutions (Method Danillidis, Method Lu and

Method Li), the result shows increasing error in the estimated rotation with an increase in the

translation noise. Amongst the three simultaneous methods evaluated, Method Daniilidis and

Method Li showed similar performance, however, Method Lu provided the best rotation esti-

mates under translation noise as the only source of the noise. From the point of view of the

translation estimate as seen in Fig 5D, while all the separated methods had similar translation

accuracy, as the translation noise increases from a variance of 0, the accuracy level of the simul-

taneous solution methods became progressively worse compared to the separated methods,
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Fig 5. Effect of rotation and translation noise on rotation and translation calibration accuracy. (A) Effect of

rotation noise on rotation accuracy. (B) Effect of rotation noise on translation accuracy. (C) Effect of translation noise

on rotation accuracy. (D) Effect of translation noise on translation accuracy.

https://doi.org/10.1371/journal.pone.0273261.g005
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with Method Daniilidis showing the best performance of the three simultaneous methods. The

superior performance of the separate methods compared to the simultaneous methods is

attributed to the estimation of the translation parameter with least square on a linear system

rather than the non-linear system provided by the simultaneous methods.

Combined effect of noise on the rotation and translation estimates. In the previous sec-

tion, we looked at the effect of the noise from the rotation and translation components on the

estimated rotation and translation parameters, where each noise source acted alone. The

results suggest that the simultaneous method of Method Daniilidis and the separated methods

of Method Chou and Method Park are more robust to noise in rotation and translation with

Method Daniilidis slightly better. Method Tsai on the other hand appeared to be extremely

sensitive to high rotation noise levels while Methods Li and Lu showed roughly similar perfor-

mance. These results give an idea of the sensitivity of the different algorithms to noise from

each of the components, however, in reality the algorithms would have to handle the combined

noise from both sources, which is not a linear function. To evaluate the sensitivity of the differ-

ent algorithms to the noise from the rotation and translation components acting together, we

simultaneously increased both the rotation and translation noise variance with σr = (0,2) and

σt = (0,5), respectively.

The result of this evaluation based on the average of 100 simulation runs is shown in Fig 6A

and 6B. From Fig 6A, with increasing rotation and translation noise, Method Daniilidis and

Method Park showed roughly similar and better performance than the others with Method

Chou only slightly worse. On the other hand, Method Li and Method Lu again showed similar

performance, with Method Lu slightly better at lower joint rotation and translation noise levels

(σr<1.4, σt<3.5), while Method Lu appear slightly better at higher noise levels. Method Tsai, as

in the previous evaluations showed large rotation errors as the noise levels increased. From Fig

6B, Methods Daniilidis, Park and Chou again show the best performance for translation esti-

mates. However, Method Daniilidis was slightly better at lower rotation and translation levels

(σr<1, σt<2.5). With increasing rotation and translation noise levels, the estimated translation

errors of Methods Tsai, Lu and Li increases progressively. Of these three methods, Method

Tsai proved the best at lower noise levels (σr<0.8, σt<2) but the worst at higher noise levels.

Method Li on the other hand showed the worst performance at lower noise levels (σr<0.8,

σt<2), but the best at higher noise levels.

To get more dynamic insights into the performance, we set the noise variance of the rota-

tion, or the translation components fixed while varying the other. The results based on the

average of 100 simulation runs are shown in Fig 6C to 6F. In Fig 7C and 7D, we kept the trans-

lation noise variance fixed at σt = 1 and varied the rotation variance from σr = 0 to σr = 2, while

in Fig 6E and 6F, we kept the rotation noise variance fixed at σr = 0.5 and varied the translation

variance from σt = 0 to σt = 5.

From Fig 6C, it can be observed that for the same translation noise, all the separated meth-

ods–Method Chou, Method Park and Method Tsai—showed better performance at lower rota-

tion noise (σr<0.6) than the simultaneous methods. However, as the rotation noise increased,

the performance of Method Daniilidis became better than all the separated methods. For the

range of noise levels evaluated, Method Daniilidis, Method Chou and Method Park consis-

tently provided better rotation estimates than the other methods. Methods Lu and Li again

showed similar performance but with Method Lu slightly performing better at lower rotation

noise (σr<1) than Method Li, while Method Tsai showed a good performance only at very low

rotation noise levels (σr<0.125). For the translation estimates (Fig 6D) all the separated meth-

ods again performed better only at rotation noise variance below 0.25. At higher rotation noise

levels, the performance of Method Daniilidis becomes better than all the separated methods.

While the translation errors of Methods Chou and Park which were similar were only
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marginally higher than Method Daniilidis at higher rotation noise, the translation errors

Method Tsai rose above those of Method Lu and Method Li at rotation noise variance above

0.75. With increasing the translation noise at fixed rotation noise, it can be observed from Fig

6E that the rotation estimates of the separated methods remained relatively stable with Meth-

ods Chou and Park showing low rotation error while Method Tsai showed high rotation error.

The stable rotation estimate with increasing translation noise at fixed rotation noise is

expected as the rotation is estimated without the translation parameter. Hence the error in the

separated methods is due only to the rotation error. However, Method Daniilidis showed bet-

ter rotation estimates than the separated methods at low translation noise (σr<1) after which

its performance degraded further with increasing translation noise. From Fig 6F, it can be

noticed that while all the methods showed increase in translation error with increasing transla-

tion noise, the increase in translation error is more pronounced for the separated methods. At

high translation noise levels (σt>4.75) the performance of all the simultaneous methods

became worse than the separated methods.
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Fig 6. Effect of combined rotation and translation noise on calibration accuracy. (A) Effect of increasing rotation

and translation noise on rotation accuracy. (B) Effect of increasing rotation and translation noise on translation

accuracy. (C) Effect of rotation noise on rotation accuracy with fixed translation noise σt. (D) Effect of rotation noise

on translation accuracy with fixed translation noise σt. (E) Effect of translation noise on rotation accuracy with fixed

rotation noise σr (F) Effect of translation noise on translation accuracy with fixed rotation noise σr.

https://doi.org/10.1371/journal.pone.0273261.g006
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Effect of robot motion range. Here, we aim to observe how the range of motion of the

robot in rotation and translation affects the calibration accuracy. For this simulation, first, we

restricted the robot translation to a range tf = 50 mm and varied the rotation around each of

the axes from a range of Rr = 5 deg to Rr = 60 deg. Here the range xr of x is defined as

xr ¼ Uð0:9x; xÞ ð29Þ

Secondly, we restricted the rotation of the robot motion to a range of Rf = 20 deg while vary-

ing the translation motion tr between 40 mm to 450 mm. The translation range tr is calculated

based on the norm of the translation as

tr ¼ jtj; ð30Þ

while the rotation range Rr is calculated as

Rr ¼ RotðRÞ ð31Þ

where R is the rotation matrix.

This simulation was done over a total of 100 robot motions with the standard deviation of

the rotation and translation noise set to σr = 0.1 and σt = 0.5, respectively. We then calculated

the relative rotation and translation errors, and the results are shown in Fig 7.

As seen in Fig 7A, increasing the range of rotation of the robot during hand-eye calibration

at a constant translation rate has a marginal effect on the rotation estimates for the separated

methods. This increment appears to be more pronounced in Method Tsai from a very low

rotation (below 10 deg) than Methods Chou and Park where the accuracy improvement

appears minimal. For the separated methods, however, the accuracy of the rotation estimates

decreases when the rotation range is increased at a constant translation range. A similar trend
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Fig 7. Effect of rotation and translation motion on estimation accuracy. (A) Effect of rotation motion on rotation

accuracy with fixed translation range. (B) Effect of rotation motion on translation accuracy with fixed translation

range. (C) Effect of translation motion on rotation accuracy with fixed rotation range. (D) Effect of translation motion

on translation accuracy with fixed rotation range.

https://doi.org/10.1371/journal.pone.0273261.g007
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is observed with the translation estimates based on the rotation span in Fig 7B, which shows a

decreasing translation error with increasing rotation motion for the separated methods, while

the translation error of the simultaneous methods increased with increasing rotation motion

span.

In terms of the effect of the translation motion span on the estimation accuracy, Fig 7C

shows a significant reduction in the rotation error of the simultaneous methods, while the

rotation error of the separated methods increased marginally. Furthermore, from Fig 7D,

increasing the translation motion span resulted in the increase in the accuracy of the simulta-

neous methods while exhibiting a decrease in the accuracy of the separated methods.

Simulation time. Here, we are interested in the execution time of the algorithms in per-

forming the hand-eye calibration. We have considered 20 and 100 robot motions and executed

100 simulation runs for each algorithm. The execution time was averaged over the simulation

runs. This evaluation is based on a Python implementation of the algorithms running on a PC

with Intel i7-2.7GHz CPU and 16GB of RAM. The result is shown in Table 1.

The result from Table 1 suggests that Method Daniilidis is the most computationally expen-

sive in comparison with the other methods for a lower number of robot motions. However, as

the number of robot motions increases, the execution time of Method Li increases and is the

most computationally expensive compared to the other methods. The large computational

time for Method Daniilidis at a number of low robot motions can be attributed to the need to

solve a dual variable polynomial. However, Method Li employs Kronecker product which has

a quadratic complexity O(n2), as such its processing time increases progressively with the

amount of data. Method Park appeared to be the most computationally efficient method in

both scenarios. Interestingly, all the three separated methods are shown to be more computa-

tionally efficient than the simultaneous methods.

Experimental evaluation with UR5e robot

For the experimental evaluation, we used the UR5e robot arm with a Microsoft AzureKinect

camera mounted on the last link for 2D image acquisition. During the experiment, the robot

arm moved to random positions and orientations, and the image of a stationary calibration

pattern was captured by the camera from which the poses of the camera with respect to the

world was calculated, while the robot poses were obtained from the robot pendant. This proce-

dure was done for 100 different motions of the robot. Fig 8A and 8B show the span of the rota-

tion and translation motions, respectively with a mean rotation of 44.7 deg and a mean

translation of 350.6 mm. The rotation and translation parameters of the hand-eye transforma-

tion was calculated from the acquired data using each of the algorithms. The comparison of

the rotation and translation errors for the different algorithms under this condition is shown

in Fig 8C and 8D, respectively. The exact values of the results for the different algorithms can

Table 1. Comparison of algorithm execution time for 20 and 100 robot motions.

Algorithms

Execution time (seconds)

20 robot motions 100 robot motions

Method Chou 0.084 0.444

Method Park 0.062 0.301

Method Tsai 0.079 0.399

Method Daniilidis 0.119 0.558

Method Lu 0.107 0.504

Method Li 0.096 0.887

https://doi.org/10.1371/journal.pone.0273261.t001

PLOS ONE Accuracy evaluation of hand-eye calibration techniques for vision-guided robots

PLOS ONE | https://doi.org/10.1371/journal.pone.0273261 October 19, 2022 19 / 26

https://doi.org/10.1371/journal.pone.0273261.t001
https://doi.org/10.1371/journal.pone.0273261


be found on S1 Table in the S1 File. Because of the absence of ground truth data for the com-

parison, the relative rotation ER and translation ET errors were used for the evaluation instead.

From Fig 8C, the rotation estimated from Method Tsai showed the highest error, while the

separated methods of Method Park and Method Chou provided the best estimate of the rota-

tion based on the relative rotation error, with Method Park slightly outperforming Method

Chou. All three simultaneous methods had similar rotation performance but were better than

the Method Tsai, with the Method Daniilidis slightly outperforming the others. For the trans-

lation error (Fig 8D, all three simultaneous methods outperformed the separated methods

with Method Daniilidis showing the best translation estimate. Method Tsai showed the best

translation estimate among the separated methods, followed by Method Chou and then

Method Park.

Effect of robot motion range. The aim of the experiment is to observe how the rotation

and translation motions in isolation affect the calibration accuracy for the candidate algo-

rithms. We carried out three calibration operations with the real robot. For each calibration

operation, we restricted the range of the translation and rotation motions to different values.

The actual motion range for each motion was allowed to vary a little from the chosen span

value. Table 2 shows the mean translation and rotation motion ranges for each of the
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mean, μ = 44.7 deg. (B) Translation motion span, mean μ = 350.6 mm. (C) Relative rotation error. (D) Relative

translation error.

https://doi.org/10.1371/journal.pone.0273261.g008

Table 2. Motion range experiments.

Experiments Mean rotation motion range

(deg)

Mean translation motion range

(mm)

Experiment 1 10.6 301.0

Experiment 2 50.4 301.6

Experiment 3 51.0 52.0

https://doi.org/10.1371/journal.pone.0273261.t002
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experiments. Experiments 1 and 2 describe a change in the rotation motion span with a fixed

translation motion span, while Experiments 2 and 3 describe a change in the translation

motion span with a fixed rotation motion span. The results of the experiments are shown in

Fig 9. The exact values of the results for the different algorithms can be found on S2 Table in

the S1 File.

From the results of Experiments 1 and 2, as shown in Fig 9A and 9E, respectively, the rota-

tion range increased from 10.6 deg to 50.4 deg while the translation range remained close to

301 mm from Fig 9B and 9F. During these conditions, the rotation errors for Method Chou

and Method Park remained relatively the same, with marginal improvements as shown in Fig

9C and 9G. However, a significant improvement in the rotation accuracy was observed for

Method Tsai as the rotation motion range increased with constant translation motion range.

Conversely, an increase in the error of the rotation estimate was observed for all the simulta-

neous methods as the rotation range increased with a fixed translation range. This increase in

the rotation error was more pronounced in Method Li. In terms of the translation estimates,

from Fig 9D and 9H, increasing the rotation range also improved the accuracy of the transla-

tion estimates for all the separated methods. The increment was also more noticeable in

Method Tsai than in Method Chou and Method Park. However, just like the rotation esti-

mates, Fig 9D and 9H shows that the accuracy of the translation estimates for all the
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https://doi.org/10.1371/journal.pone.0273261.g009
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simultaneous methods decreased when the rotation range was increased at the fixed transla-

tion range, with Method Li performing the worst.

The results in Fig 9F and 9J, respectively, show a decrease in the translation range from

301.6 mm in Experiment 2 to 52 mm in Experiment 3, while the rotation range from Fig 9E

and 9I remains fixed at about 50 deg. From these results, it can be observed that as the transla-

tion motion range decreased from 301.6mm to 52 mm and at a constraint rotation motion

range, the accuracy of the rotation estimates for the simultaneous methods decreased as seen

in Fig 9G and 9K, with a more pronounced decrease in Method Li. The separated methods on

the other hand experienced an increase in the accuracy of their rotation estimates when the

translation range decreased with a fixed rotation range.

Observations from the translation estimates in Fig 9H and 9L show that the translation

errors of all the calibration methods increased when the translation range was increased with a

fixed rotation range. However, all the separated methods had a much higher increment in

their translation errors than and even surpassed the translation errors of all the simultaneous

methods. This suggests that the performance of the translation estimates of all the simulta-

neous methods improved much better than all the separated methods.

Simulation versus real experiment

The use of simulated data allows deeper insight into the evaluation of the behaviours of the dif-

ferent algorithms, which may not be possible with the use of real data from experimentation.

For instance, the availability of ground truth data. However, with real data from experiments,

there is the advantage of capturing the true dynamics of the system under test, which may not

be completely possible via simulation.

For the evaluations in this study, the availability of ground truth data during simulation

allows the comparison based on absolute errors in rotation and translation, which ideally

should be the better evaluation metrics. On the other hand, because ground truth data is not

available for the real experiment, relative rotation and translation errors were used for the eval-

uation. Hence there is the expectation of discrepancies in the evaluations, for example, the rela-

tive difference in observed simulation errors between the evaluated algorithms compared with

the real experiment. We have also used the relative errors for the evaluation of the estimated

errors based on the robot motion range to validate the simulation study with the experiment

in the absence of ground truth data. Furthermore, as we observed in the simulation tests, the

rotation and translation errors depend on a number of factors. These factors have been evalu-

ated at specific values and ranges during simulation. The total rotation and translation errors

as seen from the experimental evaluation are a combination of the errors from each of these

factors, which are largely unknown.

Conclusion

This study comparatively evaluates the accuracy of some of the common hand-eye calibration

algorithms based on several factors: the use of simulated datasets and real datasets from experi-

mentation with a physical robot. The result of the comparative study sheds light on how differ-

ent factors affect the accuracy of estimates based on these methods.

Firstly, the number of robot motions used during the calibration is critical to the level of

accuracy of the estimated hand-eye parameters in the presence of noise. While it has been

established in the literature that a minimum of two relative motions (or 3 robot poses) are nec-

essary for the estimation, increasing the number of motions increases the accuracy level. How-

ever, as the number of robot motions increases, the improvement in the accuracy achieved

becomes minimal. Moreover, the number of robot motions used would impact the execution
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time, complexity, and computation cost of the different algorithms. From our study, Method

Daniilidis incurred the highest computation cost when the number of robot motions was low,

while Method Li incurred the highest computation cost when the number of robot motions

was high. Method Park appeared to be the most computationally efficient method.

The results from this study show that Method Tsai was extremely sensitive to rotation

noise, and its estimated parameters are only comparable to others in very low noise conditions.

Furthermore, the noise in the rotation and translation motions affect the rotation and transla-

tion estimates in different ways in all the evaluated hand-eye calibration methods. While the

quality of the estimated translation depends on the estimated rotation parameter for the sepa-

rated methods, estimating the rotation and translation parameters together as in the simulta-

neous methods resulted in noise transfer between both parameters. Judging from the

combined effect of rotation and translation noise, the Methods of Daniilidis, Park and Chou

appeared to be the most reliable methods of all the algorithms evaluated as they consistently

showed greater performance from all the simulation studies. However, while Method Daniili-

dis showed slightly better performance at lower rotation and translation noise levels, its perfor-

mance degrades below that of Methods Park and Chou as the noise levels increases. Methods

Lu and Li consistently showed roughly similar performance, however Method Lu appeared

more suited to lower noise level than Method Li.

The range of motion of the robot during calibration was also shown to have a significant

impact on the performance of the calibration algorithms. As shown in the simulation study

and validated by the experiments with the real robot, the separated solution methods of

Method Chou, Method Park and Method Tsai performed better at higher rotation and lower

translation motions of the robot. However, for the simultaneous methods of Method Li,

Method Daniilidis and Method Lu, better performance can be achieved by using lower rota-

tion and translation motions of the robot.

It is important to note that while all the separated methods showed similar performance

during the experiments on the effect of motion range, and likewise the simultaneous methods,

the conclusions of this study were peculiar to the methods surveyed and not the solution class,

which is by no means exhaustive in this study. The results of the effect of motion clearly

showed that the accuracy of a hand-eye calibration algorithm would vary substantially with

different ranges of motions of the robot during calibration. As such, this factor should be

taken into consideration when benchmarking a particular algorithm against other algorithms.

While the factors affecting the accuracy of the hand-eye calibration have been established in

literature, the focus in previous works has been on the effect of noise on the calibration accu-

racy. Moreover, evaluation of algorithms put more emphasis on the effect of translation and

rotation combined. The work in this paper goes further to show the specific impact of the rota-

tion noise and the translation noise on the calibration accuracy, as well as the role the range of

rotation and translation motions used during the calibration play on the calibration accuracy.

This paper evaluates how these factors affect the different algorithms comparatively using sim-

ilar datasets and test points. Hence, depending on the application constraints, a user can select

a suitable algorithm with the implementation details given.

While authors of different hand-eye calibration algorithms have documented their sensitiv-

ities to noise, not much research has been done to assess and mitigate the impact of motion

range on hand-eye calibration. This may be especially important in space applications where

the size and mass of payload is very critical. As such, this path of research presents an interest-

ing topic for the research community to address. Furthermore, the insight provided from the

analysis of impact of the rotation and translation noise in isolation raises the question, “are

there some advantage to be gained in restricting the robot motion to either of these motions?”

This can be answered by carrying out further research.
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