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Abstract: Ozone (O3), whose concentrations have been increasing in eastern China recently, plays
a key role in human health, biodiversity, and climate change. Accurate information about the
spatiotemporal distribution of O3 is crucial for human exposure studies. We developed a deep
learning model based on a long short-term memory (LSTM) network to estimate the daily maximum
8 h average (MDA8) O3 across eastern China in 2020. The proposed model combines LSTM with
an attentional mechanism and residual connection structure. The model employed total O3 column
product from the Tropospheric Monitoring Instrument, meteorological data, and other covariates
as inputs. Then, the estimates from our model were compared with real observations of the China
air quality monitoring network. The results indicated that our model performed better than other
traditional models, such as the random forest model and deep neural network. The sample-based
cross-validation R2 and RMSE of our model were 0.94 and 10.64 µg m−3, respectively. Based on
the O3 distribution over eastern China derived from the model, we found that people in this region
suffered from excessive O3 exposure. Approximately 81% of the population in eastern China was
exposed to MDA8 O3 > 100 µg m−3 for more than 150 days in 2020.

Keywords: ozone pollution; deep learning; human exposure; eastern China; tropospheric monitoring
instrument; long short-term memory network; data-driven model

1. Introduction

In the stratosphere, naturally occurring ozone (O3) protects organisms from the harm-
ful solar ultraviolet radiation [1]. However, ground-level O3 is harmful to humans and other
organisms at high concentrations [2]. Integrated findings from toxicological animal studies
and epidemiological studies allow us to state that O3 can react with unsaturated fatty
acids, amino groups, and other proteins, causing chest pain, memory loss, and decreased
vision [3]. In recent years, although many emission control measures have been stringently
enforced, China has experienced severe O3 pollution [4]. During 2015–2020, the O3-related
health impacts for all-cause and respiratory diseases vastly increased in China [5]. O3
pollution was particularly severe in eastern China; the annual daily maximum 8 h average
(MDA8) O3 in this region for 2015 was the highest nationwide [6], and increased by 13.3%
from 2015 to 2017 [7]. In Anhui Province, which lies in the western reaches of the eastern
China region, the annual mean O3 concentration increased by 15.6% from 2016 to 2020, and
the government declared that O3 has become the primary air pollutant [8]. Thus, a more
efficient method is needed to estimate the spatiotemporal distribution of O3 and assess its
population exposure level.
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Although China has established more than 1600 air quality monitoring sites, most
of the sites generally cover limited representative areas [9]. Conventionally, chemical
transport models (CTMs) and statistical models have been developed to compensate for
the inadequate spatiotemporal coverage of monitoring sites. The main features of CTMs and
statistical models have been described in many reports in the literature. In sum, CTMs (e.g.,
WRF-Chem, GEOS-Chem) simulate the environmental processes of O3 and its precursors
with the support of meteorological data and emission inventories [10,11]; their results tend to
be more interpretable, but the CTMs generally show higher uncertainties because of imper-
fect understanding of O3-related chemical mechanisms. Statistical models (e.g., land-use
regression (LUR), machine learning, deep learning) build regression equations between
predictive variables and O3. Although pure mathematical analyses lack the in-depth un-
derstanding of chemical mechanisms, statistical models can achieve higher accuracies with
less computational requirements. For example, recently some CTM studies for China O3
estimation reported that the coefficient of determination values were 0.5~0.7 [12,13], while
those of statistical models could be greater than 0.8 [14,15]. Therefore, statistical models are
considered a reasonable means of providing high-quality data for air pollution control.

The LUR model is one of the most widely used statistical models, which uses land use
types, meteorological elements, and other geographic factors near the monitoring site as
model inputs to build models for estimation of atmospheric pollutant concentrations where
there are no sites [16]. Although LUR has developed into a general model to simulate
the spatial distribution of city-scale atmospheric pollutants, it uses linear regression for
parameter fitting. Considering the complex and nonlinear relationship between O3 and
its predictors (e.g., surface pressure, solar radiation), LUR is not an optimal option for
modeling O3. Machine learning is another widely used technique based on statistical
learning theory. Efficient nonlinear algorithms enable ML models to capture the complex
relationships between the response and predictors [17]. A comparison between seven
ML models and five LUR models across the United States showed that the ML models
were superior in estimating the MDA8 O3 concentrations [18]. Recently, several machine
learning algorithms, such as support vector regression [19], random forest [20] and extreme
gradient boosting [21] have been successfully applied to map the distributions of air
pollutants. Although most researchers reported comparatively stronger performance, these
models have relatively low complexity and lack accurate calculation of the spatiotemporal
heterogeneities of air pollutants.

Deep learning techniques have some more sophisticated algorithms for processing
the potential spatiotemporal relationships between variables. Long short-term memory
(LSTM) network is a typical sequential network, which takes time-series data as inputs
and is recurrent along the time dimension. Using parameter sharing, LSTM can remember
information at different time steps [22]. Compared to classical machine learning algorithms
mentioned above, LSTM can infer the complex effects of variables over a time period on
the estimated results. For example, LSTM can not only learn the effects of today’s solar
radiation on ozone formation, but also can determine the potential role of solar radiation
in the past. In the field of atmospheric pollution research, LSTM has been widely used in
the prediction of changes in site observations in advance. For example, Kim et al. used
LSTM to predict daily PM10 and PM2.5 in South Korea, reported better performance with
the LSTM than with the 3-D CTM simulations [23]. Chang et al. developed an LSTM
model for PM2.5 prediction in Taiwan and reported that LSTM has obvious advantages over
support vector machine regression and gradient boosted tree regression [24]. Comparative
research on O3 prediction in Malaysia also reported that LSTM performed better than some
ordinary machine learning algorithms [25]. Although these works have great significance
for pollution control, the full-coverage O3 spatial distribution can not be obtained as a
result of the built models based on site observations.

The main challenges in the application of LSTM in satellite-based spatial predictions
of O3 over a large area can be summarized as follows: (1) The O3 concentration is very
dynamic, especially in the troposphere, but the temporal resolutions of remote sensing
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observations are relatively low. For example, most trace-gas-monitoring satellites are in
a sun-synchronous orbit, and can only provide daily products. (2) The quality control
of satellite-based/reanalysis data is not as robust as in situ observations; complicated
physical retrieval or assimilation processes can result in several uncertainties. To solve
these problems, we embedded an attention mechanism in the LSTM model and adopted
advanced atmospheric composition observation satellite Sentinel-5 Precursor total O3
column retrievals as one of the predictive variables. The model performances including
overall fitting ability, spatiotemporal extrapolation, and peak estimation ability were fully
evaluated by using observations from the China air pollution monitoring network. The
spatiotemporal distribution of MDA8 O3 was estimated in 2020 over eastern China at a
spatial resolution of 0.1◦ × 0.1◦. O3 spatiotemporal patterns and human exposure intensities
were determined based on a complete and credible dataset. This work can provide higher
quality pollution data products for environmental and epidemiological research.

2. Materials and Methods
2.1. Study Area and Ground-Level O3 Observation

The study area (Figure 1) included four provinces (Shandong, Anhui, Jiangsu, and
Zhejiang) and one province-level municipality (Shanghai), located in eastern China, ranging
from 26.98◦ to 38.45◦ N and 113.96◦ to 124.04◦ E. The total land area of the study area was
517,000 km2, with a population of 327 million, accounting for approximately 5.2% and 23%
of China’s land area and total population, respectively. It is thus one of the most populated
zones in the world. In addition, the industrial level of the region is highly developed,
with one of China’s largest comprehensive industrial centers (Shanghai-Nanjing-Hangzhou
Industrial Base), and its GDP in 2020 was 31% of China’s total GDP.
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Figure 1. Study area and the distribution of ground O3 monitoring sites.

The hourly O3 concentrations for 2020 were obtained from the website of the China
National Environmental Monitoring Center (CNEMC) [26]. The arrangements of monitor-
ing sites followed HJ 664-2013 specifications [27]. UV spectrophotometry was employed
to measure the O3 concentrations, and HJ 818-2018 specifications were used to ensure the
data quality [28].
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2.2. Tropospheric Monitoring Instrument Total O3 Column

Many studies have reported acceptable accuracy and reasonable consistency between
satellite-retrieved total O3 columns and surface O3 [29,30] concentrations. Additionally, the
useful ozone monitoring instrument (OMI)’s total O3 column in machine learning surface
O3 modeling has been reported. However, OMI has too many invalid data records due to
the sensor’s physical obstruction, which largely limits the application of OMI. As a succes-
sor of the ozone monitoring instrument (OMI), the tropospheric monitoring instrument
(TROPOMI) on board the Sentinel-5P (S5P) satellite aims to observe global atmospheric
components. Compared to OMI, the spatial resolution of TROPOMI is significantly higher,
with a signal-to-noise ratio improving between 1–5 times [31]. Therefore, various trace
gases such as O3, SO2, NO2, and CO can be measured more accurately. The total O3 column
Level-2 data product (5.5 × 3.5 km) was obtained from Copernicus Open Access Hub [32].
The TROPOMI-O3 was retrieved using a direct-fitting algorithm, and the bias with respect
to the ground-based O3 column density measurements was 3.5–5% [33].

2.3. Meteorological Data and Other Covariates

Meteorological variables were obtained from the ERA5 datasets (0.25◦ × 0.25◦) of
the European Center for Medium-Range Weather Forecasts [34], including surface solar
radiation downwards (SSRD), 2 m dew point temperature (D2M), 2 m temperature (T2M),
10 m eastward wind component (U10), 10 m northward wind component (V10), bound-
ary layer height (BLH), mean sea level pressure (MSL), surface pressure (SP), and total
precipitation (TP). The selection of meteorological variables was based on prior knowl-
edge of O3. For example, SSRD can reflect the intensity of sunlight, which affects the
photochemical reaction of O3 precursor pollutants [35]. BLH affects the diffusion space
of pollutants in a vertical direction [36]. Wind usually disperses concentrations from the
emission sources [37]. Temperature has an effect on the process of precursor generation [38],
and precipitation hints unstable atmospheric conditions [39].

Normalized difference vegetation index (NDVI), road density (RD), surface classifica-
tion (SC), surface elevation (DEM), latitude (LAT), longitude (LON) and day of year (DOY)
were also used as predictors. NDVI was obtained from MODIS 16-day product [40], and
RD was obtained from Open Street [41]. The SC and DEM were the input data for the
retrieval of O3 column density and provided together with the TROPOMI-O3 product. The
TROPOMI SC data were derived from the U.S. Geological Survey Global Land Cover Char-
acterization dataset [42], and DEM were derived from ECMWF and GMTED2010 [43]. In
addition, the population counts data (30 arc-second) for 2020 were retrieved from Gridded
Population of the World dataset v4 [44].

2.4. Date Preprocessing

A small proportion of missing values do not significantly change the spatiotemporal
characteristics of data for large-scale and long-term studies, and the most widely used
method involves omitting the missing sections. However, considering the limited time and
space in this study, there was a possibility of a large amount of missing data in specific
spatiotemporal domains that may contain significant information. For O3 monitoring
sites, the missing values occupied 0.75% to 22.9%. We compared five imputing methods:
latest-valid-observation (Baseline), linear interpolation (Linear), cubic spline interpolation
(CUBIC), Bayesian probabilistic matrix factorization (BPMF) [45] and low-rank matrix
completion (LMC) [46]. Some sites with high data-missing rates (>8%) were identified, and
then 20 testing sites with a missing rate of less than 3% near these sites were selected. The
root mean square error (RMSE) and mean absolute percentage error (MAPE) were used as
the metrics for evaluation of different imputed results.

For TROPOMI data, a quality threshold (ranging from 0 (poor) to 1 (excellent)) is
provided with the total O3 column product together to remove invalid data caused by poor
observation conditions (e.g., cloud cover) and bad retrieved results. Following the official
instructions, we only adopted data with a quality threshold greater than 0.5, leading to a
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few areas with missing data (2.8%). Considering the missing data did not show clear distri-
bution characteristics; we used ordinary kriging (OK) method to process TROPOMI data.

After processing the missing values, we selected the maximal hourly 8 h moving
average from 8:00 to 24:00 local time as daily MDA8 ozone level. All predictive variables
were resampled to 0.1◦ × 0.1◦ using appropriate algorithms. The meteorological and
TROPOMI-O3 data were resampled using the OK method. The surface classification was
resampled using majority resampling. Then, the TROPOMI-O3 and meteorological data
were extracted at the locations of the ground-based O3 monitoring sites, 6 days of data for
each variable were fused into a 2-D matrix with a size of 6 × 15 (6 days and 15 variables),
and the Z-score normalization method was applied to convert the distribution of original
variables into a standard normal distribution.

2.5. Model Development

Because the applications of LSTM are extensive and the principles are complex, the
schematic formulas will not be repeated in this study. We used three groups of trainable
parameter matrices to calculate the attention weight of each unit of the LSTM model. The
formulas are as follows:

score(hi, ht) = So f tmax(V(W1 + W2ht)) (1)

si = score ∗ hi (2)

st = ∑t
i si (3)

where hi denotes the output of LSTM at time i; V and W are the trainable parameter
matrices; si is the output at time i; and st is the final output.

The attention mechanism assigns a weight to the output of each time step, and then
the model uses this weight to obtain the final output. First, the attention score at each
time step was generated using Equation (1), where the Softmax function was used to
convert the calculation result into a probability. Then, the output of each time step was
updated via the attentional weight obtained using Equation (2). The final output (st) was
the summation of the output at each time step, obtained using Equation (3). In addition,
residual connection was adopted to solve the degradation problem in the deep learning
model. A one-layer LSTM with the residual connection and attention mechanism (AR-
LSTM) is shown in Figure 2.
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Figure 2. One layer AR-LSTM.

The parameters of the AR-LSTM model were determined by using exploratory experi-
ments. The preprocessed data were divided into two parts randomly, the training set and
testing set (8:2). For a deep learning model, the number of hidden layers, the number of
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neurons in each hidden layer, the loss function, and optimization should be determined
primarily. The grid search technique can be used to provide optimized parameter configu-
ration, but it is almost impossible because of the huge computational cost. Therefore, we set
the following parameters: optimizer (Adam), loss function (MSE), activation function (tanh)
and initial model structure (hidden layers and a fully connected layer with one neuron),
which are commonly used [47]. The number of hidden layers was selected from 1 to 6, and
the number of neurons in each hidden layer was determined from 16, 32, 64, 128, and 256.
The time steps were selected from 1 to 15. In addition, the automatic decay of the learning
rate and early stopping techniques were applied to reduce over-fitting.

2.6. Model Evaluation

Four cross-validation (CV) methods were used for model validation. The most fre-
quently used CV methods are sample-based CV and site-based CV. The sample-based CV
method is appropriate for evaluating the overall performance of the model, whereas the
site-based CV method can evaluate the spatial variations in model performance. However,
the distribution of sites was not inhomogeneous. There may be some training sites near the
testing sites. In this case, the features of the testing sites were closely related to those of
the neighboring training sites. Therefore, we introduced a city-based CV method to ensure
spatial independence of the testing sites. In the city-based CV method, the data are divided
into 10 folds by cities instead of sites. For temporal extrapolation capability, a month-based
method was adopted, which left one month out for CV.

The metrics included R2, MAE, root mean square error (RMSE), and mean absolute
percentage error (MAPE). In addition, peak validation was adopted to judge whether the
model could provide a reliable peak concentration estimation. Hit rate (HR), false alarm
ratio (FAR), missing rate (MR) and threat score (TS) were used as metrics to evaluate the
model ability for estimating MDA8 O3 over 100 µg m−3, which is the air quality guideline
(AQG) recommended by the World Health Organization (WHO). The formulas are as
shown below:

HR =
a

a + c
(4)

FAR =
b

a + b
(5)

MR =
c

a + c
(6)

TS =
a

a + b + c
(7)

where a denotes the number of samples in which observations and predictions are all
greater than 100 µg m−3; b denotes predictions more than 100 µg m−3 but observations are
not; c denotes observations more than 100 µg m−3 but predictions are not.

2.7. O3 Level and Human Exposure Assessments

For a given region and period, the population-weighted MDA8 O3 concentrations
were regarded as the O3 level and were calculated using the formulation formula [21]:

Cpw =
N

∑
i=1

(Pi × Ci)/
N

∑
i=1

(Pi) (8)

where Cpw is the population-weighted MDA8 O3 for the region (N grid cells); Pi is the
population density for grid i; and Ci is the MDA8 O3 concentration in grid i.

The nonattainment day was defined as >100 µg m−3 based on AQG. The exposure
intensities and durations were the cumulative percent of populations exposed to different
levels of MDA8 O3 [48].



Int. J. Environ. Res. Public Health 2022, 19, 7186 7 of 15

3. Results
3.1. Missing Data Imputation Results

The results from the five methods for site observations imputation are shown in
Figure 3. There was a negative correlation between the performances of imputed methods
and the duration of missing data, and the LMC method performed with relative stability. As
the missing data of TROPOMI-O3 were very small, the OK method had strong applicability.
Figure 4 shows the imputation results for TROPOMI-O3 data on 11 June; the missing
data imputed by the OK method were smooth and agreed well with the surrounding
original data.
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3.2. Model Configuration Selections

The performance of the AR-LSTM model with different parameters is shown in Figure 5.
The number of neurons directly affected model fitting ability, but too many neurons would
increase the computational cost and lead to over-fitting. We found that the model performed
optimally with the number of neurons equaling 128 (Figure 5h). Stacked multi-layers can
improve the nonlinear capability of deep learning models. As shown in Figure 5f, the
model performance gradually stabilized with the number of hidden layers over four. The
time steps determine the amount of information contained in time-series data; the mean
R2 value remained around 0.92 when the time steps were greater than 6 days (Figure 5g).
Therefore, the final AR-LSTM model had four hidden layers, 128 neurons in each hidden
layer, and the input time-series data had 6 time steps.
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3.3. Model Performance and Grid-Data Generation

Figure 6 shows four CV results. The sample-based CV and site-based CV showed
similar results, with an R2 value of 0.94. The city-based CV showed a significant reduction
in R2, RMSE, and MAPE values (0.85, 17.25 µg m−3, and 16.9%, respectively). The sample
divisions in the city-based CV are provided in Figure S1. Like the city-based CV, the results
of the month-based CV were also not as good as the first two commonly used CV methods.
The R2, RMSE, and MAPE values were 0.77, 21.03 µg m−3 and 21.17%, respectively. The
results suggest that the spatiotemporal extrapolation of AR-LSTM was not as good as
its overall prediction ability, and reveal the weak robustness of data-driven algorithms.
However, the accuracy of the AR-LSTM model was still acceptable.

The optimal model in sample-based CV was selected for the generation of O3 grid-data.
The comparison of results showed that there was a high degree of consistency between
the in situ observations and generated data, with the R2, RMSE, and MAPE equal to 0.94,
10.95 µg m−3, and 10.2%, respectively (Figure 7). We selected Tracking Air Pollution
China (TAP) MDA8 O3 dataset, which was generated by using CTMs and the data fusion
method [49], for consistency contrast. Figure 8 shows the spatial patterns of our data were
generally in good agreement with the TAP data, and our RMSE was lower. The R2 value for
each site and month are shown in Figure S2. Spatially, the quality of generated data was not
as good in the southwest. This could be because of the sparse distribution of monitoring
sites in the south. Temporally, the highest R2 values appeared in summer (0.97), and the
lowest value was observed in winter (0.90). From the point of view of peak validation, the
annual averages of HR, FAR, MR and TS were 0.94, 0.05, 0.06 and 0.90, respectively. We
also calculated peak validation metrics of each site (Figure S3) and month (Figure S4), and
there was no significant spatial nonstationarity.
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3.4. Comparisons with Other Methods

We selected several widely used machine learning and deep learning models includ-
ing RF, deep neural network (DNN), gate recurrent unit (GRU) [50], original LSTM and
CNN [51] for comparisons. The key difference between these models is how the spatiotem-
poral relationship of variables is processed. RF and DNN have no special spatiotemporal
relationship calculation logic, GRU and LSTM are two types of recurrent neural network,
and CNN uses spatial convolution structure to process spatial information. As for the
parameter selection for these models, GRU and LSTM adopted the same parameters as
AR-LSTM because the only difference between them was the structure of the internal
calculation unit. The parameters of RF, DNN and CNN were determined by using an
exploratory approach similar to that of AR-LSTM; the specific process can be found in
Figures S5–S7.



Int. J. Environ. Res. Public Health 2022, 19, 7186 10 of 15

Int. J. Environ. Res. Public Health 2022, 19, 7186 10 of 16 
 

 

 

Figure 7. Scatter plot of the generated data and in situ observations. 

 

Figure 8. Quarterly averages of MDA8 ozone of TAP, ARLSTM and in situ observations. The line 

plot below is a comparison of RMSE between the two datasets and in situ observations. 

3.4. Comparisons with Other Methods 

We selected several widely used machine learning and deep learning models 

including RF, deep neural network (DNN), gate recurrent unit (GRU) [50], original LSTM 

and CNN [51] for comparisons. The key difference between these models is how the 

spatiotemporal relationship of variables is processed. RF and DNN have no special 

Figure 8. Quarterly averages of MDA8 ozone of TAP, ARLSTM and in situ observations. The line
plot below is a comparison of RMSE between the two datasets and in situ observations.

Since the purpose of this article was the reconstruction of historical pollution data,
the sample-based CV and city-based CV were adopted as validation methods. Table 1
shows the CV results of various models. The performances of LSTM and GRU were better
than those of RF and DNN. The results indicated that the time series of variables provided
valuable information for O3 modeling. However, the LSTM and GRU models processed the
time series of variables in a relatively simple manner compared with our AR-LSTM model,
leading to less accurate results. For a more detailed explanation, the attention weights of
some of the samples are illustrated in Figure S8. We found that the largest attention weights
did not appear in the last epoch in approximately 8% of the samples. The assumption of a
decrease in the relationship between model inputs and O3 with time was not sufficiently
accurate. On the other hand, the performances of the CNN models had no clear advantages,
and the results indicate that the spatial information was of limited usefulness in this paper.
Presumably, that was due to the coarse spatial resolution of the input variables.

In addition, the performance of AR-LSTM was compared with similar studies pub-
lished recently (Table S2). Generally speaking, our model reached a relatively high level
in term of statistical metrics. However, due to the different study areas and periods, the
results are for reference only.
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Table 1. Performance of various models in sample-based CV and city-based CV. The bold is used to
emphasize the best results.

Model
Sample-Based CV City-Based CV

R2 RMSE MAE MAPE R2 RMSE MAE MAPE

RF 0.89 14.33 10.41 13.17 0.79 19.17 14.76 19.45
DNN 0.88 15.28 11.48 14.52 0.79 19.64 14.83 19.80
GRU 0.91 13.28 9.64 11.80 0.80 19.36 14.45 18.61
LSTM 0.92 12.80 9.34 11.45 0.82 18.65 14.10 18.14
CNN 0.90 13.72 10.26 12.96 0.80 19.70 14.92 19.93

AR-LSTM 0.94 10.64 7.52 8.82 0.85 17.25 13.07 16.90

3.5. Sensitivity Analysis of Modeling Variables

We carried out sensitivity analysis in the modeling stage. We implemented a variable
screening method based on the variable importance of the random forest (RF) model. RF
is an ensemble decision tree model, which performs a split according to a given splitting
criterion, and the variable importance can be obtained by weighing the improvements in
the splitting criterion in all the nodes where the variable appears as a splitter. Therefore, the
RF model is more explanatory than other machine learning models and is a natural model
for variable sensitivity analysis [52,53]. We built an RF model and removed variables in
ascending order based on variable importance; sample-based CV10 was used to evaluate the
model performance after removing one variable each time. Figure S9 shows the screening
results. The model achieved optimal performance after removing road density (RD),
probably because of its low temporal resolution. However, the result was not significant
enough to support a definitive conclusion. Considering that adding a variable had little
effect on the computational burden, all collected data were used in this paper.

3.6. Human Exposure Assessment

According to our predictions, the annual average population-weighted MDA8 O3 was
estimated to be 102.9 ± 33.9 µg m−3 across eastern China in 2020 (Table 2), showing an
increase of ~13% in five years [54]. Seasonally, the population-weighted MDA8 O3 was
predicted to be 120.1 ± 33.0, 118.6 ± 19.1, 101.3 ± 33.9, and 67.3 ± 18.4 µg m−3 for spring,
summer, fall, and winter, respectively. The O3 level peaked in spring over all provinces except
Shandong. Regionally, the population-weighted MDA8 O3 was found to be the highest in
Shandong (110.0 ± 43.5 µg m−3) and lowest in Zhejiang (94.8 ± 33.3 µg m−3). The overall
spatial pattern was higher in the north and lower in the south. To some extent, the spatial
pattern was related to the regional industrial distribution. Energy-intensive industries, such
as petrochemicals and non-ferrous smelting, which produce higher precursor emissions,
are the dominant industries in Shandong, but the economy of Zhejiang is dependent on the
information technology and tourism industries. In addition, the increase in VOC due to
anthropogenic emissions, such as coal combustion in Zhejiang, could be lower than that in
Shandong due to the lower population density.

Table 2. Seasonal and annual averages ± deviations of population-weighted MDA8 O3 for five
provinces and the all of eastern China in 2020 (µg m−3).

Region Spring Summer Fall Winter Annual

Shandong 124.23 ± 33.14 142.31 ± 36.48 101.99 ± 41.02 66.73 ± 19.14 110.03 ± 43.46
Anhui 116.58 ± 30.77 109.03 ± 23.31 102.24 ± 36.32 67.12 ± 19.44 99.69 ± 33.70
Jiangsu 122.91 ± 32.43 118.40 ± 29.46 102.05 ± 36.33 67.83 ± 19.55 103.87 ± 36.72

Shanghai 119.45 ± 32.50 107.32 ± 39.28 97.71 ± 34.38 70.80 ± 21.41 99.81 ± 36.94
Zhejiang 113.29 ± 33.06 95.53 ± 20.64 100.30 ± 35.72 66.53 ± 23.12 94.76 ± 33.32

Eastern China 120.06 ± 27.98 118.55 ± 19.10 101.33 ± 33.93 67.31 ± 18.36 102.89 ± 32.86

Note that although there were large intra-annual and spatial variations in O3 levels in
eastern China, the general trends showed severe O3 pollution. This was true even in Zhejiang,
which showed the best air quality, where the O3 levels in all seasons (except winter) exceeded
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the AQG. Additionally, the summer O3 level in Shandong (142.3 ± 36.5 µg m−3) was closer to
the interim target 1 (IT-1:160 µg m−3) formulated by the WHO. Figure 9 shows the exposure
intensities and durations, which provide more detailed information about the severity of
pollution. Approximately 81% of the population in eastern China lived in areas with more
than 150 non-attainment days (i.e., population-weighted MDA8 O3 > 100 µg m−3) in 2020,
and 15% of the population was exposed to O3 levels higher than the IT-1 value for more
than 60 days.
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4. Conclusions

This study proposed a new deep learning model to estimate the MDA8 O3 concen-
trations across eastern China on a 0.1◦ × 0.1◦ grid. Attention mechanism and residual
connection were introduced into each LSTM unit to improve its ability for temporal in-
formation processing. With the support of a small number of variables from the public
dataset, the AR-LSTM model achieved good performance (sample-based CV R2 = 0.94 and
city-based CV R2 = 0.85). In addition, this model is not limited in O3 estimation; it is easy to
employ similar model structures for the estimation of other types of air pollution, such as
PM2.5 or NO2. The assessments indicate that eastern China suffered severe O3 pollution in
2020. The annual average population-weighted MDA8 O3 concentration was estimated to
be 102.8 ± 33.1 µg m−3, and 81% of the eastern China population lived in areas with more
than 150 non-attainment days. The rapid implementation of emergency control measures
for O3 pollution is essential. Normalized control measures for VOC emissions should be
implemented in earnest, especially in Shandong province. The petrochemical industry and
companies that use large amounts of organic solvents, photo-oxidized technology, and
activated carbon adsorption cotton must be monitored vigorously. The government should
actively urge these companies to upgrade or replace their substandard VOC treatment
devices. Stricter measures should also be considered, such as banning asphalt and paint
spraying operations during the daytime and regulating the number of vehicles based on
the O3 concentration.

There are some limitations of this study that should be noted. First, the spatiotemporal
domain was relatively small. The dataset only contained a one-year temporal series and five
provinces. For a data-driven model, the amount of data is one of the key factors affecting
model performance. Second, the input variables were not very comprehensive. Regardless
of model complexity, more covariates such as emission inventories and other pollutants
should be considered, which may improve model accuracy. Finally, TROPOMI-O3 was
derived from a complex physical retrievals process that may introduce more uncertainties.
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Estimating surface O3 concentrations directly using the origin observations of satellite-
based spectral sensors should be considered.
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CV10, reds are the testing cities and grays are the training cities. Figure S2: R2 of generated data
for each ground monitoring site (a) and each month (b). Figure S3: Peak validation results for
each ground monitoring site. Figure S4: Monthly variations of peak validation metrics. Figure
S5: R2 and RMSE curves of RF model with different parameters. The number of weak estimators
directly determines the RF model fitting ability, which should be given priority. It can be seen from
(a) that the RF model could be stabilized when the number of weak estimators was greater than
~700. The maximum depth and the number of features to consider affect the fitting ability of each
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layers. Figure S7: The spatial sampling size of CNN determines the amount of spatial information,
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are the R2 curves of 16, 32, 64, 128, and 256 neurons with different layers and spatial sampling
sizes, respectively. (f–h) are mean values of different hidden layers, spatial sampling sizes, and
numbers of neurons, respectively. Figure S8: Some samples whose largest attention weights do not
appear at the last epoch. Figure S9: Backward variable selection, the changes in R2 (a) and RMSE
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