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Abstract
Development of a native language robust ASR framework is very challenging as well as an active area of research. Although an
urge for investigation of effective front-end as well as back-end approaches are required for tackling environment differences,
large training complexity and inter-speaker variability in achieving success of a recognition system. In this paper, four
front-end approaches: mel-frequency cepstral coefficients (MFCC), Gammatone frequency cepstral coefficients (GFCC),
relative spectral-perceptual linear prediction (RASTA-PLP) and power-normalized cepstral coefficients (PNCC) have been
investigated to generate unique and robust feature vectors at different SNRvalues. Furthermore, to handle the large training data
complexity, parameter optimization has been performed with sequence-discriminative training techniques: maximum mutual
information (MMI), minimum phone error (MPE), boosted-MMI (bMMI), and state-level minimum Bayes risk (sMBR). It
has been demonstrated by selection of an optimal value of parameters using lattice generation, and adjustments of learning
rates. In proposed framework, four different systems have been tested by analyzing various feature extraction approaches (with
or without speaker normalization through Vocal Tract Length Normalization (VTLN) approach in test set) and classification
strategy on with or without artificial extension of train dataset. To compare each system performance, true matched (adult train
and test—S1, child train and test—S2) and mismatched (adult train and child test—S3, adult + child train and child test—S4)
systems on large adult and very small Punjabi clean speech corpus have been demonstrated. Consequently, gender-based
in-domain data augmented is used to moderate acoustic and phonetic variations throughout adult and children’s speech under
mismatched conditions. The experiment result shows that an effective framework developed on PNCC + VTLN front-end
approach using TDNN-sMBR-based model through parameter optimization technique yields a relative improvement (RI) of
40.18%, 47.51%, and 49.87% in matched, mismatched and gender-based in-domain augmented system under typical clean
and noisy conditions, respectively.
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Introduction

In real-life applications, a speech signal heard in one’s
ear is a continuous mixture of different kind of signals
which are originated from diverse environments and record-
ing conditions. These adverse conditions greatly impact the
performance of state-of-the-art recognition systems due to
presence of unwanted information in an input speech sig-
nal [1]. Despite this, humans are well able to distinguish
different sounds frommultiple sources. In recent years, com-
municating with speech-oriented technological devices has
become a part of daily usage for billions of people around
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the globe in form of voice assistant applications: Amazon
Alexa, Apple Siri, Google Assistance, Microsoft Cortana [2,
3], etc. Moreover, human generally feel more comfortable by
communicating in their native language and thus making use
of their devices in real-life applications: military operations,
education and medical research. These social interactions
help parents in teaching their children in own native language
which eventually preserve two objectives: (i) keeping first
language alive, (ii) preserving literature and the pride of cul-
tural roots.Nowadays, languages are depleting at an alarming
rate, in fact, it has been reported that within next century,
almost 50% of existing languages enter into an endangered
stage [4]. Although, during spread of Covid-19 pandemic, a
demand for deployment of children-based speech technolo-
gies have become an important as well as challenging task
for various researchers. Many research works have been pre-
sented on adult, children, or mismatched training and testing
conditions with an objective of removing the constraints of
validating speech styles, classes, vocabularies as well as dis-
torted channels [5–8]. These variations in children’s speech
arises an urge for developing a robust ASR system which
will help in reflecting the future of human–computer inter-
actions in form of technological education. The other major
challenge is building of children ASR system in their native
language. To fulfill this requirement, one must have effective
resource (in form of application or device interface) as well
as adequate quantity of training data.

Hence,manyapproaches for artificial augmentation-based
generation of synthetic data under real-life adverse condi-
tions have been worked upon for fulfilling objective of large
training data requirement. Likewise, some researchers have
investigated automatic recognitionof children’s speechunder
mismatched conditions, i.e., training adaptation to adult
speech corpus but it has been awell-known challenging prob-
lem due to acoustic differences in speech of adult and child
speakers [9–11]. Apart, feature extraction exhibits a compact
representation of an input speech signal which is a foremost
step in development of an efficient ASR system. Since it is
not feasible to recognize speech signals from digitized wave-
forms due to large-scale variations, thereby, better aspect of
the application of noise-robust feature extraction techniques
is required to be considered such that the variability among
matched or mismatched systems is removed. The extracted
feature vectors are though well efficient in capturing relevant
information while discarding the redundancies originated
due to presence of noise in an input speech signal. Therefore,
various feature extraction techniques: RASTA-PLP [12],
MFCC [13], GFCC [14] and PNCC [15] have been inves-
tigated by various researchers with an effort of deploying an
effective noise-robust ASR system. For the past many years,
HMM has been a widely adapted modeling technique for
efficient learning of parameters corresponding to an acous-
tic model [16]. With progressive developments in ASR, the

flexibility and prediction power of deep learning algorithms
have enabled researchers to generate observational probabil-
ities for different HMM states. However, most of the hybrid
DNN–HMM architectures being trained for development of
speech recognition have been based upon their individual
classification of frames or on the basis of cross-entropy. It
helped in reduction of frame error rate. Apart, the generation
of speech which further processed using method of ASR is
considered a sequence classification problem. Therefore, to
better match the decision rule in case of matched and mis-
matched system, various forms of sequence-discriminative
training: MMI, MPE, bMMI and sMBR training criteria by
employing lattices are being evaluated by earlier researchers
[17–20]. The resultant techniques utilized GMM–HMM-
and DNN–HMM-based architecture which has resulted into
the continuous gains [21]. Subsequently, researchers have
expressed some of the disagreements pertaining to compara-
tive analysis of resultant techniques where MMI has been
performed better than that of MPE [22] and in [23, 24]
sMBR which resulted into effective gains in terms of accu-
racy. Later, these front- and back-end approaches capabilities
are employed in Indian Punjabi language.

In this paper, a robust Speaker-Independent ASR frame-
work has been presented on four front-end approaches:
MFCC, RASTA-PLP, GFCC and PNCC to explore effec-
tiveness of Punjabi speech recognition system on various
matched (adult speech in train and test) or mismatched (per-
mutational mix of adult and child speech in train and test
sets) systems. While in Punjabi language, the work on chil-
dren speech is almost zero and in adult at infant stage because
of the non-availability of child and very less adult speech and
text-labeled dataset. The implementation has been performed
on large adult data and very less children speech on origi-
nal and synthetic noise injected at lower SNRs. The impact
of various types of noises—Volvo, babble, pink, white and
factory has been analyzed alone or through pooling of all
noise dataset. Likewise, the problem of data scarcity has also
been overcome through creation of synthetic noise dataset
by pooling it with original corpora using out-data augmenta-
tion [25] strategy. Accordingly, in this research, the training
child data have been augmented with enough available or
self-created adult data with an effort of handling the prob-
lem of data scarcity and tried to boost the performance of
system in mismatched conditions. Moreover, the geome-
try of vocal organs of child and adult differs considerably
(smaller in children), which arises an urge for scaling of fun-
damental frequency or pitch. Thereby, an effort for removal
of inter-speaker variations and mismatch conditions among
test and train datasets has been investigated by utilization
of the methodology of VTLN [26]. In addition, the acous-
tic optimization methodologies based upon the procedure of
inter-frame-based discriminative training have been further
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employed and the performance is monitored for each frame-
work on hybrid front-end techniques.

The remainder part of the paper is organized as follows:
the next section describes the related work, and in the third
section, the technologies study employed are discussed. The
fourth section presents corpus use, and in the fifth section,
proposed approaches on heterogeneous robust ASR frame-
work using sequencing discriminative training are processed
in matched and mismatched systems using original and syn-
thetic dataset are outlined. The sixth and the last sections
present experimental study along with conclusion and future
work, respectively.

Related work

Earlier adaptations for development of an ASR system were
based upon the interpretation of phonemes for effective cre-
ation as well as recognition of vowel sounds. However,
development of noise-robust ASR systems has been greatly
affected by acoustic environments in the presence of back-
ground noise, reverberation and other distortions caused
due to interfering signals [27]. The primary requirement of
increasing efficiency of an ASR system in native language
is important and, basically, dependent upon the representa-
tion of compact information by utilizing various technique
of filtering noise and undesired information present in an
input speech signal. Gong et al. [28] analyzed the impact of
noisy conditions on building a robust ASR system by por-
traying a survey of 250 publications related to the techniques
while discarding undesired information present in form of
noise from an input speech signal. The researcher highlighted
the importance of categorization based on measurement
and analysis of noise-resistant features. The techniques for
speech enhancement and hidden Markov model adaptation
for the compensation of unwanted noise are also presented in
it. Likewise, Diethorn et al. [29] highlighted the use of noise-
reducing processors in modern daily-life communication
systems. It consists of telephone handsets, mobile phones,
teleconferences and in-home-based telephonic appliances
and speaker phones. The researcher focused on the meth-
ods of extracting useful information from a single-channel
noisy system by utilizing the techniques of short-time spec-
tral modification. Further, Farahani et al. [30] based upon the
higher value of SNR highlighted the minor adaptations in a
signal with performance degradation due to mismatch con-
ditions between train and test set. The researcher highlighted
the replacement of speech signal features with features gen-
erated on the basis of autocorrelation sequence. Ma et al.
[31] experimented on novel noise reduction algorithm by
utilization of Wiener gain function by exploring it on bias
and variance properties of the multi-taper spectrum. MFCC
has been a broadly used method for feature extraction; how-

ever, degradation of performance of most of the system is
seen under noisy conditions. Kadyan et al. [32] presented
heterogeneous feature vectors using MFCC and PLP fusion
along with RASTA which further utilized GA + HMM- and
DE + HMM-based hybrid classifiers under both clean and
real conditions. The researchers concluded with an overall
improvement using hybrid classifiers by~13% with MFCC
and DE + HMM when compared with RASTA-PLP. On the
other hand, many advanced noise-robust features: GFCC,
PNCC and their comparative analysis with different SNRs
have been presented by Zhang et al. [33]. The outcome
revealed noise robustness and effectiveness of PNCC fea-
ture extraction methodology under lower SNRs as compared
to that of traditional modifications of feature vectors using
MFCC and GFCC approaches. Moreover, the concatenated
features GF-MFCC for performance improvement in both
clean and noisy environments were investigated by Dua
et al. [34]. Since, the speech recognition was named as a
sequence classification problem such that there is an effec-
tive need for consideration of inter-frame constraints that
helped in optimization of HMM parameters alongside the
phonetic word references and powerful language model. On
the other hand, the estimation of HMM model parameters
was made by maximizing the likelihood when the states
of model were paired in a supervised manner [35]. How-
ever, Nádas et al. [36] concluded that non-consideration of
other possible word strings during MLE training frequently
leads to an increase in likelihood of word corresponding
to its transcribed utterances. Later Povey et al. [37] exper-
imented the comparison of the use of another discriminative
training MMIE and generally utilized MLE. The outcomes
showcased a significant increase in the performance of the
system using MMIE as compared to that of MLE on very
large data sets. Finally,Veselý et al. [22] represented the com-
parison of different sequence-discriminative training criteria:
MMIE, MPE, sMBR and bMMI. The outcomes of the com-
parison have demonstrated an average relative improvement
of 8–9% by utilizing the cross-entropy-based DNN model.
Finally, in this paper, an effort has been made to analyze the
characteristics of different front and back-end approaches on
less resource language like Punjabi. Consequently, process-
ing of inter-speaker variability in test set along with efficient
modeling of model parameters with various discriminative
approaches on train set.

Theoretical background

Feature extraction

The production of feature vectors is one of the mandatory
task that helps in the development of a noise-robust ASR sys-
temwhile preserving relevant information of an input speech
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Fig. 1 A comparative block diagram of heterogeneous front-end feature extraction approaches

signal. Thereby, various robust techniques: MFCC, RASTA-
PLP, GFCC and PNCC have been adopted to represent the
spectral envelope of a model as shown in Fig. 1.

It is having different capacity of handling required infor-
mation while discarding unwanted information present in an
input speech signal. MFCC has been one of the widely used
dominant methods for frame-by-frame extraction of spectral

features. The specific parameters for calculation of speech
spectrum are related to a frame sequence of N frames in an
input signal s(n, t) over time period t which are acquired by
the use of Fast Fourier Transform (FFT) using the following
equation:
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C(n, t) �
N−1∑

n�0

log

(
N−1∑

n�0

s(n, t) × e−2π jkn/N

)
e−2π jkn/N .

(1)

In RASTA-PLP, the spectral amplitude is changed using
methodology of the compression of non-linear transforma-
tion followed by computation of the critical-band power
spectrum as performed in PLP. This assesses into smoothing
of momentary noise variations which are present in signals.

It has utilized 17 band-pass IIR filter-channel [12] and
corresponding parameters are computed using all-polemodel
as shown in the following equation followed by the procedure
of inverse logarithm to acquire relative spectrum:

H(z, t) � (0.1) × 2 + z−1 − z−3 − 2z−4

z−4 × (
1 − 0.98z−1

) . (2)

In GFCC, the windowed signal is processed through a 64-
Gammatone channel filter bank corresponding evaluation of
the central frequency fcenter is given by time t, for which the
impulse response is computed through the following equa-
tion:

g( f , t) � ae− 2π
tbcm × cos(2π fcenter + ϕ). (3)

Further, the evaluation of derived filter is represented
which are equivalent to rectangular bandwidth (ERB)
through the following equation. Finally, separation of an
ambient noise in an input signal is performed by taking the
cube root of time–frequency (T–F) representations:

bm � b × ERB( fcenter) � 24.7

(
4.37 fcenter

100
+ 1

)
, (4)

whereas the processing of PNCC [15] has made a large
impact for consideration of progressively powerful features
with respect to acoustical variability and close to human
auditory processing. The environmental temporal integration
analysis for speech enhancement is performed by estimation
of themedium-time power through calculation of the running
average of power assessed. It is related to a single frame and
is given by

Q[m, l] � 1

2M + 1

m+M∑

m′�m−M

P
[
m′, l

]
. (5)

The negative output for linear high-pass filter in power
domain is performed in RASTA-PLP which is basically a
significant problem. It results in negative power coefficients.
Therefore, the process which makes the use of complete
asymmetric non-linear suppression processing along with

temporalmasking as in the following equationhelped innoise
suppression:

Q
t
[m, l] �

{
Q

0
[m, l], Q

0
[m, l] ≥ λtQp

[m − 1, l]

μtQp
[m − 1, l], Q

0
[m, l] < λtQp

[m − 1, l]
.

(6)

Moreover, the impact of ANS and temporal masking are
as shown in the following equation for a given time and fre-
quencywhich can be represented using process of smoothing
of weights:

Rp[m, l] �
{
Q

0
[m, l], Q

0
[m, l] ≥ λtQp

[m − 1, l]

μtQp
[m − 1, l], Q

0
[m, l] < λtQp

[m − 1, l]
.

(7)

This process is evaluated using weighted average func-
tion which is computed over an average relation of transfer
function corresponding to its ANS and temporal integration
using the equation as follows:

S[m, l] �
⎛

⎝ 1

l2 − l1 + 1

l2∑

l�l1

R
[
m, l ′

]

Q[m, l ′]

⎞

⎠. (8)

Acoustic modeling and parameter optimization
approaches

The estimation of posterior probability in corresponding to
HMM states is basically performed by the process of train-
ing of DNN–HMM system. HMM is a widely used model
that works in such a way that the transitional probabilities
between all the possible states of the model are contained by
a Markov Chain. In general, DNN is a feed-forward neural
network composed of a large number of hidden layers which
are subsided between its input and output layers. Therefore,
a logistic function mapped to a layer below x for correspond-
ing utterance u at time t in particular HMM states can be
represented as

yu(s, t) � logistic(x(s, t)) � 1

1 + e−xu (s,t))
. (9)

Consequently, the class probability Pu(s, t) for particular
utterance u at a given time t of such structure is obtained
using a SoftMax nonlinearity using the following equation:

Pu(s, t) � exp{au(s, t)}(∑
s′ exp{au(s, t)}′

) , (10)

where au(s, t) corresponds to an activation function cor-
responding to output layer at a particular HMM state (s).
Therefore, an optimization of a given objective function is

123



Complex & Intelligent Systems

usually trained using a standard error-back propagation pro-
cedure [13]. It is performed by evaluating a natural cost
function C as demonstrated in the following equation by
utilizing SoftMax output function. It tried to employ a cross-
entropy between target probability du(s, t) (generally, value
is zero or one) and probabilistic output of SoftMax nonlin-
earity as evaluated in Eq. (10):

C � −
U∑

u�1

∑

t

du(s, t)log(Pu(s, t)). (11)

Maximum likelihood estimation (MLE)

The most common methodology of maximum likelihood
estimation (MLE) is generally utilized to learn the param-
eters θ corresponding to HMM with an objective function
given by

FMLE(θ) �
∑

u�1..U

logPθ (Xu |M(u)), (12)

where u is total number of utterances corresponding to its
training set and Xu is an observation for M(u) graph of all
possible words and sequences in transcription Xu .

Maximummutual information estimation (MMIE)

Themethod ofMLE somewhere prompts the over-estimation
in assessed transitional probabilities. Along these lines, a
methodology of maximum mutual information estimation
(MMIE) is utilized with a scaling fudge factor κ to make
up for the over-estimation from the frame wise likelihood.
Subsequently, the likelihood identified with reference tran-
scription is adjusted which further tried to utilize MMIE
function that is being modeled as

FMMIE(θ) �
U∑

u�1

logPθ (Xu |M(u))k P(M |u)/
∑

w′
Pθ

(
Xu |M

(
w′))k P(w′)). (13)

On the other hand, it is well known that the objective func-
tion for MMI estimation is a sequence-based discriminative
training where the posterior probability of a word sequence
for a given acoustic is maximized. It is similar as that in for-
ward–backward MLE estimation which is represented using
Eq. (12). Likewise, for discriminative aspects, the optimiza-
tion of the objective function of MMIE is achieved through
the process of maximizing the numerator along with increas-
ing the likelihood of correct word sequence. In addition, the
denominator is minimized by decreasing the total likelihood
of all other word sequences unlikely.

Minimum phone error/minimumword error

It is well known that the MMIE estimation in Eq. (13) is
sentence-level, thereby the basic idea behindMPE/MWEhas
a direct relation to the sub-sentence, i.e., (words or phones):

F MPE
MWE

(θ) �
U∑

u�1

logPθ (Xu |M(u))k P(Mw|u)A(w,wu))

×
∑

w′
Pθ (Xu |M(w′))P(w′)), (14)

where A(w,wu) corresponds to the phone/word transcription
accuracy of a sentence w for a given referencewu. Therefore,
the optimization function for MPE/MWEwith the context of
given sentence reference is made by evaluation of the prob-
able sentences with lower phone error rates.

State-level minimum Bayes risk (sMBR)

Minimizing the error rate, which is calculated corresponding
to the HMM state topology along with its language model, is
performed by utilizing the procedure of state-MBR (sMBR).
Thereby, the model represented is similar to that of objec-
tive function FMPE/MWE(θ ) using Eq. (14) where Q(w,wu)
corresponds to the correct state labels accuracy given by

FsMBR(θ) �
U∑

u�1

logPθ (M(u))k P(Mw|u)Q(w,wu))/

∑

w′
Pθ (Xu |M(w′))P(w′)). (15)

Boosted maximummutual information estimation (bMMIE)

The optimization function of boosted-MMI estimation is a
modification of the MMIE function as in Eq. (13) with an
objective of boosting the likelihood of the path with more
error and is represented as in the following equation:

FbMMIE(θ) �
U∑

u�1

logPθ (Xu |M(u))k P(u)

∑

w′
Pθ

(
M

(
w′))k P

(
w′)e−bA(w′,u)), (16)

where b corresponds to the boosting factor and can be evalu-
ated at the word/phone level whereas the formulation of the
boosting likelihood paths at the state level can be evaluated
as in the following equation:

FbMMIE(θ) �
U∑

u�1

logPθ (Xu |M(u))k P(u)

∑

w′
Pθ

(
M

(
w′))k P

(
w′)e−bQ(w′,u)). (17)
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Table 1 Detailed information of Punjabi adult and children corpora

Characteristics Adult dataset Child dataset

No. of speakers 21 39

Speech data type Isolated words and
phonetically rich
sentences

Continuous speech
sentences

Recording
environment

Closed room using
dictaphone and
microphone

Open and closed
environment using
microphone

No. of utterances 3953 2159

Age 17–26 years 7–12 years

Duration 10 h 12 min 4 h 10 min

No. of unique words 6567 4863

Gender 9 male/12 female 20 male/19 female

Experimental overview

Dataset details

The experiments have been performed on different Punjabi
corpus which are composed of both adult and children cor-
pora. The adults’ ages range from 17 to 30 years with 22
speakers which have been recorded using a microphone in
a clean environment. Though adults are more trained than
children, it is somewhat difficult to collect the efficient data
required for developing robust childrenASR systems. There-
fore, a smaller number of 39 children’s speakers which range
from 7 to 12 years have been recorded takenwith andwithout
the use of amicrophone. All the recordings for both adult and
children speech signals are sampled at 16 kHz utilizing 40
non-silence phones and further the utterances are transcribed
in reference to the speaker-wise segmented dataset using an
open-source software package, i.e., Praat [38]. Likewise, for
handling the silence existing in the corpora, the use of silence
phones file along with oov.txt in Kaldi by including the silent
word, being termed as “< !SIL>” for the back-end process of
efficient resource management configuration has been done.
Thus, an arbitraryword fromvocabulary has been chosen and
likewise the selected silence word further has no influence
or impact on existing vocabulary set of phonemes/lexicons
being employed for training the system The summary consti-
tuting the more information on datasets is detailed in Table
1.

Further n-gram language modeling is trained which
depends upon the last (n − 1) words as in the following
equation. This helped in evaluating the likelihood of theword
sequence corresponding to a particular utterance through a
transcribed dataset.

P(w1, w2, w3 . . . wL ) ≈
L∏

j�1

P(w j |w j−2, w j−1). (18)

Table 2 Differentmatched ormismatched systememployed for training
and testing

Type of ASR Training Testing

Adult ASR-S1 system Adult dataset Adult dataset

Children ASR-S2
system

Children dataset Children dataset

Mismatched ASR-S3
system

Adult dataset Children dataset

Semi-mismatched-S4
system

Adult and children
mixed dataset

Children dataset

Currently, large number speech data as well as the
resources have been experimented on adult dataset. On the
other hand, nearly zero effort has been made for developing
children’s speech recognition systems in native languages
like Punjabi. Therefore, the work has been divided depend-
ing upon the use of four systems as shown in Table 2.

Noise augmentation

The essentiality is in learning the disentangled representa-
tions of an audio signal in the presence of the background
noise being injected at lower SNR. Thus, four different vari-
ations of the noise—factory, babble, white and pink noise
are taken from standard NOISEX-92 database [39]. These
noises have been injected at different SNR values in Eq. (19)
into the original clean dataset as detailed in Table 1. The sox
command through python [40] has been used to inject the
noise file into the input clean audio file. It generates noise
augmented samples by matching the sampling rate and dura-
tion of an input file of an adult dataset as shown in Fig. 2a and
child dataset as shown in Fig. 2b with respect to its original
clean speech signal.

SNRdB � 10 × log10
Ps

Pn
. (19)

Spectral augmentation

Conceptually, the warping factor is the ratio between the
length of a speaker’s vocal tract and some idea of a reference
vocal tract length. However, for calculating the length of a
speaker’s vocal tract from acoustic data is always a challeng-
ing task. Therefore, a certain warping factor ranging from the
values of − 0.20 to 0.20 with the step size of + 0.05 has been
chosen in this study with an aim of maximizing the proba-
bility corresponding to the normalized features. Under noisy
conditions it provides a particular notion for use of adequate
statistical model. Figure 3 illustrates the reference-derived
spectral warped audio for an adult is compared to children
audio such that an assumption for variation among the lip
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Fig. 2 a Adult original signal and noisy signal. b Child dataset original signal and noisy signal

Fig. 3 Comparative illustration of original children and spectral warped adult audio signal
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movements under the mismatched condition shows that it do
not affect the estimated warping factor.

System overview

The processing of clean speech always generates better out-
put in any ASR system but it becomes challenging with real
environment or synthetic noisy dataset. The real-life speech
when tested on a clean train systemdegrades the performance
of the ASR system. Therefore, an effort has been made to
evaluate the characteristics of different front-end approaches
to find an optimal approach that can yield better output for
both types of system (generally the system with environ-
ment differences between train and test set) using Kaldi
toolkit [41]. Initially, the original clean signal is injected
with different types of artificial noise using Algorithm 1. It is
possible through augmentation strategy which tries to fulfill
the requirement of data scarcity problem of training dataset.
Later pooling of such dataset has been performed such that
Fig. 1 demonstrates the method of noise-based data augmen-
tation through injection of background noise at varying SNRs
into different combinations of clean datasets as detailed in
Table 1. Although the perception of an individual identifying
with respect to frequency context present in corresponding
signal is elucidated to be non-linear. The case of machine
processing a real-world input speech signal is always chal-
lenging due to various inbuilt parameters like environment,
speaker and other acoustic features. To tackle such issue at
training and test end, initially four front-end feature extrac-
tion approaches:MFCC,RASTA-PLP,GFCC, andPNCCare
being investigated with a target of extracting robust feature
vectors that helped in extraction of relevant information in
spite of the presence of noisy background. The main focus of

the feature extraction process is the improvement of cepstral
representation by extraction of information which is nearly
close to the human perception. First, conventionalMFCC is a
widely used feature extraction approach which is based upon
the typical 40-channel Mel-Filterbank with a frame size of
25 ms and frame shift of 10 ms. The perceptual sensitivity
on the magnitude axis is taken into account by expressing
magnitude upon log-spectrum motivated by the use of mel-
scale. However, MFCCs are not robust to noise such that
the performance is degraded in the presence of an additive
noisy environment. Second, RASTA-PLP is more robust to
steady-state spectral features. In this technique, the tempo-
ral derivatives of critical log-spectrum are estimated using a
regression line based on first-order IIR filtering. Here, while
performing the process of integration, the pole of the system
(z � 0.98) through Eq. (2) is initialized. Therefore, the sepa-
rate channel estimation phase in the process of RASTA-PLP
helped in reduction of convolution noise which is quite dif-
ferent from that of processes being involved in techniques
with the change in transfer function. However, the accuracy
evaluated on the frequency scale is quantized based upon the
selection of different criteria of information extraction pro-
cess. In this way on third, the equivalent of MFCCs, which
is GFCC is computed based upon its 64-channel Gamma-
tone filter-bank using a frame size of 25 ms and a frame shift
of 10 ms. Later, PNCC is employed which makes the use
of typical frame sizes of 25 ms and 10 ms just like MFCC,
RASTA-PLP and GFCC approaches. In this process, every
frame in a particular audio signal is processed using Povey
window [41] and furthermore FFT is being evaluated on 256-
bit resolution. The initial processing stages for evaluation
of PNCC are quite similar to that of the stages of MFCC
and PLP. However, the difference lies in the process of the
analysis of frequency performed which are utilized using
gamma-tone filters. Further, the long duration temporal anal-
ysis accomplished using noise reduction is evaluated by a
series of non-linear time which lies on the varied operations
being performed.
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Algorithm 1: Feature extraction based upon random noise training augmentation strategy 
Step 1: Initialize the adult dataset as and children dataset as 

Step 2:Initialize the  containing four dB values and four different as:

Step 3: Initialize four robust systems as S1, S2, S3, S4 such that:

Step 3: Adding random noise onto the systems 

Step 4: Extract robust features vectors 

             Step 4.1: MFCC feature extraction  

) 
             Step 4.2: RASTA-PLP feature extraction  

//using equation 
             Step 4.3: GFCC feature extraction  

 //using equation 
             Step 4.4: PNCC feature extraction  

 //using equation 

Further, the final refined feature vectors are classified
by computing the cepstral mean and variance normaliza-
tion (CMVN) which are being evaluated using the following
equation for each process. It helps in fixing the data samples
such that they remain in an appropriate format as required
for the process of acoustic modeling.

c′(i, t) � (s(i, t) − μ(i, t))

σ (i, t)
. (20)

These features are further processed to remove inter-
speaker variability factors. In the first phase of training
procedure, mono-phone (mono) models are generated for

very small quantities of data. Further triphone models are
trained which includes the process of computation of the
delta features (tri1) and delta–delta features (tri2). However,
the process of splicing helped in extraction of 13-dimensional
features across±4 frames. It resulted in generation of 117
dimensional vectors. Thus, it is difficult to evaluate upon a
large number of vectors so the procedure of LDA + MLLT
(tri3) estimation is applied with an objective to reduce the
dimensions from 117 to 30. Finally, a global fMMLR is
applied to align the reduced dimensions to normalize the
inter-speaker variations. Finally, the different systems are
trained on hybrid DNN–HMM acoustic models as shown
in Fig. 4.
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Fig. 4 Basic block diagram of heterogeneous feature extraction-based ASR framework on true matched and mismatched systems

Fig. 5 Basic block diagram of robust ASR framework on vocal length normalized-induced front-end approach using varying discriminative sequence
training on mismatched systems

Fig. 6 Lattice network for word lattice in the speech utterance

Figure 5 demonstrates the proposed system utilized the
noise-robust PNCC features being experimented on a noise-
augmented pooled dataset for adults and the combination of
adult and child dataset. These extracted features are further
normalized using CMVN and further trained onmono-phone
(mono) and tri-phones (tri1, tri2, tri3) models as in the base-
line system. The inter-speaker variations among children
and adults are key parameters which try to enhance the

performance of the system. Therefore, the intuitive method
of VTLN has been implemented by warping the spectrum
in a frequency axis particularly on the test dataset. This
type of normalization helps in the reduction of inter-speaker
variability by relatively placing the format positions in its
normalized spectrum. However, the current ASR systems are
mostly trained with MLE and further methods of sequence-
discriminative training have been experimented. Moreover,
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the process of generation of lattices is also employed at
the modeling phase which serves as an important aspect. It
acts as an intermediate format between interoperation format
and the corresponding recognition passes. Lattices related to
the certain utterances are created through utilization of the
arrangement of back pointers for which a solitary Viterbi
back pointer is being stored at the word level. The visual-
ization of the lattice for a Punjabi word sequences is shown
in Fig. 6. It is converted into non-compact structural form
such that the comparing arcs are being removed alongside
the addition of acoustic and language model costs.

While implementing MMI as an objective function for
parameter optimization, maximization of the numerator (ref-
erence labels) and minimization of the denominator (chance
of others) is performed. The generated lattices are expanded
to HMM such that different pronunciations for the words
are accounted for by just considering only certain word
sequences available in the transcript. Finally, the state occu-
pancy probability (γ ) for both the numerator and the denom-
inator lattice occurrence is separately computed through the
following equations:

γ num( j, t) � P(qt � j |Xu, M
num), (21)

γ den( j, t) � P(qt � j |Xu, M
den). (22)

Here, the number of iterations (i � 1 to 8) for model-
space training in MMIE is experimented which helped in
the reduction of the likelihood of word sequences apart from
the reference utterances. MMI usually works by consider-
ing large segments of multiple patterns corresponding to the
utterance whereas MPE is focused on the optimization at the
sub-‘string pattern level. Therefore, the major impact is of
phones being implied such that the different language mod-
els substituting the value (n� 1, 2, 3, 4) in Eq. (18) are being
experimented. Moreover, the parameters for boosting the
likelihood of the word sequences (boost factor) which range
from 0.05 to 0.25 is considered for the process of bMMI.
It is well known that the MBR family use for optimization
was designed with an objective of minimizing the error rate
in reference to the different granularity of labels. The aver-
age accuracy of the given states referring to every path of
lattice corresponding to reference is evaluated. This helps in
the calculation ofMBR posterior which is computed over the
denominator lattices for utterance through Algorithm 2.
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Algorithm 2: Decoding process for generating word sequences based on the lattice production  
Step 1: Initialize the best path on the lattice L for words as

 Initialize the forward node distance 

 Initialize the forward arc distance

 Initialize the backward occurrence probability as 

 Initialize the temporary beta for arcs 

 Initialize array 

 Initialize //change function to be evaluated for word sequences 

Step 2: Produce the normalized sequence from the words 

Step 3: Compute the edit-distance over likelihood of the sequence for given position pos 

Step 4: Accumulate the stats for the required forward-backward propagation  

. . . . . . . .1

Step 5:
̂

̂

̂

Step 6: Remove from the sequence  to get the required word sequence 
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In view of a certain state-etiket, the undermined Markov
speaker model requires some very simple expressions: it
is simply the product of the probabilities of sound char-
acteristics for every frame which fits into this label (i.e.,
the acoustic classifier results, known as the acoustic score)
and the probability of each frame being multiform. In addi-
tion, there may be a much greater state than the label, for
example the number of steps taken inside that phone, the
mode of the phrase and the preceding words. The signif-
icance of using word sequence-based decoding process is
being utilized in sequences of separate decision problems
involving tiny sets of confusing words for segment lattices
being created for developing a general-purpose automated
speech recognition (ASR) system. Likewise, in successive
rescoring SMBR passes, acoustic models which distinguish
between competing words in such classes are subsequently
employed. Hence, the refinement of the search area which
permits specialized models of discrimination is proven to be
an advantage over rescoring with classically trained models
of discrimination. Finally, these specialized models of dis-
criminative training involving adult dataset and adult–child
mix training are trained on hybrid DNN–HMMmodels con-
sidering both clean and noisy environments as a test set. The
key impetus, however, is to train the model, which is effec-
tive in capturing long-term dependence between the missing
acoustic characteristics. Thus, the capture of these long-
termmaladjusted relationships became efficient later on with
another modified neural network design of TDNN. Thus,
both DNN and TDNN architecture are ultimately trained for
speed disturbed data via sequence-based training optimiza-
tion of acoustic modeling. The corresponding performance
is represented in the form of Word Error Rate (WER) and RI
using the following equations, respectively:

WER(%) � S + I + D

N
, (23)

RI(%) � (NE − OE)/OE. (24)

Experimental results

Performance analysis on adult, children
andmismatch ASR system under clean
environmental conditions

The four-baseline system (S1–S4) has been initially framed
by evaluating following systems: true matched (adult train
and adult test—S1 system, child train and child test—S2 sys-
tem), truemismatched (adult train and child test—S3 system)
or semi-matched (adult + child train and child test—S4 sys-
tem). All the systems have been evaluated in clean train and
test conditions using conventionalMFCC front-end approach

Table 3 WER obtained on different system type using conventional
front-end (MFCC) and acoustic model method in clean environment
conditions

Training set Testing set System type DNN (WER%) (%)

Adult Adult S1 6.52

Child Child S2 15.43

Adult Child S3 41.28

Adult–child Child S4 14.27

only. It has been analyzed from Table 3 that system S1 and
S2 performedwell on the DNN–HMMacoustic model with a
WERof 6.52%and 15.86%. It also showed that the S3 system
has large decay of performance accuracy due to acoustic vari-
ability among child and adult speech. It represents a WER of
41.28% which is highest among all the systems. In addition,
to further enhance the accuracy of the S3 system, a small
corpus of children speech has been included in S4 training
set and tested on the same test set of S3. It obtained a perfor-
mance improvement with a R.I. of 10.02% in comparison to
that of S3 system.

Performance analysis for matched andmismatched
ASR system under varying noisy test conditions

To better understand the impact of environment variation
between clean trains and varying test conditions, we plot all
systemWER performance using four different front-end fea-
ture vector approaches. Figure 7a–d shows the system WER
obtained after each noise level in dB tested on DNN–HMM
classifier using four front-end feature extraction approaches
ofMFCC,GFCCPNCC andRASTA-PLP, respectively. First
MFCC is evaluated which is found to be efficient in clean
test signals but it is not robust to noisy test signals. Sec-
ond,mediumSNR-based noisy test signals are evaluatedwell
with GFCC. At lower SNR’s both GFCC and RASTA-PLP
performance are degraded so it is not worth in producing
desired output. Apart, RASTA-PLP is found to be beneficial
in only reduction of convolution noise at intermediate SNR
values. Finally, PNCC performed asymmetric filteringwhich
is found to be beneficial in suppressing background excita-
tion and performing temporal masking. It can be noticed that
PNCC performed well at large as well as less noisy dataset,
whereas other approaches failed to achieve accuracy some-
how at lower or upper SNRs.

It seems that in real application conditions where it is not
mandatory to have a clean test signal, every signal may have
a certain level of noise so finally PNCC worked well with
large noisy dataset systems whereas MFCC with only clean
test conditions. While there is a small benefit with GFCC has
been also noticed with a limited SNR value within a middle
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Table 4 WER obtained on noise augmented train set using varying front-end approaches

Training set MFCC RASTA-PLP GFCC PNCC

Clean test set Noisy test set Clean test set Noisy test set Clean test set Noisy test set Clean test set Noisy test set

S1 + random noise 7.32 9.42 7.01 8.25 6.50 7.12 5.99 6.04

S2 + random noise 15.61 18.55 15.07 17.42 14.61 15.66 13.24 13.31

S3 + random noise 42.21 49.62 41.93 47.26 40.15 44.13 37.21 39.23

S4 + random noise 14.18 17.96 13.86 16.51 13.16 14.53 12.67 12.69

range noisy or clean system with a smaller gain than noisy
systems tested with MFCC.

Performance evaluations on random noise-based
training data augmentation

To further enhance the performance of the systems, each train
system is augmented with synthetically induced noise sig-
nals. This pooling results in an enhanced train system which
indulges the characteristics of different noisy signals at dif-
ferent SNR levels. The best signal accuracy obtained from
Fig. 7a–d is taken into consideration that has been exper-
imented on both clean test and noisy test conditions. The
matched ormismatched systems accuracy has been enhanced
by four front-end approaches. After training on augmented
data in each four systems, it has been analyzed from Table
4 that S1–S4 has a R.I. of 36.41%, 28.94%, 25.01% and
29.45% using PNCC approach. In preliminary experiments,
we experimented each test signal at different SNR’s only. But
to directly measure the impact of each individual front-end
approachboth clean andnoisy test speech is provided to every
individual augmented train set. In a control mixing of noisy
test sets, we found that PNCC outperformed in comparison
to that of all other front-end approaches.

Performance analysis of discriminative analysis
under noisy and clean conditions when adult
and adult–child in training set

The experiments thus far worked on the front-end system but
to produce the better output system training and feature clas-
sification on the train dataset also plays an important role.
We now evaluate the best output of Table 3 above by fix-
ing PNCC as a front-end approach only. To further boost the
systemperformance, initially, optimal value ofMMI iteration
has been performed. It is evaluated on both environment test
sets using S1 and S4 systems only. The purpose of selecting
these two systems is that in S1 only the adult test is evaluated,
but in S2 and S3, only the child is evaluated which performs
better in only the S4 system. Table 5 shows that the S1 and S4
systems performed better at iteration value of 3 in clean and
4 in noisy test sets. It obtained a RI of 6.01% and 4.26% in

Table 5 WER obtained on varying no of MMI iterations in matched
and mismatched systems using clean and noisy test sets

No. of iterations (MMI) WER (%)

Clean test set Noisy test set

S1 S4 S1 S4

1 6.97 14.25 6.89 13.89

2 6.25 13.12 5.97 12.27

3 5.63 12.65 5.5 12.14

4 5.68 12.13 5.61 12.07

5 5.59 12.19 5.48 12.12

6 5.58 12.17 5.51 12.09

7 5.59 12.18 5.51 12.11

8 5.59 12.17 5.5 12.11

Bold values imply a reduced word error rate (WER) that will be carried
through

clean and a RI of 8.94% and 4.88% in noisy test sets in both
the systems. In addition, we also conclude that parameter
optimization using MMI performed better than conventional
MLE approach which is employed with default DNN–HMM
model. It contributed due to occupancy of probability in case
ofmodel-space training by reducing the impact of likelihood.
It is only possible by maximizing the numerator and mini-
mizing the denominator values in each lattice.

Similar to MMI further MPE is also tested which gener-
ally employs large segment feature information. It basically
processes on small string values to further experiment phone
level utilization.While performing such optimization, differ-
ent LM based on 1, 2, 3 or 4-g are evaluated as in Table 6 on
each test set of S1 and S4 systems. While performing such
optimization, it can be analyzed that it generates improved
results on 3-gm LM with a R.I. of 2.54% on S1 and 3.56%
on S4.

To select an efficient optimization approach, further boost
value is tried to be selected from different boost parameters
of bMMI approach as in Eq. (17). Its impact has been studied
and Table 7 depicts that an optimal boost value of 0.15 in S1
and S4 clean and 0.2 in S1 and S4 noisy test set has been
evaluated to obtain an efficient boosting value of numerator
lattice. It has been performed by boosting the word sequence
likelihood.
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Fig. 7 a WER obtained on
utilization of MFCC feature
extraction technique on both
matched and mismatched
systems. bWER obtained on
utilization of RASTA-PLP
feature extraction technique on
both matched and mismatched
systems. c WER obtained on
utilization of GFCC feature
extraction technique on both
matched and mismatched
systems. d WER obtained on
utilization of PNCC feature
extraction technique on both
matched and mismatched
systems
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Table 6 WER obtained on
varying no of LM models with
MPE training criteria in matched
and mismatched systems using
clean and noisy test sets

LM WER (%)

Clean test
set

Noisy test
set

S1 S4 S1 S4

1-g 7.56 14.21 7.52 14.04

2-g 6.61 12.27 6.47 12.02

3-g 5.57 11.74 5.39 11.64

4-g 5.59 11.81 5.4 11.66

Bold values imply a reduced
word error rate (WER) that will
be carried through

Table 7 WER obtained on varying boost factor with MMI approach in
matched and mismatched systems in clean and noisy test sets

Boost factor WER (%)

Clean test set Noisy test set

S1 S4 S1 S4

0 (mmi) 5.63 12.13 5.5 12.07

0.05 5.6 12.04 5.47 12.01

0.1 5.52 11.93 5.43 11.87

0.15 5.49 11.89 5.39 11.73

0.2 5.51 11.74 5.41 11.64

0.25 5.53 11.76 5.44 11.66

Bold values imply a reduced word error rate (WER) that will be carried
through

In summary, it can be concluded that all the above
parameter-tuned approaches are evaluatedwithDNNon each
system (S1 and S2 on different test sets). To further enhance
the system performance, sMBR is employed where each
lattice is produced on each HMM state. It is possible by
framing lattice on each corresponding state. It helps in eval-
uation of average path using MBR posterior probabilities. It
is employed on denominator lattices byminimizing error rate
in reference to different levels of granularity. Table 8 shows
that each lattice-based parameter optimization approach has
achieved a certain level of systemperformance improvement.
These tuned optimization-based DNN acoustic models as
in Table 8 achieved a RI of 10.58% in case of S1 and RI
of 14.34% with DNN-sMBR model in comparison to other
parameter-optimized approaches in each system. It helped in
improved matched and mismatched systems with less train-
ing complexity.

Performance analysis of gender-based selection
under mismatched system on clean and noisy test
dataset

The experiments thus far worked on the mismatched con-
ditions where enough present adult data are mixed with
low-resource children dataset to resolve the problem of data

Table 8 An overview of WER obtained discriminative training
approaches in matched and mismatched systems using clean and noisy
test sets

System type WER (%)

Clean test set Noisy test set

S1 S4 S1 S4

DNN-MMI 5.63 12.13 5.5 12.07

DNN-MPE 5.57 11.92 5.46 11.76

DNN-bMMI 5.49 11.74 5.39 11.64

DNN-sMBR 4.97 10.17 4.82 9.97

scarcity. In these set of experiments employing discrim-
inative training techniques, the adequate measure for the
gender-based selection is further experimented. These set of
experiments help in finding the adequate gender-selection
considering female adult and male dataset individually
for testing the familiarization and likelihood with children
dataset. Therefore, from the Table 9, it can be observed
that the female adult data have adapted more with the chil-
dren dataset such that a certain level of system performance
improvement in contrast to adult male dataset under mis-
matched conditions has been obtained. The reason for such
improved performance is much familiarized characteristics
of children and female including the vocal tract length dif-
ferences, speaking rates and pitch concerning the same. The
female-based selection as in Table 9 achieved a RI of 1.18%
and 1.02% with DNN-sMBR model in contrast to S4 sys-
tem being evaluated in Table 8 under clean and noisy test
conditions.
Performance analysis under augmentation adult
and adult–child in training set

To avoid the issue of data scarcity and inter-speaker vari-
ations that are caused due to less child train dataset and
variations caused due to vocal tract length of adult and child.
We first artificially increased training dataset by pooling of
original S1 and S2 speech through mixing of artificial noise
alongwith three-way perturbation thatmake three-time train-
ing data which tried to make full utilization of DNN-sMBR
and TDNN-sMBR approach. TDNN-sMBR-based discrim-
inative acoustic training has outperformed DNN-sMBR as
per the evaluations being detailed in Table 10. Likewise, the
system has been evaluated on the PNCC front-end approach
using a different test set. The system also tested with and
without vocal tract length normalization approach. This nor-
malization tried to overcome the issue ofmismatched training
and test speech signals. It can be performed by normalizing
only the test set by processing it on without normalizing the
train set. Therefore, TDNN-sMBR modeling results in an
overall RI of 40.18%, 47.51%, and 47.64% on S1 ASR sys-
tem, S4 ASR system and female adult selected ASR system,
respectively.
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Table 9 An overview of WER
obtained of discriminative
training approaches employing
gender-based selection on
mismatched system using clean
and noisy test sets

System type WER (%)

Clean test set Noisy test set

Female adult + child Male adult + child Female adult + child Male adult + child

DNN-MMI 11.81 12.34 11.69 12.26

DNN-MPE 11.85 12.32 11.65 11.82

DNN-bMMI 11.57 11.80 11.44 11.85

DNN-sMBR 10.05 11.01 9.85 10.34

Table 10 An overview of WER
obtained from perturbation
training using PNCC and VTLN
approaches in matched and
mismatched systems using clean
and noisy test sets

Training set Classifier type PNCC PNCC + VTLN

Clean test set Noisy test set Clean test set Noisy test set

S1 + noise + 3-way DNN 4.64 4.68 4.37 4.48

S4 + noise + 3-way 9.38 9.24 8.82 8.64

Female adult + noise +
3-way

9.31 9.18 8.71 8.62

S1 + noise + 3-way TDNN 4.18 4.27 3.90 4.02

S4 + noise + 3-way 8.89 8.65 8.26 8.10

Female adult + noise +
3-way

8.85 8.59 8.20 8.08

Fig. 8 WER obtained on utilization of spectral warped adult female dataset employed with PNCC + VTLN-based feature extraction technique on
mismatched systems

Performance analysis based on gender-based
spectral augmentation under mismatched
conditions

The use of the normalization methodology aided in the opti-
mization of signal frequency axes via an appropriately chosen
warping factor. Aberrations induced by changes in voice

tract length, on the other hand, can be represented by a
simple linear warping within the spectral domain of audio
signals. Thus, the methodology of spectral-based augmenta-
tion has been applied in the context of speaker-independent
ASR, wherein speaker-independent HMMs are developed
using syllables from a gender-based selection of adult speak-
ers. The spectral augmentation approach applied on gender
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Table 11 An overview of WER
obtained after combining
spectral warping technique
through mismatched systems on
clean and noisy test sets

Training set Perturbation type Classifier type PNCC + VTLN

Noise augmented
dataset

Warping factor Clean test set Noisy test set

Female adult +
noise

– Three-way TDNN 8.20 8.08

− 0.1 + 0.05 7.75 7.06

− 0.1±0.05 7.78 7.14

0.05±0.05 7.86 7.34

dataset using PNCC + VTLN- on TDNN-based classifier
has enhanced the system’s performance, as shown in Fig. 8.
The optimum findings are obtained at − 0.1, − 0.05, and +
0.05 values of the warping factor. It has been reported that an
adequate development of speaker-independent HMMsystem
with sufficient gender selection is produced over a frequency-
adjusted feature. Furthermore, the experimentation tried to
consider the PNCC + VTLN feature set using TDNN clas-
sifier on permutation mixture of optimum spectral warping
factors. Table 11 details the combinational values of spec-
tral warping factor, i.e., − 0.1 and 0.05 which resulted into
an enhanced performance through RI of 5.49% and 12.62%
in both clean and noisy conditions. Thus, the transformation
matrix variant on gender selection can be thought of as a
bank of FIR filters that can be effectively utilized such that
the impulse responses while adapting from adult to children
are easily available given that the spectral warping transform
is not time invariant.

Comparative performance analysis of proposed
system architecture with earlier implemented
approaches

Automatically recognizing speech in children’s speech under
certain inconsistencies including mismatched conditions,
i.e., on adult speech models, is a well-known difficulty, con-
sidering the variations in language of adults and children.
The study on children’s speech is almost zero concerning
low-resource languages as the children’s speech and label-
ing details are unavailable. Likewise, the developed ASR
systems are normally trained on sufficiently accessible or
self-created spoken information for adults, and are checked
on child speech data to solve the above problems. In addi-
tion, the geometry of vocal organs in both children and adults
(smaller in children) differs significantly, resulting in the
scaling of the fundamental frequency or pitch. The accu-
racy of stochastic determination generally depends on the
assumption of mathematical models matching a signal input.
However, computation limitations on a handy amount of data
necessary to accurately adjust pattern parameters in sequence
training are modest in the case of child speech recogni-
tion. The problem of data scarcity is evaluated by training

the ASR system on suitably useable or automatically gen-
erated adult language data and child speech data training.
Therefore, Table 12 summarizes the already implemented
approaches concerning children and low-resource languages
in contrast to the proposed system architecture employing
PNCC + VTLN feature extraction on TDNN-sMBR archi-
tecture.

Conclusion

In this study, heterogeneous front-end: MFCC-, GFCC-,
RASTA-PLP-, and PNCC-based robust ASR framework has
been systematically presented that provides better accuracy
using various parameter optimized sequence-discriminative
training approaches on acoustic modeling phase. These
approaches have been implemented on large adult speech
and very low child speech on true matched and mismatched
systems. Further, the issue of data scarcity caused due to
small original train speech is resolved using out-domain
augmentation strategy. These results in large training com-
plexity because of the multi-style data augmentation strategy
employed through pooling of original speech and noise
injected at different SNR level synthetic speech. It resulted
into over fitting and confusion of acousticmodel information,
so it is additionally processed using parameter optimiza-
tion of feature vectors by MMI, MPE, bMMI, and sMBR
approaches which are processed on the basis of lattice gen-
eration, and adjustments of learning rates. It tried to be
demonstrated for developing an effective training system.
Moreover, the adequate gender-based selection concerning
adult data has solved for the problem of the data shortage as
well as reduced differences of acoustic mismatched param-
eters including frequency and vocal tract length has led to
substantial improved performance of the system. Further,
this paper also included additional inter-speaker variabil-
ity reduction methods between adult and child speech using
the VTLN approach in the test set only. It is found to be
efficient in normalization of training and testing dataset dif-
ferences caused due to varying vocal length through optimal
selection of warp factor. The experiment results showed that
ASR frameworks investigated on PNCC+VTLNapproaches
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Table 12 Comparative analysis and summarization of earlier implemented approaches in constant to proposed system architecture

Author details Dataset details Methodologies Summary

Kadyan et al. [13] Punjabi adult corpora constituting
continuous and phonetically rich
sentences

MFCC; GFCC-based hybrid
DNN–HMM and GMM–HMM
modeling

The reduction in size, vector
knowledge de-correlation and
speaker heterogeneity are being
discussed by the researcher
employing LDA, transition
probability, speaker adaptive
tri-phones, highest probability,
linear regression adaptation
models. In two hybrid classifiers,
the accuracy of the interconnected
and ongoing Punjabi voice corpus
is studied. GMM–HMM and
DNN–HMM with the
experimental configuration
detailing significant RI of 4–5%
and 1–3%, respectively

Shivakumar et al. [5] English language children dataset
employing transfer learning

MFCC-based GMM–HMM and
DNN–HMM-based modeling

The paper presents a systematic and
an extensive analysis of the
proposed transfer learning
technique considering the key
factors affecting children’s speech
recognition from prior literature.
Evaluations are presented by
making the comparisons of earlier
GMM–HMM and the newer DNN
Models such that the author had
experimented for the detailed
effectiveness of standard
adaptation techniques versus
transfer learning

Kumar et al. [42] Adult data comprising of 13,218
Punjabi words with over 200 min
of recorded speech

MFCC feature extraction technique In this paper, the author has
experimented for auto-denoising
method employing the
novel Corpus Optimization
Algorithm on the Punjabi
language corpus. At the same
time, for 13,218 Punjabi words,
the WER was lowered to 5.8%.
Likewise, some other important
factors such as the total
probability per frame and the
convergence ratio spanning
different iterations for obtainable
Gaussian mixtures has also been
evaluated and consequently the
improved performance of the
system has been relatively
being suggested

Gretter et al. [43] TLT-school corpora containing
Italian children recorded English
dataset

Metrics for collection of adequate
children data based upon good
pronunciation vs bad
pronunciation

The researchers have maintained for
the collection of corpuses
corresponding to students
between 9 and 16 years of age,
students from elementary,
secondary and secondary schools,
was registered in 2017 and 2018.
Both statements have been
obtained by human experts with
regard to certain predefined ability
measures
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Table 12 continued

Author details Dataset details Methodologies Summary

Kadyan et al. [44] Punjabi children speech corpora MFCC; MFFC + Pitch; MFCC +
Pitch + VTLN-based
DNN–HMM modeling

Substantially lower error rates from
an increase in off-domain data
dependent on prosody
modifications has been
experimented by the researcher.
Furthermore, the authors analyzed
the impact of changing the
number of senones, the number of
hidden nodes and layers, and the
early stagnation, which resulted in
a relative improvement of 32.1%
(RI) in contrast to the baseline
structure of different senones

Dua et al. [45] Hindi speech corpora Discriminative training based on
MPE through variations among
the quantity of Gaussian mixtures

The researcher has trained speech
recognition through interpolation
of language model and
discriminative approaches. They
achieved a relative improvement
of 85.45 under clean and 82.95
under noisy conditions

Kadyan et al. [46] Punjabi adult corpora comprising of
isolated and phonetically rich
sentences

MFCC coupled bottleneck features
based on Tandem-NN acoustic
modeling

In this paper, the authors have
processed context-independent
input speech signal information
through utilization of bottleneck
characteristics. Further noisy data
have been handled and
experimental results revealed that
under clean and noisy settings a
Tandem-NN system achieved a RI
of 13.53% as compared to the
Baseline system

Dua et al. [47] Hindi continuous sentences speech
corpora and noise augmented
dataset

Use of noise-resistant integrated
features and an improved HMM
model for the development of
discriminatively trained speech
recognition system

The suggested study has examined
that with MF-PLP and MF-GFCC
alone or integrated feature vectors
results into large performance
improvement

Kumar and Aggarwal [48] Two low-resource Indo-Aryan
family languages including Hindi
and Marathi

Integrated features vector with
RNN being employed on Hindi
ASR system utilizing MLLR and
constrained-MLLR)

The researcher experimented 256
Gaussian mixtures corresponding
to every HMM state using
discriminatively trained method
of MMI and MPE. The
experiments showcased that the
discriminative training has been
improved in comparison to
baseline system by 3%

Bawa et al. [1] Gender-based selection under
mismatched conditions

MFCC; GFCC-based DNN–HMM
modeling

The study attempts to create Punjabi
Children ASR in mismatched
parameters via noise-robust
techniques such as the MFCC or
GFCC. Accordingly, acoustic and
phonetic differences between
adults and children are managed
by gender-based selection of adult
data and subsequent acoustic
variability across speakers in
training and test conditions are
normalized by means of the
VTLN with 30.94% of RI in
comparison to the baseline system
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Table 12 continued

Author details Dataset details Methodologies Summary

Proposed approach Punjabi adult and children under
mismatched conditions

PNCC; PNCC + VTLN-based
DNN-sMBR and TDNN-sMBR
modeling; gender-based selection;
spectral augmentation

(i) The results demonstrate that
ASR frames examined on PNCC
+ VTLN techniques are only
successful when testing it on
sMBR optimized acoustic models.
The outcomes of these
experiments shown that an overall
RI of 40.18%, 47.51%, and
47.64% are achieved, respectively,
with S1 and S4 ASR systems and
female adult-selected ASR system

(ii) Second, the gender-based
spectral augmentation has led to
an enhanced performance
improvement of 49.87% in
comparison to the baseline system

are found to be effective with only test normalized sys-
temsonTDNN-sMBR-optimized acousticmodels.However,
the results show a relative improvement of 47.51% on
mismatched, 40.18% on matched systems and 49.87% on
adequate gender-selected systems than other ASR frame-
works, respectively. Further work can be extended by speech
rate rhythmically parameter-based classification approach
for normalization of individual adult and child speech trained
systems on truematched and semi- ormismatched conditions
on the basis of test speech. Further to that, a robust switch to
process separate clean and noisy environment dataset is also
required to implement an efficient front-end approach that
wishes to address the drawbacks of the proposed approach.
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