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Abstract
Background: In addition to erythrocytes, embryonic blood contains other differentiated cell
lineages and potential progenitor or stem cells homed to changing niches as the embryo develops.
Using chicken as a model system, we have isolated an enriched pool of circulating non red blood
cells (nRBCs) from E4 and E6 embryos; a transition period when definitive hematopoietic lineages
are being specified in the peri-aortic region.

Results: Transcriptome analysis of both nRBC and RBC enriched populations was performed using
chicken Affymetrix gene expression arrays. Comparison of transcript profiles of these two
populations, with verification by RT-PCR, reveals in nRBCs an expression signature indicative of
hematopoietic stem cells (HSCs) and progenitor cells of myeloid and lymphoid lineages, as well as
a number of previously undescribed genes possibly involved in progenitor and stem cell
maintenance.

Conclusion: This data indicates that early circulating embryonic blood contains a full array of
hematopoietic progenitors and stem cells. Future studies on their heterogeneity and differentiation
potentials may provide a useful alternative to ES cells and perinatal blood.

Background
The isolation and gene expression profiling of embryonic
circulating nRBCs would be of great interest to develop-
mental biologists and clinicians alike [1], yet due to lim-
ited sample size available from traditionally used model
organisms, harvesting a sufficiently large pool of embry-
onic nRBCs for transcriptome-wide analysis has been dif-
ficult. Alternative approaches using perinatal blood have
already yielded significant insights [2]. The chick embryo

is both large in size and contains a circulatory network of
a complexity equal to that of mammals. Herein, we
describe the isolation and gene expression profiling of cir-
culating cells during the transition phase of hematopoie-
sis from primitive or yolk sac associated, to definitive
hematopoiesis, at embryonic days 4 and 6. It is during this
time that hematopoiesis occurs transiently in the peri-aor-
tic region in the chick embryo (referred to in mammals as
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the aorta-gonad-mesonephros or AGM), before transi-
tioning to the bone marrow [3,4].

Results and Discussion
Chick blood was isolated from embryos at E4 and E6,
using micro-capillaries inserted directly into the heart.
Density gradient centrifugation was then employed to iso-
late the heavier RBCs from a lighter nRBC population
from total embryonic blood. Cells within the two popula-
tions were analyzed directly by FACS, and by the classical
hematological stains Giemsa, benzidine, and Periodic-
acid Schiff (PAS). Using these techniques, we were able to
confirm that two distinct, viable populations; one highly
enriched in RBCs, and another population highly
depleted of RBCs (nRBCs) had been isolated (Fig. 1).

Further characterization of these populations by RT-PCR
demonstrated that nRBCs had high expression levels of
the hematopoietic stem cell antigen CD34, whereas the
RBC population lacked expression of this gene (Fig.
2B,C). After these preliminary findings had given validity
to our technique, gene expression profiling was per-
formed using Affymetrix Gene Expression Arrays. For RNA
isolation, handling time was kept to a minimum and cell
collection to lysis for RNA extraction was performed in
less than one hour. Consequently, cells were not subjected
to long incubation periods on ice, or in serum containing
medium, which can alter gene expression, as is the case for
other commonly used in techniques such as FACS sorting.
RNA from both E4 and E6 RBC and nRBC samples were
analyzed by duplicate Affymetrix gene chips, from sepa-

Characterization of RBC and nRBC cellular fractionsFigure 1
Characterization of RBC and nRBC cellular fractions. (A) Appearance of cell populations following density gradient centrifuga-
tion, along with control density marker beads. (B) FACSAria (BD Biosciences) profile of RBC and nRBCs after propidium 
iodide labeling of dead cells. The number of small (FSC), agranular (SSC) cells is greater in the nRBC fraction; >90% of cells 
from both populations are viable based on propidium iodide exclusion and Trypan blue exclusion (not shown). (C) nRBCs have 
a large nuclear volume, and smaller size (Giemsa), are benzidine negative and PAS positive. Bar = 20 µm.
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Array analysis and RT-PCR verificationFigure 2
Array analysis and RT-PCR verification. (A) Heat map generated by TM4 SAM analysis with genes verified by PCR highlighted. 
(B) Semi-quantitative PCR analysis of candidate genes from array data and control GAPDH and 18S, and embryonic hemo-
globin transcripts (pan-globin) in cDNAs from both E4 and E6 RBC and nRBC fractions. (C) QPCR data. All genes tested had 
significantly higher expression in nRBCs by Student's T-test (except for CD51). Hemoglobins are the only genes with signifi-
cantly higher expression in RBCs. E4 data: left-hand bars, E6 data: right-hand bars.
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rate, pooled biological samples (30–100 embryos/array).
Comparisons between RBC and nRBC populations were
made, and the expression levels of candidate genes were
confirmed by PCR (Fig. 2A–C). The resulting array data
has been deposited into NCBI Gene Expression Omnibus
(GEO) under the accession number GSE9884. We consid-
ered genes to be significantly enriched in the nRBC popu-
lation by the following two criteria: 1) that they are
expressed at higher levels in the nRBC than the RBC pop-

ulation by the SAM algorithm; 2) that they are not
expressed at high levels in the heart (Fig. 3).

Hematopoietic Stem Cell (HSC) Associated Genes are 
Upregulated in nRBCs
Many genes known to be associated with HSCs were
found to be preferentially expressed in nRBCs, such as the
HSC membrane receptor glycoprotein (GP) CD45 (Tables
1 and 2) [5]. Moreover, transcription factors Ets-1 [6],

Representative array expression profiles generated by eXintegrator analysisFigure 3
Representative array expression profiles generated by eXintegrator analysis. Example candidate genes kept from TM4 analysis 
(left) display an observable gradient of low expression in RBC samples and high expression in nRBC samples, and low-to-mod-
erate expression in heart. Example candidate genes discarded from TM4 analysis (right) following examination by eXintegrator 
display high expression in negative control sample (heart).
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Table 1: Genes significantly upregulated in nRBCs. Listed genes are ranked according to expression level in nRBCs shown as Log2 
expression values. Genes highlighted in bold were verified by PCR.

Probe Set ID Gene Name nRBC RBC

Gga.1039.1.S1_at CD61, Integrin Beta 3 (Platelet Glycoprotein IIIa) 7.53 0.81
Gga.4472.3.S1_x_at Thymosin Beta 4 TOLL-Like Receptor 7 (TLR7) 7.5 2.35
Gga.9122.1.S1_at ETS-1 (p54) 7.31 -0.07
Gga.15362.1.S1_at RGS18 Regulator of G-protein Signalling 18 7.11 -3.73
Gga.1187.2.S1_s_at PINCH-1 hypothetical 7.07 4.02
Gga.5362.1.S1_a_at Elfin, PDZ and LIM Domain Protein 1 (PDLIM-1) 6.81 -0.18
Gga.10042.1.S1_a_at CD200 Receptor 1 (CD200R) 6.78 -1.78
Gga.6387.1.S1_at p21 Rac2 6.74 -1.68
Gga.2876.1.S2_a_at VAV3 6.65 -1.71
Gga.19950.1.S1_s_at Coagulation Factor XIII, A1 Polypeptide 6.49 -2.26
Gga.3316.1.S1_s_at HEX probox protein 6.44 1.91
Gga.12960.1.S1_at Phospholipase C Gamma 2 (PLCG2) 6.29 -1.81
Gga.4451.1.S1_at Gelsolin 6.14 0.08
Gga.9413.1.A1_at Prostaglandin-Endoperoxide Synthase 1 (COX-1) 6.06 2.28
Gga.6665.1.A1_at Peptide Methionine Sulfoxide Reductase (MSRA) 5.98 -1.16
Gga.514.1.S1_at Coagulation Factor X Precursor Virus Activating Protease 5.79 -1.51
Gga.7018.1.S1_s_at Fgd3, FYVE, RhoGEF and PH domain containing 3 5.79 0.51
GgaAffx.13009.1.S1_at Tumor Necrosis Factor Alpha Induced Protein 8 (TNFAIP-8) 5.52 1.71
Gga.4772.1.S1_at Connexin 43 (Cx43) 5.46 -3.4
Gga.11854.1.S1_at Tetraspanin 6 (TSPAN6) 5.44 0.48
Gga.4350.1.S2_at FYN Oncogene Related to SRC, FGR, YES 5.32 -0.29
Gga.1193.1.S2_at CD45, Protein Tyrosine Phosphatase Receptor Type C 5.24 -1.89
Gga.3828.1.S1_at ZOV3, Embigin Homolog 5.24 0.61
Gga.16474.1.S1_at Pleiotrophin (PTN) Osteoblast-Specific Factor 1 (OSF-1) 5.16 -3.79
GgaAffx.21842.1.S1_s_at Beta Defensin 7 (Gal 7) 5.13 0.18
Gga.11496.1.S1_at CD62L, L-Selectin 5.09 -1.48
Gga.4225.1.S1_at Leukocyte Cell-derived Chemotaxin 2 (LECT2) 4.89 0.24
Gga.10034.1.S1_at Similar to Plasminogen Activator Inhibitor (PAI) 4.85 -3.93
Gga.2734.1.S2_at CD166, Activated Leukocyte Cell Adhesion Molecule (ALCAM) 4.67 -2.35
Gga.13583.1.S1_at CD36, Thrombospondin Receptor (Platelet Glycoprotein IV) 4.66 -2.74
Gga.2967.1.S2_at CD49F, VLA6, Integrin Alpha 6 4.47 -0.16
Gga.19342.1.S1_at Calcium-Activated Potassium Channel Subunit Alpha, Slowpoke (Slo1) 4.45 -3.99
Gga.5758.1.S1_s_at LYN, Yamaguchi Sarcoma Viral Related Oncogene Homolog (vYES-1) 4.45 -1.42
GgaAffx.12646.1.S1_at Spleen Tyrosine Kinase (SYK) 4.42 -2.6
Gga.3899.3.S1_a_at Platelet-Derived Growth Factor Alpha (PDGF-A) 4.38 -2.38
Gga.4832.1.S1_at Interferon Inducible Transmembrane Protein 3 (IITMP3, Fragilis) 4.25 -0.06
Gga.11657.1.S1_at Thrombin Receptor, Coagulation Factor II Receptor 4.02 -1.14
Gga.11741.1.S1_a_at Tissue Factor Pathway Inhibitor (Lipoprotein-Associated Coagulation Inhibitor) 3.98 -2.99
Gga.15893.1.S1_at CD49B, Integrin Alpha 2 (Platelet Glycoprotein IIb) 3.94 -2.95
GgaAffx.22186.2.S1_s_at Interleukin-1 Receptor Accessory Protein Precursor (IL1RAP) 3.88 -1.26
GgaAffx.13138.1.S1_at Tumor Necrosis Factor (ligand) Superfamily Member 13b (TNFSF-13b) 3.75 -1.88
GgaAffx.13210.1.S1_at SRC Like Adaptor (SLAP) 3.62 -4.21
Gga.690.1.S1_at LY64, MD-1 3.51 -0.47
Gga.3738.1.S1_at B-cell Linker (BLNK) 3.46 -1.18
Gga.4943.1.S1_at Tumor Necrosis Factor Receptor Superfamily, Member 21 3.32 -1.4
Gga.5743.1.S1_at LY96, MD-2 3.31 -3.02
GgaAffx.20689.1.S1_at Spleen Focus Forming Virus (SFFV) Proviral Integration Oncogene (SPI-1, PU.1) 3.29 -2.58
Gga.815.1.S1_at CD51, Integrin Alpha V 3.02 -2.36
GgaAffx.20858.1.S1_at Cell Adhesion Molecule with Homology to L1CAM Precursor (CHL1) 2.89 -2.24
Gga.2039.1.S1_at Heme Oxygenase (decycling) 1 (HMOX1) 2.88 -2.69
GgaAffx.11713.1.S1_s_at Rho Guanine Nucleotide Exchange Factor 3 (GEF-3) 2.74 -1.8
Gga.3070.1.S1_at CD121A, Interleukin-1 Receptor Type I 2.65 -3.35
Gga.1980.1.S1_s_at Thrombospondin 4 (THBS4) 2.59 -2.6
Gga.11824.1.S1_at Cystatin F, Leukocystatin 2.53 -3.57
Gga.4507.1.S1_at CD18, Integrin Beta 2 2.27 -2.61
GgaAffx.24377.2.S1_s_at Beta Parvin 2.22 -2.93
Gga.7769.1.S1_at Fgd5, FYVE, RhoGEF and PH Domain Containing 5 2.15 -2.87
Gga.7528.1.S1_at Kruppel-like Factor 2 (KLF-2) 2.07 -1.91
Page 5 of 12
(page number not for citation purposes)



BMC Developmental Biology 2008, 8:21 http://www.biomedcentral.com/1471-213X/8/21
HEX [7], KLF2 [8] and PU.1 [9], known to be essential for
primitive and definitive hematopoiesis, were detected
specifically in the nRBC population; as were the signaling
molecules BLNK [6], FYN [10], RGS18 [11], Rac2 [12],
LYN and SYK [13], VAV3 [14] and the ion channel Slo1
[15]. Additionally, the expression of many integrins,
which are known to play an important role in the adhe-
sion and homing of HSCs, were detected in nRBCs. A sig-
nificant overlapping integrin repertoire was observed
between nRBCs and a previous study on adipose derived
stromal CD31+ HSCs and includes: CD18 (ITGB2),
CD49B (ITGA2), CD49F (ITGA6), CD51 (ITGAV), CD61
(ITGB3/GPIIIa), and the non-integrin cell adhesion mol-
ecule CD166 (ALCAM) [16]. In addition to integrins, pre-
vious work has established an important role for GPs (e.g.
CD34, CD45, CD61) in the adhesion and possibly hom-
ing of HSCs, and has demonstrated the expression of the
GP receptor CD62L, and the GP Cystatin-7 on HSCs
[17,18]. Finally, cell-cell communication required during
later differentiation of HSCs in the stroma is known to be
mediated by the gap junctional protein connexin 43
(Cx43), another gene detected in the nRBC population
[19].

Myeloid Markers Expressed by nRBCs
In addition to the expression of GPs on HSCs, expression
of the platelet GP ligand CD62P (P-selectin), important
for HSC adherence [20], and the myeloid GPs CD200R
[21] and CD36 [22] were detected in the nRBC popula-
tion. Other markers of the undifferentiated myeloid line-
age including gelsolin [23] and PU.1 were both detected
in nRBC fraction. Furthermore, many genes detected in
nRBCs can be associated with platelet activation pathways
such as, Coagulation Factors X and XIII, COX-1, PAI,
PDGF, PLCG2, Tissue Factor Pathway Inhibitor,
Thrombin Receptor, and VAV3 [24-27].

Lymphoid Markers Expressed by nRBCs
Our expression profiling of nRBCs reveals not only the
known potential of early circulating embryonic cells
towards myeloid and erythroid lineages, but also that of
the lymphoid lineage. The expression of leukocyte specific
genes which are part of the innate immune system such as
the lymphocyte antigens LY64 (MD1) and LY96 (MD2),
Toll-like receptor 7 (TLR7) [28] as well as Interleukin 1
Receptor (CD121A) [29], β-Defensin [28], members of
the TNF signaling pathway, TNFSF13b (BAFF) and
TNFSFR21 (DR6), which can mediate the innate immune
response [30], and LECT2, which is involved in neu-

GgaAffx.1733.2.S1_s_at CD62P, Cell Adhesion Molecule LECAM3 1.37 -3.73

Table 1: Genes significantly upregulated in nRBCs. Listed genes are ranked according to expression level in nRBCs shown as Log2 
expression values. Genes highlighted in bold were verified by PCR. (Continued)

Table 2: Genes significantly upregulated in nRBCs shown by gene categorization according to functional association. From left to right, 
genes with a known role in HSCs, myeloid cell lineage, lymphoid cell lineage, other types of non-hematopoietic cells (germ cells, 
neuronal or cardiac progenitors) or genes with no known role in development. Genes highlighted in bold were verified by PCR.

HSC (22) Myeloid (17) Lymphoid (10) Germ Line (2)

BLNK CD36 β-Defensin Fragilis
CD18 CD49B CD121A Zov3
CD45 Cd51 HMOX1
CD49B CD61 LECT2 Neural (2)
CD49F CD62P MD1 PTN
CD51 CD200R MD2 TSP4
CD61 Coagulation Factor X TLR7
CD62L Coagulation Factor XIII TNFSF13b Cardiac (2)
CD166 COX-1 TNFSFR21 Elfin
CD200R Gelsolin SLAP PINCH1
Cx43 PAI-1
Cystatin F PDGFA Unknown (8)
ETS-1 PLCG2 β-PARVIN
FYN PU.1 FGD3
KLF2 Thrombin Receptor FGD5
LYN Tissue Factor Pathway Inhibitor IL1RAP
PU.1 VAV3 L1CAM
Rac2 MSRA
RGS18 TNFAIP8
Slo1 TSPAN6
SYK
VAV3
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trophil chemotaxis [31], demonstrate that a lymphoid dif-
ferentiation potential is already present at the peri-aortic
stage, a finding which has been reported previously for
similarly staged AGM derived cells in mice [32]. The only
gene expressed in nRBCs which has a role in acquired
immunity appears to be the Src-like adaptor molecule,
SLAP, whose function is to repress surface IgM expression
on B-cells [33]. Interestingly, the heme oxygenase-1
(HMOX1) an essential enzyme in heme catabolism, was
the only true erythroid associated gene detected in the
nRBCs. However, the expression of HMOX1 has been
reported in a variety of primitive and definitive white
blood cell types as well, although it does not appear to be
essential for their development [34].

Germ Cell, Neural, and Cardiac Markers Expressed by 
nRBCs
Additional categories of genes that were observed in
nRBCs include: Fragilis and Zov3 (associated with germ
cells) [35,36], and Pleiotrophin (PTN) and Throm-
bospondin-4 (THSB4) (found in neuronal stem cells and
progenitors) [37,38]. Moreover, despite being negatively
screened against genes upregulated in the heart (Fig. 3),

Elfin, and PINCH-1, which mark early cardiac cells
[39,40], were detected in circulating nRBCs.

Additional Genes Expressed by nRBCs
Finally, a list of genes with unknown functions has
emerged from this screen. Although the Interleukin-1
Receptor Associated Protein (IL1RAP) and TNF-alpha
Interacting Protein 8 (TNFAIP8) are likely to be involved
in the innate immune response, the other 6 genes remain
developmentally uncharacterized, and may provide
insight into the function and differentiation of HSCs
(Table 2). Interestingly, the Peptide Methionine Sulfoxide
Reductase gene (MSRA), which was expressed in nRBCs,
may help to protect progenitor cells against oxidative
stress [41], although conclusive proof to this end remains
to be demonstrated.

Further Expression Validation: ISH, IHC and FACS
Following our expression profiling at the in vitro level, we
next verified our expression data for certain interesting
candidate nRBC expressed genes, for which QPCR had
been performed, by wholemount is situ hybridization
(ISH) and immunostaining (IHC) of the yolk sac. At E4

In situ hybridization and histological analysesFigure 4
In situ hybridization and histological analyses. From the 12 candidate genes used for QPCR 6 probes were generated that gave 
some positive signal at earlier embryonic stages; 4 of these stained small numbers of cells in the yolk sac, with the remaining 2 
no positive cells were detectable. Embryonic ρ-globin is expressed in the vast majority of circulating cells but is observed to be 
negative in some rare cells (arrows), whereas CD200R, CD61, HEX, RGS18 and the vitronectin receptor (CD51/61) are 
expressed in scattered circulating (arrows) and attached cells (arrowheads) throughout the yolk sac vasculature. Red contours 
outline the vascular lumen. Left and right panels indicate distinct staining of single cells with the indicated probe or antibody. 
Bars = 20 µm.
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and E6, the time points analyzed, the yolk sac is highly
vascularized and provides a receptacle for circulating cells
transiting to and from the embryonic and extraembryonic
regions. Reproducible labeling of rare positive circulating
cells was observed for CD61, CD200R, and HEX, whereas
infrequent clusters of positive cells were found to express
RGS18 by ISH (Fig. 4). Furthermore, HEX expression was
observed in large numbers of mesenchymal cells neigh-
boring blood vessels either containing, or devoid of HEX
positive circulating cells. CD200R occasionally labeled
cells with an endothelial morphology. IHC for the CD51/
CD61 heterodimer or vitronectin receptor (alpha3betaV
integrin) revealed expression in rare circulating small
rounded cells which were either clumped and associated
with the endothelium, or singular. FACS analysis using
this antibody demonstrated that 4% of nRBCs are positive
for this antigen, whereas RBC staining was negligible (Fig.
5). ρ-globin, which is still prominently expressed in both
E4 and E6 RBCs [42], was used as a positive control for
yolk sac ISH (Fig. 4). ρ expression was observed in the
majority of circulating cells, but was negative in certain
infrequent cells presenting non-RBC morphology.

Conclusion
In summary, gene expression profiling of nRBCs in the
chick embryo has revealed the expression of a set of genes
indicative of a wide range of hematopoietic stem cells and
progenitors primarily of either the erythroid or myeloid
lineages present in early circulation. It has indeed been
postulated that cells with an "erythromyeloid" potential
constitute the first subset of HSCs with potential for liver

engraftment and eventual long-term hematopoiesis in the
bone marrow [43]. Lastly, the identification of several pre-
viously undescribed genes may prompt closer examina-
tion of their functions in chick and other model
organisms. We, however, do not observe a prominent dif-
ference in expression profiles between E4 nRBCs and E6
nRBCs, during which period the second wave of HSC gen-
eration is actively taking place in the peri-aortic region,
transiting from the initial appearance of intra-aortic clus-
ters at about E4 to the formation of para-aortic foci at E6
[4]. It is therefore unclear whether the nRBCs we detect in
E4-6 circulation, with the profiles of hematopoietic cells
and progenitors, represent those from yolk sac or peri-aor-
tic cells.

Methods
Blood Isolation
Blood was collected from the embryonic ventricles using
fine glass microcapillaries. Cells were washed in PBS-
EDTA, centrifuged at 1500 g, and separated on a Redi-
Grad:NaCl (9:2.5) density gradient (Amersham) by cen-
trifugation for 20 minutes at 10,000 g. Upper nRBC and
lower RBC populations were collected by pipette and
placed in RNA lysis buffer or assayed using chemical
stains or FACS.

Benzidine Staining
RBC and nRBC populations were smeared onto glass
slides and fixed in 2.5% gluteraldehyde for 1 hr. A 0.1%
Benzidine staining solution was then applied (0.001 g/ml
benzidine; 0.0068 g/ml imidazole; 0.05 M Tris-HCl,

FACS profile of fractionated blood stained with PE-conjugated vitronectin receptor antibody 23C6Figure 5
FACS profile of fractionated blood stained with PE-conjugated vitronectin receptor antibody 23C6. The number of positive 
cells is significantly increased in nRBCs.
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pH7.6; 0.3% H2O2) for 1 hr at 37°C. Slides were then
briefly washed in PBS, dehydrated in ethanol, mounted
and photographed.

RNA Isolation and RT-PCR
Cells were lysed using QIAshredder spin columns and
total RNA was extracted using the RNeasy total RNA
extraction kit (Qiagen). Equal amounts of total RNA from
each sample were converted to first-strand cDNA in paral-
lel with the Superscript III reverse transcriptase synthesis
system (Invitrogen). Real-time QPCR was performed
using Quantitect SYBR PCR master mix (Qiagen) in a
7900 HT Fast Real-Time PCR System (Applied Biosys-
tems). All PCRs were performed in duplicate with at least

2 biological samples at an annealing temperature of
60°C, using between 30 and 45 amplification cycles.
Analysis of the melting curve excluded the amplification
of unspecific products. In each QPCR run, a standard
curve was generated using duplicate 6-log spanning serial
dilutions. PCR products for standard curves were column-
purified, measured for DNA concentration, sized by agar-
ose gel electrophoresis, sequenced, aliquoted and stored
at -80°C for a maximum of 2 months. Standard curves
were calculated by SDS software, and test samples were fit-
ted to the generated curve (Applied Biosystems). Primer
sequences are available in Table 3.

Table 3: Primer sequences used for PCR and in situ probe generation

PCR PRIMERS
18S rRNA FORWARD CGAAAGCATTTGCCAAGAAT
18S rRNA REVERSE GAGTCGGCATCGTTTATGGT
BLNK FORWARD GAAATCGCCTTCATCCAAAA
BLNK REVERSE ACCAAGGAGGTATGCTGGTG
CD34 FORWARD GCAACAACACTGCTCAGCTC
CD34 REVERSE TTGCTGACACCACCAGATGT
CD36 FORWARD AAGGAAAGACCCTTGCCAAT
CD36 REVERSE ATTGCTGCAGTTTCCATTCC
CD45 FORWARD GCCAAGAGGAGCCATAATCA
CD45 REVERSE ATCCTGGGTCTCCTGGAATC
CD49B FORWARD AAAAGAAACGTTGCAAATGAAAT
CD49B REVERSE GTTTCTGACTTCTCTGCTGCAA
CD51 FORWARD CATTGAAGGAGACGTGCAAA
CD51 REVERSE AGTTTGGGTCCAAAGTCGTG
CD61 FORWARD TTAACAACCCCTTGGCTGTC
CD61 REVERSE CCACCGAGGTAAGGATGAGA
CD200R FORWARD TGGTGACTGTCCTTGTGGAA
CD200R REVERSE GACACAGTGGAGGTGGAACC
Elfin FORWARD AGCTGCAATAGCCAACCTGT
Elfin REVERSE GCTCATCTGCACAGCTCTTG
GAPDH FORWARD TGGGTGTCAACCATGAGAAA
GAPDH REVERSE CATCCACCGTCTTCTGTGTG
HEX FORWARD CCCAGATTTCCCATTTCAGA
HEX REVERSE TACACGAGCAGAGAGGGACA
Pan globin FORWARD ACCGCCAAGTACCGTTAAGA
Pan globin REVERSE TTCATCTCATTTGGCTGCTC
RGS18 FORWARD AAATAAGTGGCAAGCAAAGTTGA
RGS18 REVERSE CAGCAATAAGTTGCCTGGTTG
Vav3 FORWARD TCCGCTTGCAAACAATTACA
Vav3 REVERSE CTCAGGGTGATGGGGAGATA

ISH PROBE PRIMERS
CD61 FORWARD CACCGTGTGTGATGAGAAAA
CD61 REVERSE ACAGGTTTGATGGTGAAGGA
CD200 FORWARD TGGCTCTGTACTGCGATGAC
CD200 REVERSE GAACAGCAAGGGAAAACCAA
CD200 T7 REVERSE TAATACGACTCACTATAGGGAACAGC
HEX FORWARD GACTACACGCACGCACTGATC
HEX REVERSE CAAACTGCTATGTACACGAGCAG
RGS18 FORWARD CTTCCCACTACCTGCTCTGC
RGS18 REVERSE GGACCGTGATCGTCTCCTAA
RGS18 T7 REVERSE TAATACGACTCACTATAGGGGACCGTG
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Statistical analyses of the complexity of RBC and nRBC transcriptomesFigure 6
Statistical analyses of the complexity of RBC and nRBC transcriptomes. (A) Summary of present (P) calls for all arrays used in 
this study as a percentage of all calls (either present, P; absent, A; or missing, M). nRBCs have 10% more P calls than RBCs. 
Nevertheless, 1/4 of the RBC transcriptome is scored as present. (B) Graphical representation of SAM analysis showing signif-
icantly different genes between nRBCs and RBCs in red, which were examined in this study. (C) Grouped T-test between 
RBCs and nRBCs shows that for a confidence level of 95%, 98% of the hybridization values for probe sets between these two 
groups are not significantly different.
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Affymetrix Array Data Analysis
Amplification of 100 ng of RNA using the Two-Cycle
cDNA Synthesis Kit and IVT Labeling Kit (Affymetrix) and
subsequent hybridization and scanning was carried out by
the Functional Genomics Unit (RIKEN CDB). Pivot raw
data files from duplicate microarray experiments were
analyzed using the TIGR MultiExperiment Viewer 4.0
(TM4) software package. Briefly, data was log2 trans-
formed, subjected to quantile normalization and ana-
lyzed by SAM (Significance Analysis for Microarrays),
using 100 random data permutations, and a delta value of
2.5 (p value 0.0018) (Fig. 6). This cutoff was used to min-
imize false positives, but as a consequence created poten-
tial false negatives. A number of previously described
hematopoietic markers such as RUNX-1 (Affy ID:
Gga.1019.1.S1_at) and cKIT (Affy ID: Gga.606.1.S1_at)
were found using a delta value of 0.9 (p value 0.05), but
were excluded from our analysis. Hierarchical clustering
of significant data points was then carried out by Co-vari-
ance algorithm [44]. All significant data points generated
by SAM analysis were double checked manually using the
eXintegrator software package [45,46] against negative
control E6 embryonic heart array data, which was not per-
formed in duplicate. Data points with high expression in
heart were eliminated (Fig. 3). Quality control of microar-
ray data, which was well within an acceptable range, was
performed using the Bioconductor Affy array analysis
suite [47].

Wholemount ISH and IHC
Yolk sacs from E4 and E6 embryos were collected and
fixed in 4% paraformaldehyde, and cut into small pieces
to allow greater probe and antibody diffusion. For ISH,
samples were processed as described previously [48].
Probes for CD200R and RGS18 were generated by 2
round PCR using primers given in Table 3. Probes for
CD61, ρ-globin and HEX were cloned into pGEM-T vec-
tor. The probe for embryonic ρ-globin has been described
previously [42]. Probe templates were verified by sequenc-
ing. RNA probes were generated by either T7 or Sp6 in
vitro transcription, and verified by agarose gel electro-
phoresis. For IHC, all solutions were TBST based. Tissue
was blocked for 1 hr (5% sheep serum 1 mg/ml BSA),
incubated with mouse anti-human vitronectin antibody,
clone 23C6, with known cross reactivity in chicken [49]
(BioLegend) at a dilution of 1:40 overnight at 4°C,
washed once and blocked for endogenous peroxidase
activity, washed again 3×, incubated for 1 hr in secondary
HRP conjugated anti-mouse, washed 3×, and developed
using DAB solution (Sigma-Aldrich). All tissues were
embedded in wax and sectioned to 9 µm on a MICROM
HM325 Microtome. IHC samples were counterstained
with hematoxylin.

FACS
Fluorescent Assisted Cell Sorting (FACS) analysis was per-
formed on a BD FACSAria. RBC and nRBCs were sepa-
rated as described and blocked for 30 min in DMEM/3%
FCS (Invitrogen), incubated for 1 hr in either 1:40 PE-con-
jugated mouse anti-human vitronectin (see IHC) or BD
PE-conjugated mouse secondary antibody (negative con-
trol, not shown), washed twice in blocking buffer and
analyzed. Positive cell counts were observed and recorded
using BD FACSDiva software.
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