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Abstract

The correlation coefficient is the most commonly used measure for summarizing the magni-

tude and direction of linear relationship between two response variables. Considerable liter-

ature has been devoted to the inference procedures for significance tests and confidence

intervals of correlations. However, the essential problem of evaluating correlation equiva-

lence has not been adequately examined. For the purpose of expanding the usefulness of

correlational techniques, this article focuses on the Pearson product-moment correlation

coefficient and the Fisher’s z transformation for developing equivalence procedures of cor-

relation coefficients. Equivalence tests are proposed to assess whether a correlation coeffi-

cient is within a designated reference range for declaring equivalence decisions. The

important aspects of Type I error rate, power calculation, and sample size determination are

also considered. Special emphasis is given to clarify the nature and deficiency of the two

one-sided tests for detecting a lack of association. The findings demonstrate the inappropri-

ateness of existing methods for equivalence appraisal and validate the suggested tech-

niques as reliable and primary tools in correlation analysis.

Introduction

Practical guidelines and suggestions for selecting, calculating, and interpreting effect size indi-

ces in statistical analyses have been frequently advocated in the literature. Comprehensive

reviews and general principles concerning effect size measures are available in the recent

works of Fritz, Morris, and Richler [1], Grissom and Kim [2], Kelley and Preacher [3], Kline

[4], Pek and Flora [5], and the references therein. According to the summary in Ferguson [6],

effect size measures can fall into four general categories: (1) group difference, (2) strength of

association, (3) corrected estimates, and (4) risk estimates. Particularly, Pearson product-

moment correlation coefficient or sample correlation coefficient r is the most commonly used

strength of association measure in applied research across virtually all disciplines of social sci-

ences. The popularity of sample correlation coefficient in the psychological literature has been

documented in de Winter, Gosling and Potter [7], Hemphill [8], and Richard, Bond and

Stokes-Zoota [9], among others.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0252323 May 28, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Shieh G (2021) Improved procedures and

computer programs for equivalence assessment of

correlation coefficients. PLoS ONE 16(5):

e0252323. https://doi.org/10.1371/journal.

pone.0252323

Editor: Alan D Hutson, Roswell Park Cancer

Institute, UNITED STATES

Received: February 6, 2021

Accepted: May 13, 2021

Published: May 28, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0252323

Copyright: © 2021 Gwowen Shieh. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: Funding for this project was provided by

the Ministry of Science and Technology.

https://orcid.org/0000-0001-8611-4495
https://doi.org/10.1371/journal.pone.0252323
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252323&domain=pdf&date_stamp=2021-05-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252323&domain=pdf&date_stamp=2021-05-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252323&domain=pdf&date_stamp=2021-05-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252323&domain=pdf&date_stamp=2021-05-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252323&domain=pdf&date_stamp=2021-05-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252323&domain=pdf&date_stamp=2021-05-28
https://doi.org/10.1371/journal.pone.0252323
https://doi.org/10.1371/journal.pone.0252323
https://doi.org/10.1371/journal.pone.0252323
http://creativecommons.org/licenses/by/4.0/


Under the normality assumption, the probability density function of the sample correlation

coefficient r is extremely complicated as shown in Fisher [10]. Theoretical details and related

issues can be found in Chapter 32 of Johnson et al. [11] and Chapter 16 of Stuart and Ord [12].

Exact statistical analyses of the correlation coefficient ρ require complex procedures and

involved computation, such as Shieh [13, 14]. To facilitate practical analysis, numerous investi-

gations were devoted to give various expressions, approximations, and computing algorithms

for the distribution of the sample correlation coefficient. Notably, the asymptotic normal dis-

tributions of the sample correlation coefficient and the Fisher’s [15] z transformation have

proven to provide reasonable alternatives with satisfying performance in many cases. The

intrinsic properties of the Fisher’s z transformation in terms of conversion accuracy, geometric

interpretation, normalization acceleration, and variance stabilization are demonstrated in

Bond and Richardson [16], Hotelling [17], Silver and Dunlap [18], and Winterbottom [19].

It is noteworthy that most presentations of correlational techniques deal primarily with the

conventional tests of significance. But methodologists have been strongly advocated to con-

sider replacements for or extensions of the null hypothesis of strict equality to deliver more

profound implications in statistical analysis. Specifically, the method of equivalence testing is

potentially useful in behavioral and psychological sciences as emphasized in Rogers, Howard,

and Vessey [20], Seaman and Serlin [21], Stegner, Bostrom, and Greenfield [22], and Steiger

[23]. Meyners [24] presented a discussion of the different types of equivalence tests. Moreover,

fundamental principles on the design and analysis of equivalence studies are described in

Chow and Liu [25], Hauschke, Steinijans, and Pigeot [26], and Wellek [27].

The two one-sided tests (TOST) procedure of mean equivalence, first described by Schuir-

mann [28] and Westlake [29], is the most common method in equivalence methodology.

Because of the approximate nature, the TOST method possesses conceptual simplicity and

computational ease. More importantly, the procedure adequately maintains the Type I error

rates and the notion gains general acceptance in practical equivalence problems. Berger and

Hsu [30], however, cautioned that the TOST principle may not always preserve the nominal

Type I error rates in other circumstances. Within the context of correlation analysis, there are

few attempts that study the equivalence testing techniques. The particular case of Goertzen

and Cribbie [31] suggested a direct extension of mean equivalence TOST to detect a lack of

association. Naturally, the TOST method for assessing the lack of association is presumed to

share the same desirable properties of the counterpart TOST for establishing mean

equivalence.

It is prudent to note that the lack of association examined in Goertzen and Cribbie [31]

concerns what sort of strength of association is so small that it should be described as negligi-

ble. It is also constructive and more versatile to evaluate whether a target correlation is close

enough to any specific magnitude of substantive interest with respect to the designated equiva-

lence boundaries. The simulation results of Goertzen and Cribbie [31] revealed that the TOST

method based on the Fisher’s transformation has a serious disadvantage in achieving the nom-

inal Type I error rates. However, no analytic examination and technical illustration have been

provided in the literature to elucidate the causes of the problematic behavior. A thorough

investigation is required to clarify the nature of such deficiency and its implications for equiva-

lence testing. Goertzen and Cribbie [31] suggested that the detection of a lack of association

requires substantially large sample sizes. Monte Carlo simulation methods may give a potential

solution to sample size calculation. It is of practical importance to derive the power function

and then combine a numerical search to determine the optimal sample sizes.

In view of the importance of equivalence testing and limitations of the current TOST

method for correlation coefficients, this paper has four major goals. First, a general framework

is considered for appraising correlation equivalence with respect to a designated reference

PLOS ONE Equivalence assessment of correlation coefficients

PLOS ONE | https://doi.org/10.1371/journal.pone.0252323 May 28, 2021 2 / 17

Competing interests: The author has declared that

no competing interests exist.

https://doi.org/10.1371/journal.pone.0252323


range that may not be equidistant around the zero value or may not even include the zero

value. Therefore, the lack of association is a special case of the presented unified structure. Sec-

ond, analytic examination and numerical assessment are conducted to illustrate the relative

performance of the proposed equivalence procedures. In the process, detailed appraisals and

graphic displays are presented to explicate the inherent deficiencies of the TOST method in

detecting a lack of association. Third, explicit power functions and sample size algorithms are

derived and examined to reveal the exact functional relation and individual impact of the

influential factors. They provide researchers a better understanding of the inherent difference

that exists between the planned sample sizes conditional on the model configurations. Fourth,

it is of practical interest to alleviate the computational demands in equivalence studies. The

accompany SAS/IML and R software algorithms are available for conducting the equivalence

tests, power calculations, and sample size determinations.

Methods

Suppose that the paired random variables (Yi, Xi), i = 1,. . ., N, are independent and identically

distributed with bivariate normal distribution with means μX, μY, variances s2
X; s

2
Y , and corre-

lation ρ. Notably, the correlation coefficient ρ represents an essential effect size measure for

the strength of linear relationship between the two variables. The widely used Pearson prod-

uct-moment correlation coefficient r is a natural estimator for the correlation coefficient ρ. It

is noteworthy that the normality assumption of (Yi, Xi), i = 1,. . ., N, provides a convenient and

useful setting. However, exact statistical inferences of the correlation coefficient ρ with the

sample counterpart r demand considerable analytic and computational complexity. Large-

sample approximations are often considered to provide feasible solutions in practical

applications.

Fisher’s z transformation

A highly regarded approach to the analysis of population correlation coefficient ρ is based on

the famous Fisher’s [15] z transformation. Fisher’s statistic has an approximately normal distri-

bution

ẑ ¼
1

2
lnð

1þ r
1 � r

Þ _� N z; s2

z

� �
; ð1Þ

where z = ln{(1 + ρ)/(1 –ρ)}/2 and s2
z
¼ 1=ðN � 3Þ. The large-sample approximations of the

sample correlation coefficient r and Fisher’s z transformation ẑ provide convenient alterna-

tives to correlation assessments. The conventional concerns of correlation analysis focus on

the detection of correlation difference with respect to the hypotheses

H0 : r ¼ r0 versus H1 : r 6¼ r0;

where ρ0 is a chosen quantity. Accordingly, the hypothesis testing can be conducted by reject-

ing the null hypothesis at the significance level α if |Z�|> zα/2 where Z� ¼ ðẑ � z0Þ=sz, z0 = ln
{(1 + ρ0)/(1 –ρ0)}/2, and zα/2 is the upper 100(α/2)-th percentile of the standard normal

distribution.

On the other hand, the corresponding large-sample approximation for the distribution of r
is

r _� Nðr; s2

r Þ; ð2Þ

where s2
r ¼ ð1 � r

2Þ
2
=ðN � 3Þ. Fisher’s z transformation is largely recommended because the
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transformation substantially improves the normality approximation, especially for small sam-

ple sizes and extreme sample correlations. Nonetheless, the sample correlation coefficient can

still have intrinsic values in specific problems and complex situations such as Olkin and Finn

[32, 33] and Steiger [34]. Despite the great interest in correlation analysis, there exist few stud-

ies that explicitly address the problem of how to appraise correlation equivalence. With the

asymptotic normality properties of the sample correlation coefficient and Fisher’s z transfor-

mation, extended procedures are proposed for equivalence assessment of correlation

coefficients.

The extended sample correlation coefficient procedure

The primary focus of this article is on the equivalence test of correlation coefficient with

respect to the null and alternative hypotheses:

H0 : r � ρL or ρU � r versus H1 : ρL < r < ρU ; ð3Þ

where ρL and ρU are two constants that (ρL, ρU) represents the designated range for declaring

equivalence. Related discussions for selecting a specific margin or threshold for equivalence

research are available in Piaggio et al. [35], Walker and Nowacki [36], and Wiens [37]. The

general theorem to deriving optimal parametric tests for equivalence hypotheses was presented

in Wellek [27], Section 3.3. Also, the determination of rejection region of the optimal proce-

dure follows from the general results in Lehmann and Romano [38], Section 3.4, for tests in

families with monotone likelihood ratio. To claim the population correlation ρ is within the

interval (ρL, ρU), a natural rejection region to the null hypothesis is

EQUT � r ¼ fr̂EQUT:L < r < r̂EQUT:Ug; ð4Þ

where the two critical values r̂EQUT:L and r̂EQUT:U are chosen to simultaneously attain the nomi-

nal Type I error rate

Pfr̂EQUT:L < r < r̂EQUT:U j r ¼ ρLg ¼ a and Pfr̂EQUT:L < r < r̂EQUT:U j r ¼ ρUg ¼ a: ð5Þ

Due to the complexity of the exact distribution function of r, the asymptotic normal distri-

bution r _�Nðr; s2
r Þ given in Eq 2 is a feasible method. Thus, the two probabilities

Pfr̂EQUT:L < r < r̂EQUT:U j r ¼ ρLg and Pfr̂EQUT:L < r < r̂EQUT:U j r ¼ ρUg can be evaluated

by the approximate normal distributions r _�NðρL; s2
LÞ and r _�NðρU ; s2

UÞ, respectively, where

s2
L ¼ ð1 � ρ

2
LÞ

2
=ðN � 3Þ and s2

U ¼ ð1 � ρ
2
UÞ

2
=ðN � 3Þ. Note that the two quantities r̂EQUT:L

and r̂EQUT:U are functions of the configurations {α, N, ρL, ρU}. Essentially, they have no explicit

analytic expression and require a computer program to calculate the actual values.

The extended Fisher’s z transformation procedure

In view of the widely used Fisher’s transformation for correlation analysis, an alternative

approach to assessing correlation equivalence is testing the null and alternative hypotheses:

H0 : z � zL or zU � z versus H1 : zL < z < zU ; ð6Þ

where zL = ln{(1 + ρL)/(1 –ρL)}/2, zU = ln{(1 + ρU)/(1 –ρU)}/2. Accordingly, the interval (zL, zU)

indicates the designated bounds for declaring equivalence with respect to the transformed

parameter z. In this case, the rejection region is of the form

EQUT � ẑ ¼ fẑEQUT:L < ẑ < ẑEQUT:Ug; ð7Þ
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where the two critical values ẑEQUT:L and ẑEQUT:U simultaneously achieve the nominal Type I

error rate

PfẑEQUT:L < ẑ < ẑEQUT:U j z ¼ zLg ¼ a and PfẑEQUT:L < ẑ < ẑEQUT:U j z ¼ zUg ¼ a: ð8Þ

Following the accurate approximation of ẑ _�Nðz; s2
z
Þ given in Eq 1, the two probabilities

PfẑEQUT:L < ẑ < ẑEQUT:U j z ¼ zLg and PfẑEQUT:L < ẑ < ẑEQUT:U j z ¼ zUg can readily be eval-

uated by the approximate normal distributions ẑ _�NðzL; s2
z
Þ and ẑ _�NðzU ; s2

z
Þ, respectively.

For ease of application, the rejection region EQUT-ẑ is commonly converted into the scale of r
by the conversion formula r ¼ ðe2ẑ � 1Þ=ðe2ẑ þ 1Þ. Thus, a useful expression of EQUT-ẑ is

EQUT � ẑ ¼ frðẑEQUT:LÞ < r < rðẑEQUT:UÞg; ð9Þ

where rðẑEQUT:LÞ ¼ ðe2ẑEQUT:L � 1Þ=ðe2ẑEQUT:L þ 1Þ and rðẑEQUT:UÞ ¼ ðe2ẑEQUT:U � 1Þ=ðe2ẑEQUT:U þ 1Þ.

Under the asymptotic theory, Fisher’s transformation has vital implications in normaliza-

tion acceleration and variance stabilization relative to the sample correlation coefficient. The

discrepancy between the two equivalence approaches with the designated rejection regions

EQUT-r and EQUT-ẑ will be explicated in the subsequent numerical illustrations.

Numerical examples

The summary of Hemphill [8] revealed that approximately one third of the correlation coeffi-

cients are less than 0.20, one third fall between 0.20 and 0.30, and one third are more than the

magnitude 0.30 in the research literature of psychological assessment and treatment. Also, the

comprehensive review of Richard et al. [9] showed that the average magnitude of correlation

coefficients in psychological literature is 0.21. Accordingly, only the values between 0 and 0.3

are evaluated for the reference bounds ρL and ρU in the numerical illustration. With the signifi-

cance level α = 0.05, the rejection regions of the two equivalence tests are computed for the ref-

erence range (ρL, ρU) = (0, 0.20), (0.05, 0.15), (0.10, 0.30), and (0.15, 0.25) and sample size

N = 25, 50, 100, and 500.

Simulation study of 10,000 iterations was also conducted to assess the accuracy of rejection

regions through the differences between the simulated Type I error rate and the nominal alpha

level 0.05. The associated results of rejection regions and simulation errors are summarized in

Table 1. Although both test procedures are constructed under asymptotic theory, they achieve

nearly the specified Type I error rate even for small sample sizes N = 25 and 50. To visualize

the similarities and differences between the two procedures, the rejection regions for

Table 1. The critical intervals and simulated errors of the suggested correlation equivalence tests for α = 0.05.

N 25 50 100 500

(ρL, ρU) Procedure (L, U) Error (L, U) Error (L, U) Error (L, U) Error

(0.00, 0.20) EQUT-r (0.0784, 0.1079) –0.0045 (0.0864, 0.1093) –0.0019 (0.0897, 0.1104) –0.0042 (0.0730, 0.1298) 0.0029

EQUT-ẑ (0.0862, 0.1158) –0.0046 (0.0895, 0.1125) –0.0007 (0.0906, 0.1114) –0.0019 (0.0728, 0.1290) 0.0013

(0.05, 0.15) EQUT-r (0.0780, 0.1051) –0.0011 (0.0867, 0.1059) 0.0035 (0.0913, 0.1056) –0.0030 (0.0949, 0.1054) –0.0037

EQUT-ẑ (0.0866, 0.1138) –0.0002 (0.0906, 0.1099) 0.0020 (0.0931, 0.1074) –0.0037 (0.0950, 0.1055) –0.0034

(0.10, 0.30) EQUT-r (0.1727, 0.2015) –0.0068 (0.1849, 0.2075) –0.0037 (0.1899, 0.2106) –0.0033 (0.1725, 0.2332) 0.0044

EQUT-ẑ (0.1876, 0.2165) –0.0037 (0.1907, 0.2134) –0.0018 (0.1917, 0.2125) –0.0037 (0.1719, 0.2320) 0.0020

(0.15, 0.25) EQUT-r (0.1705, 0.1970) 0.0017 (0.1836, 0.2023) 0.0002 (0.1901, 0.2041) –0.0027 (0.1950, 0.2056) –0.0043

EQUT-ẑ (0.1873, 0.2137) 0.0014 (0.1911, 0.2099) 0.0035 (0.1935, 0.2075) 0.0016 (0.1952, 0.2058) –0.0041

https://doi.org/10.1371/journal.pone.0252323.t001
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(ρL, ρU) = (0, 0.20) and (0.10, 0.30) are also plotted in Figs 1 and 2, respectively. The rejection

regions of the two procedures have distinct outcomes for small sample sizes N< 150 and are

nearly identical for larger sample sizes N� 150.

Results

An important scenario in equivalence assessment is the detection of a lack of association or the

population correlation ρ is practically zero. Accordingly, the asymptotic normal distributions

of the simple correlation r and the associated transformation ẑ have zero mean when the popu-

lation correlation ρ = 0. Due to the symmetric feature of normal distributions for the two prin-

cipal statistics, it is sensible to adopt an equidistant reference range about zero in assessing the

lack of association. Thus, the problem of probing a lack of association can be viewed as a spe-

cial setting of the proposed general framework for correlation equivalence detection.

Fig 1. The rejection regions for (ρL, ρU) = (0, 0.2) and α = 0.05.

https://doi.org/10.1371/journal.pone.0252323.g001
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The proposed lack of association tests

To examine the lack of association, the prescribed hypotheses for equivalence testing are read-

ily modified with ρL = –ρB and ρU = ρB with ρB> 0:

H0 : r � � ρB or ρB � r versus H1 : � ρB < r < ρB; ð10Þ

where the designated bound ρB indicates the maximal tolerance magnitude to claim a lack of

association. The equivalence procedures based on the two statistics r and ẑ can immediately be

applied to the current problem for testing a lack of association.

With the symmetric equivalence range (–ρB, ρB) around zero, the subsequent explication

shows that two critical values r̂ L and r̂U of the prescribed equivalence procedure have a simple

relation r̂U ¼ � r̂L. Note that the sample correlation coefficient r has the approximate distribu-

tion Nð� ρB; s2
BÞ and NðρB; s2

BÞ for ρ = –ρB and ρB, respectively, where

Fig 2. The rejection regions for (ρL, ρU) = (0.1, 0.3) and α = 0.05.

https://doi.org/10.1371/journal.pone.0252323.g002
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s2
B ¼ ð1 � ρ

2
BÞ

2
=ðN � 3Þ. Hence, the approximate distribution of � r _�NðρB; s2

BÞ under ρ = –ρB
coincides that of r _�NðρB; s2

BÞ under ρ = ρB. As described earlier, the actual values r̂ L and r̂U
are uniquely determined by the two probabilities Pfr̂ L < r < r̂U j r ¼ � ρBg ¼ a and

Pfr̂ L < r < r̂U j r ¼ ρBg ¼ a. The normal approximation of r implies the former equality is

closely related to the latter:

Pfr̂ L < r < r̂U j r ¼ � ρBg ¼ Pf� r̂U < � r < � r̂L j r ¼ � ρBg ¼ Pf� r̂U < r < � r̂ L j r ¼ ρBg ¼ a:

Accordingly, this examination establishes that r̂U ¼ � r̂ L and the rejection region can be

simplified as

EQUT � r ¼ f� r̂EQUT < r < r̂EQUTg; ð11Þ

where r̂EQUT is chosen so that

Pf� ðr̂EQUT þ ρBÞ=sB < Z < ðr̂EQUT � ρBÞ=sBg ¼ a ð12Þ

and Z ¼ ðr � ρBÞ=sB _�Nð0; 1Þ.
Under the notion of Fisher transformation, the lack of association test can alternatively be

conducted in terms of the hypotheses:

H0 : z � � zB or zB � z versus H1 : � zB < z < zB; ð13Þ

where zB = ln{(1 + ρB)/(1 –ρB)}/2. Following the arguments similar to the previous case for r,
the rejection region for the transformed test statistic ẑ is of the form

EQUT � ẑ ¼ f� ẑEQUT < ẑ < ẑEQUTg; ð14Þ

where the quantity ẑEQUT satisfies

Pf� ðẑEQUT þ zBÞ=sz < Z < ðẑEQUT � zBÞ=szg ¼ a ð15Þ

and Z ¼ ðẑ � zBÞ=sz _�Nð0; 1Þ. The rejection region EQUT-ẑ can also be transformed into an

interval on r as

EQUT � ẑ ¼ f� rðẑEQUTÞ < r < rðẑEQUTÞg; ð16Þ

where rðẑEQUTÞ ¼ ðe2ẑEQUT � 1Þ=ðe2ẑEQUT þ 1Þ.

Two one-sided tests procedures

With the popular mean equivalence TOST procedure of Schuirmann [28] and Westlake [29],

it is temping to generalize the appealing principle for correlation evaluation with the sample

correlation r and the transformation ẑ. Using the asymptotic normal distribution of r, a TOST

procedure for detecting a lack of association can easily be constructed with the approximate

normal distribution r _�NðρB; s2
BÞ. Specifically, the null hypothesis H0: ρ�–ρB or ρB� ρ is

rejected at the significance level α if

RL ¼
r þ ρB
sB

> zα and RU ¼
r � ρB
sB

< � Zα; � ð17Þ

where s2
B ¼ ð1 � ρ

2
BÞ

2
=ðN � 3Þ and zα is the upper 100 α-th percentile of the standard normal

distribution. For ease of explication, the procedure is termed as the TOST-r test and the
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associated rejection region is expressed as

TOST � r ¼ f� r̂Tost < r < r̂TOSTg ð18Þ

where r̂TOST ¼ ρB � ZαsB. Regarding the Type I errors, the TOST-r procedure should attain

the nominal alpha level when ρ = ρB or ρ = –ρB. Accordingly, the true Type I error rate of

TOST-r is

Pf� r̂TOST < r < r̂TOST j r ¼ � ρBg ¼ Pf� r̂TOST < r < r̂TOST j r ¼ ρBg

¼ Pfzα � 2ρB=sB < Z < � Zαg;
ð19Þ

where Z ¼ ðr � ρBÞ=sB _�Nð0; 1Þ.
Similarly, a TOST procedure can be obtained with the Fisher’s transformation for detecting

a lack of association as previously suggested by Goertzen and Cribbie [31]. This procedure is

denoted by TOST-ẑ and it rejects the null hypothesis H0: z�–zB or zB� z at the significance

level α if

ZL ¼
ẑ þ zB
sz

> zα and ZU ¼
ẑ � zB
sz

< � Zα: ð20Þ

The resulting rejection region can also be written as:

TOST � ẑ ¼ f� ẑTOST < ẑ < ẑTOSTg ð21Þ

where ẑTOST ¼ zB � Zαsz. Moreover, the asymptotic distribution of ẑ reveals that the true Type

I error rate is

Pf� ẑTOST < ẑ < ẑTOST j z ¼ � zBg ¼ Pf� ẑTOST < ẑ < ẑTOST j z ¼ zBg

¼ Pfzα � 2zB=sz < Z < � Zαg;
ð22Þ

where Z ¼ ðẑ � zBÞ=sz _�Nð0; 1Þ.

Type I errors

The most important property of a test procedure is to provide acceptable level of Type I errors.

Without the adequate or excellence adherence to the nominal α levels, the accompanying

power evaluations and statistical assessments are meaningless on the basis of distorted Type I

error behavior. It follows from the analytic justifications in Eqs 12 and 15 that the two sug-

gested equivalence procedures EQUT-r and EQUT-ẑ have excellent performance in maintain-

ing the nominal Type I error rates. In contrast, the other two TOST counterparts are

problematic as explained next.

Note that the (supremum) Type I error rate of the mean equivalence TOST method is

exactly equal to the nominal alpha level as the sample size goes to infinity, even though the

true rejection probability is less than the designated alpha level for all possible configurations

under the null hypothesis. For the direct generalization of TOST-r procedure for correlation

equivalence, however, the rejection region TOST-r given in Eq 18 is a proper interval only

when r̂TOST > 0. It is clear that r̂TOST > 0 suggests that ρB> zασB or N > z2
αð1þ ρ

2
BÞ

2
=ρ2

B þ 3.

Detailed numerical inspections at α = 0.05 reveal that TOST-r degenerates as an empty set if

N< 1090.6352 when ρB = 0.05, and if N< 278.9924 when ρB = 0.10. To notify this crucial defi-

ciency, the related minimum sample sizes for a nonempty TOST-r are summarized in Table 2

for α = 0.01 and 0.05, and ρB = 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30.
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On the other hands, the one-to-one relation between r and ẑ implies that the rejection

region TOST-ẑ shares the same disadvantage as TOST-r. The last quantity in Eq 22 indicates

that the Type I error rate of the TOST-ẑ procedure usually does not attain the nominal level α.

However, the Type I error rate of the TOST-ẑ method also has the supremum α as the other

TOST-r method when the sample size goes to infinity. For finite sample sizes, the rejection

region becomes invalid when ẑTOST ¼ zB � zαsz � 0 or N � z2
α=z

2

B þ 3. Specifically, the rejec-

tion region TOST-ẑ is empty if N< 1083.4132 when ρB = 0.05, and if N< 271.7488 when ρB =

0.10. The minimum sample sizes for a nonempty rejection region TOST-ẑ are also listed in

Table 2 for α = 0.01 and 0.05, and ρB = 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30.

To further demonstrate the fundamental characteristics of the contending equivalence

methods, the vital properties of actual Type I error rates are investigated. Specifically, with the

significance level α = 0.05, the rejection regions of the four equivalence tests are calculated for

the lack of association with the range (–ρB, ρB) = (–0.1, 0.1) and (–0.2, 0.2), and sample size

N = 25, 50, 100, and 500. The rejection regions of the four test procedures for (–ρB, ρB) = (–0.1,

0.1) and (–0.2, 0.2) are also plotted in Figs 3 and 4, respectively. Moreover, the adequacy of

Type I error rate was examined through simulation study of 10,000 iterations and was deter-

mined by the deviation between the simulated Type I error rate and the nominal alpha level.

The resulting rejection regions and simulation results are listed in Table 3. These numerical

evidences suggest that the proposed equivalence procedures EQUT-r and EQUT-ẑ have out-

standingly performance in achieving the nominal significance level. The two TOST procedures

generally do not provide proper rejection regions and adequate levels of Type I errors for

small sample sizes, and the situation is more severe when a smaller threshold is considered.

The problematic behavior of TOST-ẑ was also demonstrated in the numerical examination

(Table 2) of Goertzen and Cribbie [31]. Specifically, their simulation results showed that the

resulting Type I error rates of TOST-ẑ and two related procedures can be zero for small sample

sizes and small correlation bounds. The analytic and empirical findings presented here illus-

trate the undesirable behavior of the TOST-r and TOST-ẑ procedures.

Power comparisons

The examination of different equivalence procedures further explicates their power behavior

for detecting the lack of association through simulation study. With the significance level α =

0.05, the simulated powers of the EQUT-r, EQUT-ẑ, TOST-r, and TOST-ẑ tests are computed

for 10,000 independent samples. The model configurations of correlation coefficient, reference

Table 2. The minimum sample sizes of TOST procedures to have a nonempty critical interval for detecting a lack

of association.

α

0.01 0.05

ρB TOST-r TOST-ζ̂ TOST-r TOST-ζ̂

0.05 2179 2165 1091 1084

0.10 556 541 279 272

0.15 255 240 129 122

0.20 150 135 77 69

0.25 101 86 52 45

0.30 75 60 39 32

https://doi.org/10.1371/journal.pone.0252323.t002
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range, and sample size are chosen as ρ = 0 and 0.05, (–ρB, ρB) = (–0.1, 0.1) and (–0.2, 0.2), and

N = 25, 50, 100, 200, 300, 400, and 500, respectively. The simulated powers of the combined

twenty-eight settings are summarized in Table 4 for the four equivalence procedures. The

results show that the two suggested procedures have more power than the other two TOST

counterparts. Although the differences between these methods diminish for large sample sizes,

their discrepancy can be substantial for small and moderate sample sizes. In particular, due to

the extremely conservative behavior or the degeneration of rejection region of the two TOST

methods, the resulting power values are zero for ten cases in Table 4. For example, both

TOST-r and TOST-ẑ methods give no power when (–ρB, ρB) = (–0.1, 0.1) for N� 200, or

when (–ρB, ρB) = (–0.2, 0.2) for N� 50. In view of these results, the two TOST procedures are

not recommended for detecting a lack of association. The rejection regions EQUT-r and

EQUT-ẑ assure that the proposed equivalence procedures have superior Type I error rate and

power performance.

Fig 3. The rejection regions for (ρL, ρU) = (-0.1, 0.1) and α = 0.05.

https://doi.org/10.1371/journal.pone.0252323.g003
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Fig 4. The rejection regions for (ρL, ρU) = (-0.2, 0.2) and α = 0.05.

https://doi.org/10.1371/journal.pone.0252323.g004

Table 3. The critical intervals and simulated errors of the lack of association tests for α = 0.05.

N 25 50 100 500

(–ρB, ρB) Procedure (L, U) Error (L, U) Error (L, U) Error (L, U) Error

(–0.10, 0.10) EQUT-r (–0.0148, 0.0148) –0.0030 (–0.0115, 0.0115) 0.0043 (–0.0103, 0.0103) 0.0011 (–0.0278, 0.0278) 0.0021

EQUT-ẑ (–0.0149, 0.0149) –0.0026 (–0.0116, 0.0116) 0.0046 (–0.0104, 0.0104) 0.0012 (–0.0275, 0.0275) 0.0014

TOST-r (0, 0) –0.0500 (0, 0) –0.0500 (0, 0) –0.0500 (–0.0270, 0.0270) 0.0004

TOST-ẑ (0, 0) –0.0500 (0, 0) –0.0500 (0, 0) –0.0500 (–0.0265, 0.0265) –0.0010

(–0.20, 0.20) EQUT-r (–0.0207, 0.0207) –0.0020 (–0.0242, 0.0242) –0.0020 (–0.0451, 0.0451) 0.0010 (–0.1292, 0.1292) 0.0034

EQUT-ẑ (–0.0210, 0.0210) –0.0012 (–0.0239, 0.0239) –0.0026 (–0.0429, 0.0429) –0.0021 (–0.1282, 0.1282) 0.0022

TOST-r (0, 0) –0.0500 (0, 0) –0.0500 (–0.0397, 0.0397) –0.0058 (–0.1292, 0.1292) 0.0034

TOST-ẑ (0, 0) –0.0500 (0, 0) –0.0500 (–0.0357, 0.0357) –0.0106 (–0.1282, 0.1282) 0.0022

https://doi.org/10.1371/journal.pone.0252323.t003
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Discussion

A research study requires adequate statistical power and sufficient sample size to examine vital

questions and target effects. The importance and implications of statistical power analysis in

equivalence testing are also demonstrated in Wellek [27], Murphy, Myros, and Wolach [39],

Shieh [40], and Chow et al. [41], among others. To enhance the usefulness of the suggested

equivalence procedures, the related issues of power analysis and sample size determination are

considered.

Power and sample size calculations

According to the rejection region EQUT-r defined in Eq 4 of the extended sample correlation

procedure, the power function is given by

Cr ¼ Pfr̂EQUT:L < r < r̂EQUT:Ug ¼ Pfðr̂EQUT:L � rÞ=sr < Z < ðr̂EQUT:U � rÞ=srg; ð23Þ

where Z ¼ ðr � ρÞ=sr _�Nð0; 1Þ and ρL< ρ< ρU. Moreover, the rejection region EQUT-ẑ

defined in Eq 7 of the extended Fisher transformation procedure suggests that the associated

power function is of the form

Cẑ ¼ Pfr̂EQUT:L < ẑ < ẑEQUT:Ug ¼ Pfðr̂EQUT:L � zÞ=sz < Z < ðẑEQUT:U � zÞ=szg; ð24Þ

where Z ¼ ðẑ � zÞ=sz _�Nð0; 1Þ and zL< z< zU. Under the asymptotic normality assump-

tions, the attained power levels of the two equivalence tests can readily be computed with Cr

and Cẑ for the specified configurations of equivalence limits (ρL, ρU), population correlation ρ,

and significance level α. For advance planning of a research design, the two power formulas

can be employed to calculate the sample size N needed to attain the specified power 1 –β for

the chosen significance level α, chosen correlation ρ, and equivalence threshold (ρL, ρU).

Table 4. The simulated powers of the lack of association tests for α = 0.05.

N
(–ρB, ρB) ρ Procedure 25 50 100 200 300 400 500

(–0.10, 0.10) 0 EQUT-r 0.0523 0.0613 0.0815 0.1375 0.2202 0.3323 0.4659

EQUT-ẑ 0.0526 0.0615 0.0817 0.1371 0.2188 0.3283 0.4596

TOST-r 0 0 0 0 0.0792 0.2886 0.4501

TOST-ẑ 0 0 0 0 0.0689 0.2818 0.4441

(–0.10, 0.10) 0.05 EQUT-r 0.0557 0.0608 0.0687 0.1097 0.1502 0.2072 0.2691

EQUT-ẑ 0.0558 0.0616 0.0690 0.1094 0.1491 0.2037 0.2658

TOST-r 0 0 0 0 0.0498 0.1737 0.2596

TOST-ẑ 0 0 0 0 0.0449 0.1677 0.2559

(–0.20, 0.20) 0 EQUT-r 0.0762 0.1319 0.3392 0.7740 0.9390 0.9844 0.9964

EQUT-ẑ 0.0782 0.1307 0.3230 0.7634 0.9349 0.9839 0.9962

TOST-r 0 0 0.3022 0.7740 0.9390 0.9844 0.9964

TOST-ẑ 0 0 0.2760 0.7633 0.9349 0.9839 0.9962

(–0.20, 0.20) 0.05 EQUT-r 0.0754 0.1245 0.3067 0.6707 0.8428 0.9213 0.9634

EQUT-ẑ 0.0762 0.1229 0.2925 0.6578 0.8357 0.9170 0.9622

TOST-r 0 0 0.2729 0.6706 0.8428 0.9213 0.9634

TOST-ẑ 0 0 0.2467 0.6578 0.8357 0.9170 0.9622

https://doi.org/10.1371/journal.pone.0252323.t004
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Simulation study

Because of the approximate nature of the proposed equivalence procedures, a Monte Carlo

simulation study was utilized to appraise the similarities and differences between the suggested

power and sample size calculations under a wide variety of correlation configurations. The

numerical study was conducted in two steps. First, under the specified settings, the minimum

sample sizes required to meet the nominal power 0.80 and α = 0.05 were determined by the

power formulas Cr and Cẑ . The estimated powers or achieved powers are recorded for the

optimal sample sizes. Second, with the designated sample sizes, simulated powers were com-

puted with a Monte Carlo simulation study of 10,000 independent data sets to evaluate the

accuracy of the two approaches. The accuracy of the two power and sample size procedures is

determined by the error between the simulated power and estimated power.

The results of the two procedures EQUT-r and EQUT-ẑ are presented in Table 5 for vari-

ous settings of population correlation ρ, and equivalence range (ρL, ρU). It can be seen that the

optimal sample sizes noticeably vary with the combined characteristics of ρ and (ρL, ρU). Spe-

cifically, when ρ is a varying factor, the sample size increases with decreasing distance = min
(ρU−ρ, ρ–ρL) when the equivalence bounds (ρL, ρU) and other settings are fixed. When ρ is a

constant, the sample size decreases with wider range of (ρL, ρU). The computed sample sizes of

the EQUT-r procedure are slightly smaller than those of the EQUT-ẑ transformation for small

ρ< 0.3. The situation is reversed when ρ = 0.4 with (ρL, ρU) = (0.3, 0.5), and when ρ = 0.5 with

(ρL, ρU) = (0.4, 0.6). More importantly, the small discrepancy between the simulated power

and estimated power reveals that the two techniques are extremely accurate for power and

sample size calculations. In short, the extended sample correlation coefficient and Fisher’s z
transformation procedures can be recommended as general tools for appraising correlation

equivalence.

Conclusions

A growing attention in the behavioral and psychological literature concerns how to make a

decision about an observed effect that is small enough to be considered negligible. However,

Table 5. Sample sizes, computed power, and simulated errors of the suggested equivalence tests for nominal power 0.80 and α = 0.05.

Procedure EQUT-r EQUT-ζ̂

(ρL, ρU) ρ N Simulated power Estimated power Error N Simulated power Estimated power Error

(0.0, 0.2) 0.1 834 0.8094 0.8005 0.0089 837 0.8000 0.8002 –0.0002

(0.1, 0.3) 0.2 785 0.8071 0.8003 0.0068 788 0.7994 0.8006 –0.0012

(0.2, 0.4) 0.3 708 0.8059 0.8007 0.0052 708 0.8012 0.8002 0.0010

(0.3, 0.5) 0.4 606 0.8053 0.8003 0.0059 604 0.8007 0.8000 0.0007

(0.4, 0.6) 0.5 488 0.8038 0.8005 0.0033 483 0.8023 0.8002 0.0021

(–0.1, 0.1) 0.0 850 0.8077 0.8002 0.0075 854 0.7971 0.8002 –0.0031

(–0.1, 0.1) 0.05 2440 0.7988 0.8001 –0.0013 2448 0.8049 0.8001 0.0048

(–0.2, 0.2) 0.0 208 0.8098 0.8011 0.0087 212 0.7941 0.8016 –0.0075

(–0.2, 0.2) 0.1 585 0.8025 0.8001 0.0024 593 0.8044 0.8002 0.0042

(–0.2, 0.2) 0.05 2311 0.7995 0.8001 –0.0006 2326 0.8034 0.8000 0.0034

(–0.3, 0.3) 0.0 89 0.8080 0.8013 0.0067 93 0.7974 0.8035 –0.0061

(–0.3, 0.3) 0.1 140 0.8006 0.8024 –0.0018 145 0.8005 0.8011 –0.0006

(–0.3, 0.3) 0.2 535 0.8068 0.8005 0.0063 546 0.8017 0.8005 0.0012

(–0.3, 0.3) 0.25 2094 0.8011 0.8002 0.0009 2115 0.8010 0.8000 0.0010

https://doi.org/10.1371/journal.pone.0252323.t005
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the conventional tests of difference are often inappropriately applied to conclude an effect is

absent based a non-significant result. A widely recommended approach is to conduct an

equivalence test to ascertain whether the observed effect size falls inside the selected equiva-

lence boundaries. The TOST procedure of mean equivalence has been extensively applied in

pharmacokinetics and various scientific disciplines. It is essential to note that there is little con-

sensus in the literature on which method is most appropriate for equivalence testing. Concep-

tually, the preference varies with the right and proper criteria to select an optimal procedure.

Considerations of more advanced aspects of TOST and alternative procedures for bioequiva-

lence testing are beyond the scope of this article. The interested reader is referred to Meyners

[24], Berger and Hsu [30], and the discussion therein for further details.

In view of the prevalent recognition of TOST, Goertzen and Cribbie [31] applied the same

principle to the problem of assessing a lack of association. However, their numerical results

showed that the TOST correlation procedure does not maintain nominal rejection rates

when the sample sizes and correlation bounds are small. Despite the undesirable behavior of

the TOST extension for correlation evaluations, no technical examinations and proper alter-

natives have been described in the literature. The present article aims to contribute to the cor-

relation equivalence studies in four aspects. First, based on the Pearson product-moment

correlation coefficient and the Fisher’s z transformation, their asymptotic properties are

extended to construct equivalence procedures of correlation coefficients. Second, the empiri-

cal and analytic investigations not only clarify situations that the TOST principle does not

adequately attain the nominal Type I error rates, but also justify the overall performance of

the improved techniques for correlation assessments. Third, to enhance the utility of the sug-

gested procedures, the corresponding power and sample size calculations for designing cor-

relational research are also considered. Fourth, computer algorithms are developed to

facilitate the practical use of the proposed equivalence procedures by providing efficient and

accurate calculations of rejection regions, statistical powers, and sample sizes for correlation

equivalence studies.
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