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Abstract

Human endogenous retroviruses (HERV) are relics of ancient retroviral infections in our

genome. Most of them have lost their coding capacity, but proviral RNA or protein have

been observed in several disease states (e.g. in inflammatory and autoimmune diseases

and malignancies). However, their clinical significance as well as their mechanisms of action

have still remained elusive. As human aging is associated with several biological character-

istics of these diseases, we now analyzed the aging-associated expression of the individual

proviruses of two HERV families, HERV-K (91 proviruses) and HERV-W (213 proviruses)

using genome-wide RNA-sequencing (RNA-seq). RNA was purified from blood cells derived

from healthy young individuals (n = 7) and from nonagenarians (n = 7). The data indicated

that in the case of HERV-K (HML-2) 33 proviruses had a detectable expression but in only 3

of those the expression levels were significantly different between the young and old individ-

uals. In the HERV-W family expression was observed in 45 loci and only in one case the

young/old difference was significant. However, applying hierarchical clustering on the

HERV expression data resulted in the formation of two distinct clusters, one containing the

young individuals and another the nonagenarians. This suggests, that even though the

aging-associated differences in the expression levels of individual proviruses are minor,

there seems to be some underlying aging-related pattern. These data indicate that aging

does not have a strong effect on the expression of individual HERV proviruses, but instead

several proviruses are affected moderately, leading to age-dependent expression profiles.

Introduction

During mammalian evolution, integration of retroviral RNA into a germ line cell may have

led into a formation of a provirus that is transmitted vertically and inherited in a Mendelian

manner. In humans, these endogenous retroviruses (HERV) comprise ca. 8% of our genome

[1]. While it is known that some retroelements of the human genome are still capable of
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retrotransposition, DNA sequences of the HERVs have accumulated mutations to the point

where retrotransposition or formation of viral particles is not taking place anymore [2].

Despite this mutation-driven functional inactivation, there are hundreds of publications

demonstrating associations between HERV expression and various disease states (malig-

nancies, infections, neurological and autoimmune diseases), however, the causal relation-

ship has remained enigmatic [3–6].

Since the mechanism of action cannot be explained by de novo insertional mutagenesis nor

with the formation of viral particles, it has been proposed, that potential pathogenicity of the

HERVs could simply underlie in the presence of proviral DNA, acting as a transcriptional reg-

ulatory sequence, modifying the expression of neighboring and even more distant genes.

HERVs can do this for example by acting as transcription factor binding sites. From this

hypothesis it naturally follows, that potential effects of the HERVs would be restricted in some

genomic window around the primary proviral insertion site. However, there is also evidence

supporting more global mode of action as HERVs have been shown to activate immune and

inflammatory responses of the body directly. For example, their RNA could be recognized as a

pathogen-associated molecular pattern (PAMP) by Toll-like receptors and this would induce

type I interferon production contributing to the pathogenesis of autoinflammatory diseases

[7]. Some HERVs are still able to encode an intact envelope protein (Env) and its presence has

been observed in some viral infections or in autoimmune diseases [3–6]. It has been proposed

that the mechanism of action of Env is based on the antigenicity of the molecule, possibly caus-

ing a polyclonal activation of lymphocytes, i.e. functioning as a “superantigen” [8].

As the diseases, where HERV-associations have been observed, demonstrate some of the

fundamental and characteristic aspects of aging, e.g. increased level of inflammation and

changes in the proportions of the various lymphocyte subsets [9,10], we now quantitated the

RNA levels of all previously characterized proviruses of HERV-K (HML-2) and HERV-W

families in peripheral blood mononuclear cells (PBMC) derived from young and 90-year old

individuals. Aging-associated increase in the expression of several HERV families has been

reported previously using quantitative PCR [11]. However, qPCR approach utilizes degenerate

primers for each HERV family, thus missing the information regarding individual proviruses.

RNA-sequencing possesses the capability to obtain this crucial data and hence it was the

method of choice.

The most recent entrants to our genome are represented by HERV-K (HML-2) family (ca.

0.2–2 million years ago), of which Subramanian et al. have identified 91 full-length proviral

sequences [12]. HERV-W represents an older group of HERVs (primary infection ca. 40 mil-

lion years ago) and it contains 213 full-length or near full-length elements [13].

Methods

Study populations

Two populations, representing young and elderly individuals, were used. The young ones con-

sisted of healthy laboratory personnel, all female, aged 26 to 32 years (n = 7, median age 28)

who did not have any medically diagnosed chronic illnesses, were non-smokers and had not

had any infections or received any vaccinations within the two weeks prior to blood sample

collection. The elderly individuals (n = 7) were selected among relatively healthy, community

living, non-frail, nonagenarian females, without any severe aging-associated diseases, that

were participants in The Vitality 90+ study. The nonagenarians were born in 1920 and the

samples were collected in 2014. The recruitment and characterization of participants were per-

formed as has been reported previously [14]. The study participants provided their written

informed consent. This study was conducted according to the principles expressed in the
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declaration of Helsinki, and the study protocol was approved by the ethics committee of the

city of Tampere (1592/403/1996).

Sample collection

Blood samples were collected by a trained laboratory technician in the laboratory facilities. All

blood samples were drawn between 8 am and 12 am and collected into EDTA containing

tubes. Samples were directly subjected to leucocyte separation on a Ficoll-Paque density gradi-

ent (Ficoll-Paque Premium, cat. no. 17-5442-03, GE Healthcare Bio-Sciences AB, Uppsala,

Sweden). The PBMC layer was collected and cells used for RNA extraction were suspended in

150 μl of RNAlater solution (Ambion Inc., Austin, TX, USA). Nonagenarian and control sam-

ples were collected at the same time.

RNA extraction

RNA used for RNA sequencing was purified using a miRNeasy mini kit (Qiagen, CA, USA)

and the RNA used for PCR analysis using RNeasy mini kit (Qiagen, CA, USA) according to

manufacturer’s protocol with on-column DNA digestion (Qiagen). The concentration and

quality of the RNA was assessed with a NanoDrop ND-1000 spectrophotometer (NanoDrop

Technologies, Wilmington, DE, USA).

RNA sequencing

Agilent Bioanalyzer RNA nano chips (Agilent) were used to evaluate the integrity of total

RNA and Qubit RNA–kit (Life Technologies) to quantitate RNA in samples. 1 μg of total

RNA was used for ScriptSeq Complete Gold System (Epicentre) to ribodeplete rRNA and

further for RNA-seq library preparation. SPRI beads (Agencourt AMPure XP, Beckman

Coulter) were used for purification of RNAseq libraries. The library QC was evaluated on

High Sensitivity chips by Agilent Bioanalyzer (Agilent). Paired-end sequencing of RNAseq

libraries was done using Illumina HiSeq technology with a minimum of 60 million 2x100bp

paired-end reads per sample.

Data preprocessing and analysis

Raw reads were aligned to human genome reference build hg19 using TopHat v2.0.13 [15]

with the default parameters. Only uniquely mapped reads were considered in the transcript

abundance estimation and to this end SAMtools [16] was used to filter out reads mapping to

multiple regions of the genome. The downstream analyses were all conducted using the tools

in cufflinks2 v. 2.2.1 [17, 18]. The raw expression estimates were calculated using cuffquant

and the expression were normalized using cuffnorm, which gives the normalized read counts

and the fragments per kilobase per million values (FPKM) for each gene as an output. The geo-

metric normalization method was used which scales the read counts as well as the FPKM val-

ues according to procedure described in [19].

The annotation data for HERV-K (HML-2) was from Subramanian et al. [12] and that for

HERV-W from Grandi et al [13]. To ensure the robustness of the normalization the expres-

sions of HERV elements were quantified and normalized together with ENSEMBL v. 82 gene

reference set [20, 21]. For each individual study subject, a given HERV element was considered

significantly expressed when the individual expression level exceeded normalized read count

of 16 [22].
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Cluster analysis

Hierarchical clustering of the samples based on normalized read counts was done separately

for both HERV-K (HML-2) and HERV-W. Spearman correlation was used as the distance

metric, which is robust against outliers and non-Gaussian distributions, and can capture non-

linear relationships [23, 24]. Ward’s minimum increase of sum-of-squares was used as the

linkage method, which has been reported to perform better with gene expression data than the

more traditional methods of average and complete linkage [23]. Multistep-multiscale boot-

strap resampling was done to evaluate the uncertainty involved in the clustering [25]. Thou-

sands of samples of varying sizes are randomly created from the data and then clustered. An

approximately unbiased (AU) p-value is obtained, which indicates the bias corrected percent-

age of dendrogram variants where the specific cluster was observed.

Results

The results of the RNA-seq analysis indicated that 33 HERV-K (HML-2) loci out of 91 had a

detectable expression, but often at low level and not in all individuals. The expression levels of

PBMCs derived from young and elderly individuals were generally similar. Only at three loci

(1q22, 10p14 and 12q24.33) the difference was statistically significant as shown in Table 1.

In the case of HERV-W, the results were similar, in 45 proviruses out of 213 the read count

was>16 at least in one individual, and in the case of Xp11.21 the difference in expression lev-

els between the young and old was significant as shown in Table 2.

Hierarchical clustering of the samples based on normalized provirus read counts was done to

investigate expression patterns. Clustering of samples based on HERV-K (HML-2) expression

resulted in two groups separated along the age group lines (Fig 1A). There were two deviations

from this, with one nonagenarian in the predominantly young sample cluster and one young

sample in the nonagenarian cluster. Heatmaps of the clustering of the HERV-K (HML-2) and

HERV-W provirus expression levels are shown in Figs 2 and 3, respectively.

Bootstrap resampling of the clustering was done to quantify the certainty of the clustering.

Both clusters have an approximately unbiased (AU) p-value of 97, which is the bias corrected

percentage of resampling dendrogram variants where the specific cluster was observed. AU p-

value of 97 is equivalent to a p-value of 0.03, indicating statistical significance. The same signif-

icant clusters resulted even if the significantly differentially expressed 1q22, 10p14 and

12q24.33 were excluded from clustering.

HERV-W expression based clustering of samples resulted in one statistically significant

cluster (p-value of 0.04), which contains the same six nonagenarian samples that are grouped

together in the HERV-K (HML-2) based clustering (Fig 1B).

Conclusions

The RNA levels of individual proviruses varied considerably between samples. It was not the

case that some individuals would have been more active producers than others, but instead dif-

ferent proviruses seemed to be expressing non-systematically within and between individuals.

A total of eight HERV-K proviruses and nine HERV-W proviruses were found to be expressed

in all 14 samples and consequently these proviruses were expressed with highest RNA levels.

This suggests that some individual proviruses could be less restricted in terms of their expres-

sion potential, that is brought by the regulation machinery of the cell. Several proviruses were

expressed only in small part of individuals and it is tempting to think that these could be the

ones behind potential adverse effects, especially if they would be mainly expressed in nonage-

narians, as they are probably silenced for a reason. There were no proviruses that were

expressed exclusively in nonagenarians, but for example HERV-K 8p23.1a was expressed in 6
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nonagenarians and only in 1 young individual. Furthermore, only 4 aging-associated differen-

tially expressed proviruses were identified (in HERV-K (HML-2) 1q22 and 10p14 having a

higher and 12q24.33 a lower expression in the elderly and in HERV-W Xp11.21 a lower

expression). Putting all this together, it seems to be the case, that aging has only moderate

effect on the expression levels of individual proviruses.

However, the hierarchical clustering of the expression data indicated that the expression

profiles of the young and elderly subpopulations were different. The simplest way to achieve

this kind of difference would be if, for example, all the proviruses were expressed systematically

Table 1. Median expression levels (normalized read counts) of HERV-K (HML-2) proviruses. Proviruses were deemed expressed if exhibiting a read count of 16 or

more [22]. Known aliases are derived from Subramanian et al. [12].

HERV-K locus Aliases Median expression level

(normalized read count) in

nonagenarians/young

controls

Number of nonagenarians/young controls expressing the provirus

1p31.1a K4, K116, ERVK-1 6.99 6.30 2 / 1

1q21.3 - 7.76 18.72 1 / 5

1q22 K102, K(C1b),K50a,ERVK-7 339.70 261.01� 7 / 7

1q23.3 K110, K18,K(C1a), ERVK-18 95.31 78.79 7 / 7

1q32.2 - 39.31 42.30 7 / 7

3q12.3 K(II), ERVK-5 774.61 916.86 7 / 7

3q13.2 K106, K(C3),K68, ERVK-3 19.77 11.47 4 / 3

3q21.2 K(I), ERVK-4 10.81 19.72 2 / 7

4p16.1a K17b 24.46 26.10 6 / 6

4p16.1b - 15.61 9.44 3 / 1

4p16.3a - 15.45 16.20 3 / 4

7q34 K(OLDAC004979),ERVK-15 66.42 74.16 7 / 7

8p23.1a K115, ERVK-8 28.81 11.39 7 / 1

8p23.1b K27 14.32 17.09 3 / 4

8p23.1c - 13.13 22.86 3 / 6

9q34.11 K31 40.53 36.90 6 / 7

9q34.3 K30 1.01 3.81 0 / 1

10p14 K(C11a), K33,ERVK-16 70.77 18.00� 7 / 4

10q24.2 ERVK-17, c10_B 7.16 8.95 0 / 1

11p15.4 K7 7.29 12.35 0 / 3

11q12.1 - 8.19 14.65 3 / 3

11q12.3 K(OLDAC004127) 13.53 8.93 2 / 3

12p11.1 K50e 0.00 0.00 1 / 0

12q24.11 - 12.49 4.88 3 / 2

12q24.33 - 87.55 97.25� 7 / 7

14q11.2 - 54.12 27.67 7 / 7

16p13.3 - 2.62 4.41 0 / 1

19q11 K(C19), ERVK-19 2.31 4.91 0 / 1

19q13.12a - 7.76 18.10 1 / 4

19q13.12b K(OLDAC012309),KOLD12309 122.78 146.49 7 / 7

19q13.41 - 12.23 9.71 2 / 2

20q11.22 K(OLDAL136419),K59 13.17 8.57 2 / 2

22q11.21 K101, K(C22),ERVK-24 5.12 4.76 0 / 1

�

Statistically significant (Mann-Whitney U-test) differential expression and expressed in majority of samples.

https://doi.org/10.1371/journal.pone.0207407.t001
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Table 2. Median expression levels (normalized read counts) of HERV-W proviruses. Proviruses were deemed

expressed if exhibiting a read count of 16 or more [22].

HERV-W locus Median expression

level (normalized

read count) in

nonagenarians/

young controls

Number of nonagenarians/young controls expressing the provirus

1p12 5.22 10.59 0 / 1

1p22.2a 19.16 26.36 6 / 7

1p34.2 57.92 48.72 7 / 7

1q22 18.79 11.82 6 / 3

1q32.1 8.35 11.82 1 / 3

1q42.13 36.67 33.35 7 / 7

2p16.2 86.88 89.99 7 / 7

2p23.1a 11.07 16.17 2 / 4

2q11.2 33.96 27.27 7 / 6

2q22.2 108.33 113.64 7 / 7

2q24.3 3.71 14.38 0 / 2

2q31.2a 52.18 31.76 6 / 5

2q32.3 7.24 13.64 1 / 3

3q11.2 5.31 6.67 1 / 1

3q13.31 169.19 182.88 7 / 7

3q13.32 53.11 58.60 7 / 7

3q23b 86.98 73.15 7 / 7

3q26.32 8.35 12.71 2 / 2

4p16.3 13.66 11.72 3 / 3

4q21.22 9.31 15.45 1 / 3

5q22.2 3.03 4.49 0 / 1

6p22.3 25.05 30.80 4 / 5

6q21a 132.84 111.17 7 / 7

6q21c 8.92 38.13 3 / 7

6q24.2a 8.71 10.00 0 / 1

6q27b 35.17 36.58 7 / 6

7p14.2 4.16 0.48 2 / 0

7q21.2 18.18 17.77 4 / 5

7q31.1a 0.00 1.93 0 / 1

8q21.11 10.34 9.18 0 / 1

9p13.3 17.74 16.31 4 / 4

10q24.1 26.89 25.16 7 / 5

11q14.1 34.83 36.36 7 / 7

11q14.2 15.86 4.69 3 / 0

12q24.31 37.57 37.27 6 / 7

13q13.3 16.55 13.64 4 / 1

14q21.2 29.71 31.63 6 / 7

14q32.11 9.39 7.06 1 / 0

15q21.3 14.61 8.89 2 / 2

17q12a 11.32 10.00 1 / 2

17q12b 8.35 9.09 1 / 2

17q22 29.22 25.42 6 / 6

18p11.31 9.90 9.63 2 / 0

(Continued)
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slightly up or down in one of the groups. This kind of behavior could be attributed to some

kind of common regulator that has only one simple mode of action. However, this was not the

case, as different proviruses were up- and downregulated equally in the nonagenarians. This

requires more complex regulation and is possibly reflecting multilayered epigenetic regulation

machinery involving, among other things, DNA methylation and histone modifications, and

inducing distinguishable aging-associated expression profile. Due to Spearman correlation

based distance metric in the clustering, each provirus has identical weight in the clustering

Table 2. (Continued)

HERV-W locus Median expression

level (normalized

read count) in

nonagenarians/

young controls

Number of nonagenarians/young controls expressing the provirus

19q13.2a 9.90 17.05 0 / 5

Xp11.21 16.54 34.60� 4 / 7

�Statistically significant (Mann-Whitney U-test) differential expression and expressed in majority of samples.

https://doi.org/10.1371/journal.pone.0207407.t002

Fig 1. Hierarchical clustering of HERV-K(HML-2) and HERV-W proviruses. Hierarchical clustering of the samples was carried out with normalized (A) HERV-K

(HML-2) and (B) HERV-W read counts, using Spearman correlation distance metric. Nonagenarian samples are indicated by an identifier starting with the number 2,

while control sample identifiers start with 4. The height separating clusters has been calculated with Ward’s minimum increase of sum-of-squares linkage method and

indicates proportional dissimilarity between clusters. The red squares indicate clusters that were deemed statistically significant through bootstrap resampling. AU p-value,

in red font, indicates the bias corrected percentage of dendrogram variants where the cluster was present.

https://doi.org/10.1371/journal.pone.0207407.g001
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result, regardless of level of expression. Therefore this result would indicate that there are dif-

ferences between the age groups that are revealed when the proviral expression profiles are

examined as a whole. The underlying cause behind observed expression profile difference thus

has to affect the expression of many different proviruses. Understanding what causes this dif-

ference could increase knowledge of HERV expression associated disease states and of age-

related decline. Since the same nonagenarian samples are clustered by both HERV-K (HML-2)

and HERV-W expression, this phenomenon may not be limited to these families, and could be

present in other HERV families as well. It is noteworthy, that our analysis is only limited to

HERV-K (HML-2) and HERV-W families. Previous studies have indicated that upregulation

of some other HERV subclasses might also have implications in tumor immunity [26–28].

Therefore, it is possible that these HERVs could contribute to aging more than HERV-K

(HML-2) and HERV-W. This remains to be explored in future studies.

There is a general agreement that the expression of HERVs should be under a strict control,

i.e. allowing their expression in the germ line but silencing in most somatic cells, where their

activity could disrupt normal gene expression or transcript processing. Several of these control

mechanisms have been characterized in detail [29, 30]. As human aging is associated with dra-

matic epigenetic changes, e.g. DNA methylation [31], it is maybe surprising that expression

levels between the young and old individuals were not strikingly different. However, it is possi-

ble that this epigenetic regulation is responsible for the observed differences and the expression

Fig 2. Heatmap of clustered samples and proviruses based on HERV-K (HML-2) normalized read counts. The

color green indicates relatively high expression, while red indicates relatively low expression. The grey blocks beneath

sample dendrogram indicate age group membership, with light grey for young controls and dark grey for

nonagenarians.

https://doi.org/10.1371/journal.pone.0207407.g002
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profiles would be due to differential sensitivity of the individual proviruses to these aging-asso-

ciated epigenetic changes.

The general expression profile of HERV-K (HML-2) in the resting blood cells used here,

was dominated by a few loci, i.e. 3q12.3, 19q13.12b and 1q22., resembling the situation in in

vitro pre-activated lymphocytes [32], suggesting that the proliferative state of the cells has

probably only a minor effect. This far, no similar data in the case of HERV-W is available.

In conclusion, transcriptional regulation of the proviruses belonging to HERV-K (HML-2)

and HERV-W families appears to be two-dimensional in the PBMCs; a subset of HERVs are

expressed constantly in age-independent manner having only slight aging-associated differences

in the expression levels. These differences might be explained by a fine-tuning of transcriptional

regulation that is brought by DNA methylation and is known to be heavily altered in aging. On

the other hand, proviruses in another subset of HERVs were characterized by total lack of

expression in some individuals. This could be the result of some more drastic mode of regula-

tion such as that of H3K4me3, that is also known to be altered in aging [33]. Aging-dependent

HERV profile found with clustering might reflect this aspect of regulations and it is also possible

that adverse effects of HERVs are driven by those proviruses that undergo more radical tran-

scriptional relaxation or restriction, that is not necessarily seen in the median RNA levels (for

example HERV-K 8p23.1a in Fig 2 and HERV-W 11q14.2 in Fig 3).

Fig 3. Heatmap of clustered samples and proviruses based on HERV-W normalized read counts. The color green

indicates relatively high expression, while red indicates relatively low expression. The grey blocks beneath sample

dendrogram indicate age group membership, with light grey for young controls and dark grey for nonagenarians.

HERV-W has more proviruses listed, which causes changes to the appearance of the heatmap, in addition to the

differences in expression.

https://doi.org/10.1371/journal.pone.0207407.g003
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This finding might have some practical consequences. In the clinical studies demonstrating

associations with HERV-expression the expression of only one or a few proviruses have been

used as the indicator. In these studies, analysis of the whole HERV profile would help in find-

ing the true pathogenic provirus. Small number of samples is a limitation of this study, and

more comprehensive studies with bigger sample populations are needed for confident evalua-

tion of the RNA levels.
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