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Abstract: Carbon nanostructures are widely used as fillers to tailor the mechanical, thermal, barrier,
and electrical properties of polymeric matrices employed for a wide range of applications. Reduced
graphene oxide (rGO), a carbon nanostructure from the graphene derivatives family, has been
incorporated in composite materials due to its remarkable electrical conductivity, mechanical strength
capacity, and low cost. Graphene oxide (GO) is typically synthesized by the improved Hummers’
method and then chemically reduced to obtain rGO. However, the chemical reduction commonly
uses toxic reducing agents, such as hydrazine, being environmentally unfriendly and limiting the
final application of composites. Therefore, green chemical reducing agents and synthesis methods of
carbon nanostructures should be employed. This paper reviews the state of the art regarding the green
chemical reduction of graphene oxide reported in the last 3 years. Moreover, alternative graphitic
nanostructures, such as carbons derived from biomass and carbon nanostructures supported on clays,
are pointed as eco-friendly and sustainable carbonaceous additives to engineering polymer properties
in composites. Finally, the application of these carbon nanostructures in polymer composites is
briefly overviewed.

Keywords: reduced graphene oxide; clays; hydrothermal carbons; supported carbons; polymer composites

1. Introduction

The discovery of graphene, a two-dimensional (2D) material composed of sp2 car-
bon monolayer arranged into a hexagonal network, had a tremendous impact in carbon
materials research [1]. Graphene was isolated from graphite by mechanical exfoliation
with an adhesive tape for the first time in 2004 by Geim et al. [2]. The relevance of this
work was recognized by the attribution of the Nobel Prize in Physics in 2010. The ideal
single-layer graphene has exceptional physical properties, such as ultrahigh charge-carrier
mobility (200,000 cm2 V−1 s−1 at room temperature), high Young’s modulus (∼1.0 TPa),
high specific surface area (theoretical value of 2630 m2 g−1), absorption of only 2.3% of
visible light, and high thermal conductivity (∼500 W m−1 K−1). Therefore, graphene is a
promising material for many distinct areas, such as energy, medicine, or electronics [3–5].

Eighteen years after the graphene isolation, the 2D carbon materials research is greatly
developed. However, the word “graphene” has been widely misused to designate distinct
2D carbon materials when it should be reserved for the graphene sheets [1]. The intense
research around graphene led to a diversification of the synthesis methods and graphene
materials synthesized. Different synthesis techniques produce graphene derivatives with
distinct features, varying in number of layers, lateral size, yield, type of defects, and
consequently, properties [6].

Graphene derivatives, including graphene nanoplatelets (GNP) [7], graphene oxide
(GO) [8], and reduced graphene oxide (rGO) [9], are suitable fillers for the development
of polymer composites. However, synthesis challenges associated with difficulties to
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scale up turn the graphene derivatives expensive nanomaterials [10]. Besides, the use of
toxic chemicals prevents their safe application in target areas, such as the food packaging
industry and the biomedical field [11]. In this context, sustainable synthesis methods to
produce green graphene derivatives avoiding toxic chemicals have been developed. The
production of rGO using green chemical reductants to replace the toxic ones is a major
example. Furthermore, the development of alternative carbon nanostructures using natural
feedstock as carbon precursors encompasses diverse sustainable strategies to address
these issues.

This review presents different approaches to prepare sustainable carbon nanostruc-
tures suitable for polymer-based composites. The recent advances regarding the green
chemical reduction of GO are overviewed. The sustainable production of hydrothermal
carbon nanostructures, graphitic materials derived from biomass, and graphitic materi-
als supported on clays are highlighted. Finally, the application of these green carbon
nanostructures in polymer composites is overviewed.

2. Chemical Reduction of Graphene Oxide

rGO is the most used 2D carbon material for the development of electrically conductive
and mechanically reinforced polymer composites [3]. Graphite, constituted by graphene
layers bonded by strong van der Waals forces, is the bulk starting material to synthesize
rGO. First, graphite is oxidized to produce GO. After that, GO suffers a reduction step to
produce rGO, as shown in Figure 1.
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Figure 1. The chemical production of graphene oxide from graphite.

Hummers’ method and its variations are currently the most used procedures to
synthesize GO [12]. The chemical exfoliation of graphite is achieved using strong acids, as
concentrated sulfuric and phosphoric acids, which promote the graphene layers’ separation.
The oxygenation of the separated graphene layers is accomplished using oxidants, such
as hydrogen peroxide and potassium permanganate. The reduction process consists in
the partial removal of oxygen functionalities present in the GO structure, namely, tertiary
alcohols and epoxides attached to sp3 carbons, and hydroxyl and carboxylic groups attached
to the sp2 lattice. This process converts the hydrophilic and insulator GO (yellow) into the
hydrophobic and electrically conductive rGO (black) [13]. The extent of oxygen removal
relies on the efficiency of the reducing agent. However, the deoxygenation is incomplete
and the remnant oxygen functionalities promote the rGO dispersion and functionalization
and may interact with polymers, being an advantage for the preparation of composites.

2.1. Evaluation of the Reduction Extent

The conversion of GO into rGO can be confirmed by different characterization tech-
niques, such as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray
powder diffraction (XRD). Other techniques, such as Fourier-transform infrared spec-
troscopy (FTIR), ultraviolet–visible spectrophotometry (UV–Vis), and thermogravimetric
analysis (TGA), are also useful tools.

Raman spectroscopy is a nondestructive technique employed to evaluate the structural
changes that take place upon GO-to-rGO conversion. Graphene derivatives present charac-
teristic D and G bands at ~1355 and ~1575 cm−1, respectively. The D band is activated by
the presence of defects such as edges, vacancies, and grain boundaries in the carbon lattice.
The G band corresponds to the vibration mode of sp2 carbon atoms. The intensity ratio of
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the D band over the G band (ID/IG) is a parameter commonly used to access the level of
disorder of graphene materials. The increment of sp2 graphitic domains and decrease in
defect density may lead to a decrease in ID/IG ratio [14]. However, the ID/IG ratio of rGO
is frequently reported to increase, which is justified if the new graphitic domains have a
lower average size compared with the ones present in GO. Additionally, new defects may
be introduced due to the removal of oxygen functionalities [15–17].

XPS is a powerful technique used to determine the surface chemical composition
and the local chemical environment of the elements. The sp2/sp3 carbon hybridization is
accessed through the fitting of the C 1s spectrum. The quantification of carbon and oxygen
atomic percentages is used to determine the C/O ratio, which is one of the main parameters
to evaluate the extent of the GO reduction [18,19].

XRD is used to monitor the evolution of the crystalline structure and lattice parameters
upon reduction. The diffractogram of GO shows a characteristic peak at around 2θ = 10◦

corresponding to the reflection (001), with a typical d-spacing value of ~0.85 nm, caused by
the presence of oxygen between GO sheets. A small peak around 2θ = 42◦ corresponding
to the reflection (102) can also be observed. After the reduction, the peak at 2θ = 10◦

disappears or becomes less intense (in cases of mild reduction), and a new peak at ~2θ = 25◦

corresponding to the (002) reflection appears. The d-spacing associated with this reflection
is commonly around 0.35 nm, but it depends on the extent of oxygen removal from GO.
Additionally, the functionalization of rGO by the reducing agent might increment this
value [20].

UV–Vis spectrophotometry can be used to monitor the reduction in case of rGO
dispersions with homogeneous spatial distribution of particles. GO presents a strong
absorption peak at approximately 230 nm, attributed to the π–π* transitions of aromatic
C–C bonds, and a weaker peak at approximately 280 nm, assigned to the n–π* transitions
of C=O bonds. After reduction, the peak at 230 nm redshifts to approximately 270 nm,
suggesting the restoration of the sp2 graphene lattice [21–23].

The TGA signature of carbon materials typically presents three characteristic regions.
The first region, <100 ◦C, is attributed to water evaporation. The second region, between
100 and 360 ◦C, is related to the decomposition of oxygen-containing groups. Finally, the
third one, between 360 and 1000 ◦C, is attributed to carbon combustion when TGA is
performed under air flow, or degradation of unstable carbon in case of being performed
under inert atmosphere. The high percentage of oxygen functional groups on the GO
structure leads to a thermal degradation at lower temperatures than rGO, which allows us
to distinguish both materials by TGA [24,25].

2.2. Typical Reduction Methods

In the last few years, many innovative reduction strategies have been reported. The
main approaches to reduce GO are chemical reduction [26], thermal decomposition [19], or
strategies involving a combination of thermal and chemical methods [20]. Electrochemical
reduction is another eco-friendly methodology, where GO is reduced in a standard elec-
trochemical cell through the application of voltage. This method allows the simultaneous
reduction and deposition of rGO into a substrate [27]. These approaches can produce rGO
with high a C/O ratio and electrical conductivity. Nevertheless, thermal decomposition
(typically above 500 ◦C) requires a high energy consumption, which turns difficult the scale-
up process. Thus, chemical reduction is the most exploited approach for the large-scale
production of rGO.

Hydrazine is pointed as the most effective chemical reducing agent, producing rGO
with a high electrical conductivity. In 2007, Stankovich et al. [15] reported the reduction
of GO with hydrazine hydrate at 100 ◦C for 24 h. The rGO sheet aggregates presented
an electrical conductivity of 2420 S m−1. In 2008, Li and coworkers [23] improved this
reduction method, being able to produce rGO-stable water dispersions through the addition
of ammonia solution to the reaction. The rGO film prepared by vacuum filtration presented
an enhanced electrical conductivity of ~7200 S m−1. Given these results, and despite
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its hazardous and pollutant features, hydrazine is still used as the reference reducing
agent [28,29].

The growing interest in rGO-based materials ignited this research field, having cur-
rently known more than 50 types of chemical reducing agents [11]. Sulfur-containing com-
pounds [30], nitrogen-containing compounds [31], and oxygen-containing compounds [20]
are categorical examples that illustrate the diverse nature of reducing agents. N- and
S-containing reducing agents can simultaneously reduce GO and produce N- or S-modified
rGO, with particular interest in diverse rGO applications. Wang et al. [32] synthesized
S-modified rGO through the reduction of GO by cystamine dihydrochloride under basic
conditions at 55 ◦C during 24 h. The S-modification reinforced the interactions between
rGO and rubber, and consequently improved the mechanical and thermal properties of
rubber-based composites in comparison with rGO reduced with hydrazine. Zhang et al. [33]
reported N-modified rGO synthesized through a simple one-step hydrothermal reaction of
GO in the presence of ammonium carbonate used as a chemical reductant. The N-modified
rGO revealed improved electrochemical performances suitable for energy storage electrode
materials.

The most effective reducing agents are commonly toxic compounds, which limit
the use of rGO for food, biological, or medical applications. Therefore, many nontoxic
eco-friendly reducing agents have been investigated.

2.3. Green Chemical Reduction

Ascorbic acid, commonly known as vitamin C, is one of the most used green reducing
agents. The reduction of GO with L-ascorbic acid at room temperature during 48 h achieved
an electrical conductivity of ~800 S m−1 [34]. Ascorbic acid also plays a role in the rGO
stabilization. The oxidized ascorbic acid products can establish hydrogen bonds with the
remaining oxygen-containing groups present in rGO. These interactions prevent the π–π
stacking between rGO sheets, which decreases the rGO agglomeration and promotes the
water dispersion. After this, many green reducing strategies have been tested.

Table 1 lists the works, published in the last three years, regarding the green reduction
of GO. These works are grouped into three main categories—plant extracts, bacteria, and
combined methods—where a green chemical reducing agent is used along with a thermal
or mechanical method. Plant extracts are the main category of green reducing agents due
to their low cost, abundancy, and rich composition in natural reducing compounds. For
example, eucalyptus bark aqueous extract was used to reduce GO, resulting in highly
reduced few layer rGO. XPS analysis determined a significant increase in C/O ratio from
5.06 in GO to 10.9 in rGO, pointing an efficient oxygen removal. The reduction efficiency
of this extract is attributed to the high content in polyphenolic compounds present in its
composition [35]. In another work, GO was reduced with Thuja orientalis seed extract.
Gas chromatography with a mass spectrometry detector (GC–MS) analysis pointed alpha-
tocopherol as the main reducing compound [36]. Syzygium samarangense ripened fruit
extract was used to reduce GO, producing rGO with a 4.8 C/O ratio. The ascorbic acid
and aspartic acid present in this fruit composition are behind the reducing ability of the
extract [37]. Similarly, the reduction of GO with Bougainvillea glabra flower yielded rGO
with a 4.6 C/O ratio due to a rich composition in caffeic, gallic, and tannic acids [21].

The reduction of GO with plant extracts is usually considered a simple process. The
plant extracts can be prepared from different parts of the plant, e.g., leaves, seeds, fruits,
flowers, or bark, being typically prepared by reflux. After that, the reduction of GO is
typically achieved by stirring the extract with a GO solution at temperatures below 100 ◦C
between 1 and 40 h. Therefore, the reduction of GO with plant extracts is a simple and
sustainable process. Given the diversity of plants with a rich composition in reducing
compounds, the exploration of novel plant extracts to reduce GO is expected to continue
during the next years.

Bacteria are another category of green reducing agents reported in the last 3 years,
as shown Table 1. The process is also simple, avoiding toxic chemicals and high energy
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consumption. GO reduction is achieved through the extracellular electron transfer from
the bacterial cell to GO. Bacterial reduction can be achieved by simply placing bacteria in
contact with a GO solution [38,39]. Another approach is the use of bacterial polymers. Wang
et al. [40] used extracellular polymeric substances extracted from Bacillus sp. NT 10 in the
presence of ammonia to convert GO with a 1.2 C/O ratio into rGO with a 3.2 C/O ratio. The
reduction was attributed to the electron-rich proteins present in the bacterial extracellular
polymeric substances, along with a synergetic effect of the reducing power of ammonia ions.
Eco-friendly sulfur and nitrogen rGO modification can also be accomplished using bacteria.
Dong et al. [41] reported a use of Desulfotomaculum sulfate-reducing bacteria to produce
N- and S-modified rGO. A GO film was prepared by solvent casting and incubated with
bacteria for a few days at 37 ◦C. The resulting material showed a 4.5 C/O ratio and 3.71%
and 0.72% atomic percentages of nitrogen and sulfur heteroatoms, respectively. Similarly,
Kalathil et al. [38] reduced GO with Geobacter sulfurreducens and acetate. The Geobacter/rGO
material showed a 5.5 C/O ratio and heteroatom modification with 5% N and <1% of S, P,
Fe, and Cu.

The combination of chemical and physical reduction methods is a strategy to improve
the extension of reduction while maintaining mild conditions, as shown in Table 1. Recently,
we reported the synthesis of rGO by the hydrothermal treatment of GO in the presence
of caffeic acid. Caffeic acid not only reduced rGO, but also produced carbon particles
that can be used for further rGO functionalization [20]. Furthermore, ZnO nanostructures
were grown in situ with simultaneous reduction of GO sheets by a solvothermal method
using ethanol as solvent. The obtained ZnO–rGO nanostructures can be used as functional
fillers due to the antimicrobial activity of ZnO [42]. Narayanan et al. [25] also reported
the hydrothermal synthesis of rGO using starch as reducing agent. The combination of
the green chemical reduction with mechanical exfoliation (e.g., Taylor vortex flow or ball
milling) is another eco-friendly strategy to synthesize rGO [43,44]. The green reduction
of GO is a low-cost process. The selection of nonhazardous reducing agents commonly
produces nontoxic and biocompatible rGO suitable to be used in biomedical or food
applications [45,46]. For example, the N- and S-modified rGO film prepared by bacterial
reduction was directly used to cultivate MCF−7 breast cancer cells on top, being used as an
electrochemical H2O2 sensor [41]. Similarly, the starch-modified rGO was biocompatible
to human skin fibroblasts and hemocompatible to red blood cells [25]. In addition, the
simultaneous reduction and modification of rGO, or even the presence of the reducing
agent in the final material, might be beneficial to establish chemical interactions with
polymeric matrices in the preparation of composite materials. Therefore, the green rGO has
promising features for the development of polymer composites avoiding toxic compounds
that compromise the biological areas.

Table 1. Green chemical reducing agents used to convert GO into rGO reported in the last three years.

Reductant Conditions C/O ratio a ID/IG d-Spacing (nm) b Ref.

Elemental sulfur 4 h, 170 ◦C 13.2 0.97 0.363 [47]

POM (SiW12O40
5−) 1 min 6.1 1.13 – [48]

Plant Extracts

Urtica dioica leaf pH 12, 1 h, 90 ◦C 4.8 1.13 – [29]
Thuja orientalis seed 6 h, RT – 0.14 0.355 [36]

Peganum harmala seed 1 h, 90 ◦C – 0.94 0.355 [49]
pH 12, 1 h, 90 ◦C – 0.90 0.380 [50]

Syzygium samarangense fruit 40 h, 60 ◦C 4.8 1.17 0.370 [37]
Tridax procumbens leaf 12 h, 95 ◦C – 1.00 0.360 [45]

Gooseberry fruit 3 h, 95 ◦C – 1.11 0.368 [51]
Erythrina senegalensis leaf 3 h, 95 ◦C 6.2 – 0.330 [46]
Bougainvillea glabra flower 5 h, 95 ◦C 4.6 – 0.380 [21]

Eucalyptus bark 24 h, 85 ◦C 10.9 1.15 0.356 [35]
Capsicum annuum fruit 8 h, 80 ◦C – 1.30 0.341 [52]

Camellia sinensis leaf pH 9, 2 h, 120 ◦C – 1.14 0.337 [53]
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Table 1. Cont.

Reductant Conditions C/O ratio a ID/IG d-Spacing (nm) b Ref.

Bacteria

Pseudoalteromonas sp. 24 h – 1.30 0.335 [39]
Desulfotomaculum Few days, 37 ◦C 4.5 1.37 0.370 [41]
Bacillus sp. EPS pH 8, 24 h 40 ◦C 3.2 1.02 0.365 [40]

G. sulfurreducens/acetate 48 h, 30 ◦C 5.5 1.18 – [38]

Bacillus sphaericus 48 h, 30 ◦C 2.6 1.17 0.870 [54]

Combined Methods

HTC/caffeic acid 24 h, 180 ◦C 6.0 1.09 0.343 [20]
HTC/ZnO pH 1, 24 h, 150 ◦C – 1.32 – [42]

HTC/starch pH 9, 15 min, 120 ◦C 3.6 1.03 0.378 [25]
HTC/P. amboinicus leaf 12 h, 120 ◦C – 1.30 0.360 [55]

TVF/ascorbic acid pH 10, 0.5 h, 95 ◦C 6.2 1.32 0.390 [43]
BM/Zn 6 h, RT 8.9 1.32 – [44]

POM: polyoxometalate. RT: room temperature. EPS: extracellular polymeric substances. HTC: hydrothermal
carbonization. UV: ultraviolet. TVF: Taylor vortex flow. BM: ball milling. a Values determined from XPS elemental
analysis. b Values determined from XRD analysis.

3. Carbon Structures Derived from Biomass

Biomass typically presents a carbon content between 45% and 50%. The isolation of
carbon from other chemical elements is accomplished by thermochemical treatments, such
as pyrolysis, hydrothermal carbonization (HTC), or a combination of both processes. The
materials obtained from biomass conversion present distinct properties that mainly rely on
the starting carbon precursor and processing strategies [56,57].

Pyrolysis is the decomposition of biomass in temperatures typically between 350 and
1100 ◦C under inert atmosphere. Conventional pyrolysis is performed in a tubular furnace,
where the heat generated by electricity is transferred to the biomass. The alternative
microwave-assisted pyrolysis generates localized heat, being an energy efficient and time-
saving method [58]. This method improves the surface area of materials. For example,
hay-derived activated biochar produced by microwave pyrolysis showed a surface area
30% higher in comparison to conventional pyrolysis [59].

Starbon® is a patented technology that uses conventional pyrolysis to convert polysac-
charides into carbonaceous mesoporous materials, commercially designated as Starbons [60].
Starch was the first polysaccharide used as a precursor for Starbons technology. The con-
ventional preparation route comprises several sequential steps: (i) starch gelatinization,
(ii) starch retrogradation, (iii) solvent exchange, (iv) drying, and (v) carbonization. For
example, corn starch was gelatinized in heated distilled water and recrystallized by cooling
down at 5 ◦C. Water from the retrograded starch gel was removed by solvent exchange
with ethanol and dried to prevent collapse of the structure. The resulting material was
pyrolyzed between 150 and 700 ◦C, after being treated with p-toluene sulfonic acid to
catalyze the carbonization and keep the porous structure. The expanded starch showed
a Brunauer–Emmett–Teller specific surface area (SBET) of approximately 180 m2 g−1 and
a narrow pore volume of 0.4–0.6 cm3 g−1. The hydrophobicity of these materials was
controlled by the degree of carbonization, producing more hydrophilic materials at lower
temperatures [61]. The application of Starbons technology to alginic acid kept the first
four steps in agreement with the starch processing, but the alginic acid gel was dried with
supercritical CO2 and pyrolyzed in a broader temperature range of 200–1000 ◦C. The meso-
porous materials showed a SBET of 200 m2 g−1, but the different pyrolysis temperatures
did not influence the specific surface area. Nevertheless, the higher temperatures produced
carbon materials with more graphitic domains, as demonstrated by an increment C/O ratio
from XPS and elemental analysis techniques [62].

HTC is a thermochemical conversion method alternative to pyrolysis, in which
biomass is processed inside a sealed autoclave at mild conditions using water as solvent.
The mild processing temperatures, typically between 120 and 280 ◦C, generate supercritical
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water that promotes the biomass conversion. HTC consumes less energy compared with
pyrolysis, being more sustainable from an ecological point of view. In this context, the
microwave-assisted HTC is an alternative way that saves even more time and energy.
For example, spherical carbon particles with a carbon content >90% were prepared by
processing glucose only during 15 min by microwave-assisted HTC [63].

The HTC of carbohydrates involves complex chemical reactions, which can be divided
into five general stages: (i) hydrolysis, (ii) dehydration, (iii) decarboxylation, (iv) polymer-
ization, and (v) aromatization [57]. Figure 2 shows the proposed mechanism for the HTC
of cellulose.
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Titirici et al. [65] investigated the structure and morphology of materials processed by
HTC at 180 ◦C during 24 h using different mono- and polysaccharides as carbon sources.
Hexoses-containing compounds (glucose, maltose, sucrose, amylopectin, and starch) and
hexose derivative 5-hydroxymethyl-furfural-1-aldehyde produced interconnected parti-
cles and agglomerated spheres. The hexoses dehydrate into hydroxymethyl furfural and
condense to form carbonaceous materials with a similar structure and composition. The
interconnected hexose-derived structures result from the good water solubility of hydrox-
ymethyl furfural. On the other hand, xylose and furfural, a pentose-containing compound
and a pentose derivative, respectively, produced well-dispersed spheres. Xylose dehydrates
to form furfural, which has a limited water solubility, and polymerizes, forming carbon
structures identical to the ones obtained from pure furfural. The materials obtained from
mono- and polysaccharides were identical. For example, cellulose at the water/cellulose
interface hydrolyzes to glucose, following the mechanism of hexoses, as shown in Figure 2.
On the other hand, raw cellulose follows a reaction mechanism associated with pyrolysis
yielding highly aromatic materials even at mild conditions, since high pressure destabilizes
the cellulose structure. The same study compares the temperature of biomass decomposi-
tion by HTC and pyrolysis processes. Rye straw biomass submitted to HTC decomposed
between 240 and 280 ◦C, while during pyrolysis decomposition only started at 350 ◦C. The
lower temperature required for rye straw decomposition by HTC is attributed to the high
pressure involved in the process. Another advantage of the HTC process is the possibil-
ity to control the chemical composition of carbonaceous materials such as furan-to-arene
ratio [66].
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The hydrothermal treatment introduces oxygen-containing groups to the carbon struc-
tures, typically producing materials with reduced electrical conductivity. The addition of
GO to glucose, used as carbon source, before HTC increases the electrical conductivity of
the hydrothermal species obtained [67]. In this context, the HTC followed by a pyrolysis
step is an efficient strategy to improve the electrical conductivity, as demonstrated with the
conversion of sugar cane into an electrically conductive aerogel. The aerogel conductivity
increased from 0.4 to 1.3 S cm−1, with the increment of HTC time before pyrolysis [68]. Sim-
ilarly, chitosan treated by HTC followed by pyrolysis produced carbon structures with high
electrical conductivity, having the advantage of maintaining the nitrogen atoms available
for further functionalization. Post-pyrolysis transforms the sp3 hybridized carbons into
sp2 carbons, being a fundamental step to increase the graphitization of the hydrothermal
carbons [69].

HTC produces carbonaceous materials with a very low surface area and undeveloped
porosity. Zhong et al. [70] proposed a vapor-phase alternative HTC treatment to carbonize
monosaccharides. Sucrose was treated in a glass vial placed inside an autoclave, while
the gap between the autoclave and the vial was filled with water during 24 h at 200 ◦C.
This strategy produced spongelike mesoporous carbons, in opposition to the nonporous
carbon material typically obtained by conventional HTC of sucrose. The combination of
HTC followed by pyrolysis also creates porosity, reinforcing the benefits of using both
thermochemical processes [71,72]. In this regard, the use of templates to shape the car-
bon materials during biomass conversion is a powerful method to tune the porosity and
surface area.

The carbon nanostructures derived from biomass are sustainable and low-cost alter-
natives to graphene derivatives. HTC is an economical and eco-friendly technique since
it uses mild temperatures, self-generated pressure, and water as solvent. Pyrolysis uses
higher temperatures in comparison with HTC; however, it can still be considered a rela-
tively economical technique. The combination of HTC and pyrolysis techniques may lower
the energy consumption required for pyrolysis, making the process more economical and
eco-friendlier. The porosity and mechanical and electrical properties of these graphitic
structures can be modified by the processing conditions, tailoring their properties to become
fillers of polymeric composite materials.

4. Graphitic Materials Supported on Lamellar Structures

Clay minerals are natural and abundant resources, adequate for the sustainable
development of ecological materials. The porosity and functional groups present in
natural or synthetic clays turn them into suitable platforms to adsorb diverse types of
molecules [73,74], leading to a wide variety of uses, including hybrid materials for ad-
vanced applications [75]. Therefore, clays have been used as porous templates to produce
nanostructured carbon materials. In this context, the use of clays can be done in two
different approaches: as molds or templates that are removed after carbonization of a
carbon precursor [76,77] or, alternatively, as supports maintained after nanocomposite
synthesis [78,79].

Sepiolite is a natural hydrated magnesium silicate showing a microfibrous morphology
that has been deeply investigated to prepare carbon nanomaterials and nanocomposites
as either template or support. The structure of this clay mineral is organized in alternate
Mg–silicate blocks and intracrystalline nanopores aligned in the fiber direction. This
structural organization, forming interior cavities (tunnels) and exterior channels, turns
sepiolite into an attractive template [80]. Acrylonitrile was adsorbed into sepiolite pores,
polymerized to obtain polyacrylonitrile, and thermally treated by pyrolysis at 750 ◦C
under N2 flow. The resulting carbon–clay nanocomposites were electrically conductive,
maintaining the silicate template, which was removed with acid treatments, and free
carbon fibers with 1 µm length and 20 nm diameter were obtained [73]. Carbon–sepiolite
nanocomposites derived from cellulose were synthesized by HTC using sepiolite pretreated
with hydrochloric acid. These acid treatments increase the amount of surface silanol groups
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(Si–OH) present at the clay surface due to the extraction of Mg2+ ions from its structure.
The resulting carbon–sepiolite nanocomposites showed an increased adsorption capacity
towards organic compounds, such as methylene blue and phenols, in comparison with
pristine sepiolite [81]. However, these treatments could introduce deep alterations in
the crystal order of the starting sepiolite generating silica-based materials [82–84]. Given
that sepiolite interacts with diverse biopolymers through hydrogen bonding [81,85,86],
according to Wu et al. [74] the increase in acid pretreatment that increased the silanol
group density promotes the interactions with cellulose and, consequently, the carbon
content in the final nanocomposites [77]. However, an alternative explanation should be
considered, taking into account the significant increase in the specific surface area of the
silicate-based materials produced by the acid treatments, which can promote the interaction
with the polymers.

Graphene-like materials were also prepared using sucrose or gelatin supported on
sepiolite clay. The carbon–clay bionanocomposites obtained after pyrolysis at 800 ◦C under
N2 atmosphere presented an electrical conductivity in the range of 0.01–1 S cm−1. The
use of gelatin biopolymer as carbon precursor produced N-modified materials, being
advantageous for further functionalization [78].

A 2D-layered silicate montmorillonite has also successfully been used as a porous
template. Electrically conductive and porous caramel–clay nanocomposites were prepared
from sucrose intercalated into montmorillonite in a melting process (i.e., through in situ
formed caramel) [77]. In this way, the precursors in the absence of solvents were polymer-
ized using microwave radiation and further pyrolyzed at 750 ◦C under N2 atmosphere [79].
Following this work, a water solution of caramel (commercial liquid caramel) was also
used as a precursor. Caramel was impregnated into montmorillonite or sepiolite clays
and thermally treated under the same pyrolysis conditions to obtain the graphene-like
materials [79].

In contrast to 2D clay minerals, such as montmorillonite, sepiolite does not have
swelling properties and the formation of intercalated compounds is not possible. In
this case, caramel is presumed to fill the sepiolite pores and cover the external surface
in agreement with N2 adsorption isotherms of the resulting nanocomposites [87]. The
formation of graphitic material into porous silicate templates is represented in Figure 3. The
graphitic material can be formed in the interior of the pores by an endogenic mechanism
or at the silicate surface by an exogenic mechanism [88]. Al-pillared montmorillonite
and glucose were treated by HTC followed by pyrolysis to synthesize another family
of carbon–clay nanocomposites. The thermal treatments converted glucose into carbon
clusters located in the montmorillonite layers and surface. Free carbon microspheres were
also formed due to the HTC process. The montmorillonite pillaring strategy improved
the SBET from 27.1 m2 g−1 to 129.6 m2 g−1 due to an increase in montmorillonite layers’
separation. The introduction of carbon and its conversion resulted into nanocomposites
with a SBET of 162.6 m2 g−1, a pore volume inferior to 0.1 cm3 g−1, and an average pore size
of 4.3 nm [89]. These SBET and pore volume are lower compared with the values obtained
for mesoporous carbons prepared by the removal of a laponite clay template [90].
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The removal of a clay template is advantageous to produce carbon nanomaterials with
a large surface area. However, this strategy may be time-consuming and nonsustainable
due to the use of toxic chemicals [77,90]. On the other hand, the maintenance of the
clay template results in carbon–clay hybrid nanocomposites. The incorporation of these
materials as fillers into insulating polymer matrices to produce composites can make them
electrically conductive and improve their barrier and mechanical properties. The template
maintenance is also advantageous for further material functionalization due to the presence
of clay functional groups [87,88,91]. Nevertheless, despite the advantages of this strategy,
it produces materials with inferior textural properties compared with the clay template
removal [89,90].

MXenes are a large family of transition metal carbides, carbonitrides, and nitrides
showing a general formula, Mn+1XnTx, where M is an early transition metal (e.g., Ti), X is
carbon and/or nitrogen, and Tx represents termination groups (e.g., OH) [92]. Interestingly,
they exhibit colloidal and surface properties in close relation to clay minerals but show
useful additional properties, such as metallic electrical conductivity. These materials are
excellent candidates to form carbon-based nanocomposites and, for instance, porous carbon
nanospheres generated by pyrolysis of chitosan could be assembled to Ti3C2Tx MXene, as
recently reported [93]. The resulting carbon-nanostructured materials (Figure 4) provide an
elevated specific surface area (>1800 m2 g−1) and improved adsorption properties tested in
dye adsorption from aqueous solutions. For instance, the adsorption capacity of crystal
violet is close to 2750 mg g−1, which appears to be the highest adsorbed amount of dye per
mass unit never reported for carbon-based materials [93].
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5. Polymer Composites Containing rGO

Carbon nanostructures are used to reinforce the mechanical, electrical, thermal, and
optical properties of polymeric matrices. Therefore, biocomposites containing carbonaceous
materials have application in many distinct fields. To the best of the author’s knowledge,
among the carbon nanostructures reviewed in this paper, only rGO was applied to prepare
polymer-based composites. However, the carbons derived from biomass and the clay-
supported carbons have potential for the development of polymer-based composites. One
advantage is the selection of the carbon precursor according to the applications. For
example, a carbon precursor containing N- or S- functional groups may not only reinforce
the composite through the establishment of interactions with the polymer but also improve
their performance on the application. Similarly, the electrical conductivity and porosity of
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the carbon nanostructures can be tailored by an appropriate selection of the methodology.
Therefore, the alternative green carbon nanostructures are promising materials for the
development of polymer-based composites.

Table 2 presents the polymer composite materials prepared using the rGO reduced by
the green methodologies listed in Table 1. The applications found for these materials were
corrosion protection [29,49,50], gas diffusion barriers [47], sensing [21], supercapacitors [35],
environmental remediation [39], and food packaging [9,94]. Recently, we revised the
use of graphene derivatives in biopolymer composite nanostructures for food packaging
applications, which is an example of application where these green carbon nanostructures
can be employed [95].

Table 2. Applications of polymer-based composites prepared using the green carbon nanostructures
previously reviewed.

Application Carbon Nanostructure Polymer Composite Results Ref.

Corrosion
protection rGO (Urtica dioica leaf) Polyurethane/rGO (0.15 wt%)

coatings (tested on mild steel)

Resistance against accelerated
weathering condition; improved UV
shielding and corrosion protection

efficiency.

[29]

Corrosion
protection

rGO (Peganum harmala
seed)

Epoxy resin/rGO-Zn (0.15
wt%) coatings (tested on steel)

Dual active and barrier corrosion
protection. [49]

Corrosion
protection

rGO (Peganum harmala
seed)

Epoxy ester resin/rGO-Zn
(0.15 wt%) coating (tested on

steel)

Improved tensile strength (78%),
Young’s modulus (102%) and fracture

energy (83%); improved thermal
stability (62%).

[50]

Gas diffusion
barrier rGO (elemental sulfur) Polyimide/rGO (0.5–5 wt%)

films

Improved tensile strength and
Young’s modulus; 95% reduction of

oxygen permeability.
[47]

Sensing rGO (Bougainvillea glabra
flower)

Nafion/rGO solution
drop-casted on a carbon

working electrode

Sensor electrode used for Pb2+

detection; improved sensitivity and
ultralow limit of detection.

[21]

Supercapacitors rGO (eucalyptus bark)
Nafion/rGO solution

drop-casted on a glassy carbon
electrode

High specific capacitance (239 F g−1)
and high energy density (71 W h kg−1)

at a current density of 2 A g−1.
[35]

Environmental
remediation

rGO
(Pseudoalteromonas sp.)

Sodium alginate/rGO solution
dripped into CaCl2 solution to

obtain spheres

MB and CR dye adsorption from
water. Reusable absorbent with

adsorption efficiency of the MB and
CR 77.91% and 68.27% after 4
adsorption–desorption cycles.

[39]

Food packaging rGO (HTC/caffeic acid) Chitosan/rGO (50%) film

Electrically conductive film to sterilize
food by in-pack PEF; electrical
conductivity of 0.7 S m−1 and
2.1 × 10−5 S m−1 in-plane and

through-plane, respectively.

[9]

Food packaging rGO (HTC/ZnO) Alginate/sepiolite/ZnO-rGO
(50%)

Antimicrobial and electrically
conductive film for food packaging.

E. coli and S.
Inhibition of aureus growth; electrical

conductivity of 0.1 S m−1 and
7.5 × 10−5 S m−1 in-plane and

through-plane, respectively.

[94]

Not mentioned rGO (BM/Zn) Epoxy resin/rGO (0.1–0.3%)
composites

Improvement of thermomechanical
properties. [44]

rGO: reduced graphene oxide. UV: ultraviolet. MB: methylene blue. CR: Congo red. HTC: hydrothermal
carbonization. PEF: pulsed electric field. BM: ball milling.

The mechanical reinforcement promoted by the incorporation of a carbon nanostruc-
ture into a polymer matrix is a general effect with interest in most of areas [9,44,47,50]. The
synthesis methods and precursors of carbon nanostructures should be carefully selected
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since they can influence the preparation of composites. In some cases, the use of green
chemical reductants was an advantage in the preparation of polymer composites. For
example, the Peganum harmala seed extract used to prepare rGO had a dual role as reducing
agent and corrosion inhibitor. Therefore, the coatings containing rGO prepared with this
plant extract acted not only as a barrier but also as an active corrosion coating [49]. Similarly,
the simultaneous reduction and modification of GO with elemental sulfur produced S-rGO
with good adsorption capacities towards Hg(II) due to the high affinity between sulfur
and metallic adsorbates. In addition, S-rGO showed good interfacial interactions with the
polystyrene polymer, which improved the dispersibility of the filler and the mechanical
properties of the resulting composites [47]. Additionally, the presence of clays used to
support carbon nanomaterials can improve their dispersion into the polymer matrix [96].

6. Conclusions and Future Perspectives

Green carbon structures prepared using low-cost, eco-friendly, and sustainable method-
ologies may be additives of interest to modify the mechanical, electrical, and barrier prop-
erties of polymers. The use of natural carbon precursors, green reactants, and sustainable
methodologies allows the development of versatile composites for a variety of applications
in a wide number of fields, including biological and food areas. The use of carbon nano-
materials derived from biomass, such as hydrothermal carbons or carbons supported on
clays, in the fabrication of polymer composites has a high potential of exploration since
they were not used for this purpose yet. In addition, natural biopolymers can be used
as a composite’s matrices to ensure the final material sustainability. These materials are
expected to present comparable properties with the polymer-based composites using rGO
as a filler, with the advantage of being cost-effective, safe, and environmentally sustainable.
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