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Abstract: The growth pattern of filamentous fungi can switch between hyphal radial polar growth
and non-polar yeast-like cell growth depending on the environmental conditions. Asexual coni-
diation after radial polar growth is called normal conidiation (NC), while yeast-like cell growth is
called microcycle conidiation (MC). Previous research found that the disruption of MaH1 in Metarhiz-
ium acridum led to a conidiation shift from NC to MC. However, the regulation mechanism is not
clear. Here, we found MaMsn2, an Msn2 homologous gene in M. acridum, was greatly downregulated
when MaH1 was disrupted (∆MaH1). Loss of MaMsn2 also caused a conidiation shift from NC to
MC on a nutrient-rich medium. Yeast one-hybrid (Y1H) and electrophoretic mobility shift assay
(EMSA) showed that MaH1 could bind to the promoter region of the MaMsn2 gene. Disrupting the
interaction between MaH1 and the promoter region of MaMsn2 significantly downregulated the
transcription level of MaMsn2, and the overexpression of MaMsn2 in ∆MaH1 could restore NC from
MC of ∆MaH1. Our findings demonstrated that MaMsn2 played a role in maintaining the NC pattern
directly under the control of MaH1, which revealed the molecular mechanisms that regulated the
conidiation pattern shift in filamentous fungi for the first time.

Keywords: Msn2; normal conidiation; microcycle conidiation; dimorphism; entomopathogenic fungi

1. Introduction

Filamentous fungi have dimorphism. The cell can switch between radial polar growth and
non-polar yeast-like cell growth depending on the external environmental conditions, including
temperature, nutrients, carbon dioxide concentration, pH and other conditions [1–3].

Conidia are the life initiation and termination units of filamentous fungi. The stress
resistance of conidia is generally higher than that of vegetative cells. Some fungal spores are
among the most stress-resistant eukaryotic cells described so far [4]. There are two patterns
of asexual conidiation in filamentous fungi: normal conidiation (NC) and microcycle conidi-
ation (MC) [5]. NC occurs after radial polar growth, while non-polar yeast-like cell growth
is called MC. In MC, the fungi develop secondary conidia on conidiophores produced
from germ tubes or directly from conidial cells. MC usually occurs under unfavorable
environmental conditions, such as nutrient deficiency. MC was originally reported in
Aspergillus niger and has been found in more than 100 fungi, including entomopathogenic
fungi [5–7].

Compared with NC, MC has more advantages in mass production and field applica-
tion, for example, increased conidial yield, improved conidial stress tolerance and more
uniform conidia in size [8]. The NC regulation pathway has been thoroughly studied
in Aspergillus. Transcription factors BrlA, AbaA and WetA constitute the core regulatory
pathway of NC in Aspergillus nidulans [9]. Disrupting any of these three genes can block
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conidiation [10–12]. In addition, upstream regulatory genes, such as FluG and FlbA-E,
also regulate the core regulatory pathway of conidiation [13]. Compared with NC, only
a few genes involved in MC have been identified. In Fusarium graminearum, the absence
of WetA causes longer conidia and the fungi directly produce the second conidia from
conidia without mycelium formation, showing MC characteristics [14]. In M. acridum, the
downregulation of the mmc gene leads to a conidiation pattern shift from MC to NC with
significantly decreased growth and conidia yield [15]. Disruptions of PepdA and MaCreA
also lead to a shift in conidiation pattern from MC to NC [16,17].

Homeobox genes, which can bind to DNA by the homeobox domain or homeodomain
containing a helix-turn-helix motif, are an important class of transcription factors in eu-
karyotes [18]. Homeobox genes have been reported to be involved in conidiation processes
among different fungi. For instance, PahI plays a negative role in microconidiogenesis
in Podospora anserina [19]. The PahI homologous gene Bchox8 is also involved in mycelial
development and conidiation in Botrytis cinerea [20]. Mohox4 and Mohox6 can affect conidial
size and hyphal development in Magnaporthe oryzae [21]. A previous study showed that
the deletion of the homeobox gene MaH1 resulted in a conidiation shift from NC to MC
in M. acridum when cultured on a nutrient-rich medium 1/4 SDAY [22]. However, the
mechanisms that regulate the shift have not been reported. In this study, we found that the
multicopy suppressor of snf 2 (also named Msn2) was downregulated in MaH1-deficient M.
acridum, suggesting that MaH1 might regulate Msn2.

Msn2, a C2H2 transcription factor, is regulated by PKA phosphorylation and located
in the cytoplasm under normal circumstances. After being stimulated by environmental
stresses, such as severe temperature, osmotic and oxidative stresses, Msn2 is rapidly
dephosphorylated by PP1 protein phosphatase and translocated into the nucleus [23,24].
Msn2 is also regulated by genes involved in the MAPK pathway [25], Ras–cAMP–PKA
pathway [26], Snf1 protein kinase pathway [27], TOR pathway [28] and GSK-3 homologs
activity pathway [29]. In the nucleus, Msn2 regulates the transcription of a large number of
stress response-related genes by binding to the stress response element in the promoter
region [30]. The roles of Msn2 vary in different fungi. Msn2 in B. bassiana (BbMsn2) and
M. robertsii (MrMsn2) contribute to conidiation, multiple stress responses and virulence [31].
Bbmsn2 is a pH-dependent negative regulator, which regulates secondary metabolism and
produces a red pigment called oosporein [32]. Msn2 in Magnaporthe oryzae (MoMsn2)
affects aerial hyphal growth, conidiation and virulence. MoMsn2 is targeted by mitogen-
activated protein kinase MoOsm1 and interacts with downstream gene MoCos1 in the
osmotic regulation pathway [33]. Msn2 in Verticillium dahliae (VdMsn2) controls mycelial
growth, microsclerotia formation and virulence [34].

In this study, we focused on the regulation mechanism of MaH1 and Msn2 in the
conidiation pattern shift in M. acridum and found that MaMsn2 played a role in maintaining
the NC pattern directly under the control of MaH1.

2. Materials and Methods
2.1. Strains and Culture Conditions

Wild type M. acridum CQMa102 (WT) was deposited in the China General Micro-
biological Culture Collection Center (CGMCC; No. 0877; GCF_000187405.1). The WT,
knockout and complement strains were cultured on nutrient-rich medium 1/4 SDAY (10 g
glucose, 2.5 g peptone, 5 g yeast extract, 18 g agar and 1000 mL water) for normal growth
and conidiation for 15 days at 28 ◦C in the dark. Microcycle conidiation was observed on
nutrient-limited medium SYA (30 g sucrose, 5 g yeast extract, 3 g NaNO3, 5 g MgSO4, 5 g
KCl, 1 g KH2PO4, 0.01 g FeSO4, 0.01 g MnSO4, 18 g agar and 1000 mL water). Agrobacterium
tumefaciens AGL-1 and Escherichia coli (E. coli) DH5α were purchased from Bioground
(Beijing, China) and cultured on Luria-Bertani medium (LB).
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2.2. Bioinformatic Analysis of Genes

The gene and protein sequences were derived from NCBI at https://www.ncbi.nlm.
nih.gov/ (accessed on 12 November 2019). The isoelectric point (pI) and molecular weight
were predicted at https://web.expasy.org/protparam/ (accessed on 12 November 2019).
Conserved domains of target genes were predicted using NCBI Conserved Domain Search at
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi (accessed on 12 November 2019).

2.3. Construction of the Mutant Strains

The target gene knockout strains were generated by homologous recombination.
About 1 kb fragments of the 5’ and 3’ flanking regions of the target gene were amplified
from WT genomic DNA via PCR, and the two fragments were inserted into PK2-PB
vector with a bar gene as selection marker to obtain PK2-5’-bar-3’ knockout vector. The
vector was introduced into wild type strain by Agrobacterium-mediated transformation [35],
and the target gene was replaced with the bar gene. For the complement strains, the 5’
promoter region and the coding region of the target gene were amplified together from
WT genome via PCR and inserted into the PK2-Sur vector to obtain PK2-Sur-CP [36]. The
complementary vector was transformed into the knockout strains by the Agrobacterium-
mediated method. The target gene was inserted into the genome of the knockout strains
to obtain complement strains. Both knockout and complement strains were verified by
Southern blot using the DIG High Prime DNA Labeling and Detection Starter Kit I (Cat.
No. 11585614910, Roche, Germany). For the MaMsn2:egfp strain and ∆MaH1:MaMsn2OE

(MaMsn2 overexpressed with a constitutive glyceraldehyde 3-phosphate dehydrogenase
promoter (gpd) in ∆MaH1), the coding region of the MaMsn2 gene was amplified and
inserted into PgpdM-bar-egfp and PgpdM-Sur, respectively, then the recombinant plasmids
were transformed into wild type strain and ∆MaH1, respectively. All primers used in this
study are listed in Supplementary Table S1.

2.4. Conidial Development

Conidia suspension (107 conidia/mL) was prepared with 0.05% Tween 80. Aliquots of
100 µL conidial suspension were spread onto plates evenly. Small pieces of agar media con-
taining fungal colonies were cut at regular intervals. Conidial development was observed
under microscope (Leica, Weztlar, Germany) and photographed.

2.5. Conidial Yield and Stress Assay

To measure the conidial yield of the different strains, 1 mL of 1/4 SDAY or SYA
medium was added to each well of the 24-cell plates. Two microliters of conidia suspension
(106 conidia/mL) of fungal strains was inoculated into each well, and the plates were
incubated at 28 ◦C for 15 days. Conidia of each strain were collected with sterile 0.05%
Tween 80 from three wells every 3 days from the 3rd day. The conidia quantity was
determined by a hemocytometer. All experiments were performed in triplicate.

The tolerance of conidia to heat shock and UV-B radiation was carried out according
to a previous report [8].

2.6. Bioassay

The bioassay with 5th instar nymph of Locusta migratoria was conducted by a previous
method [36]. Briefly, for topical inoculation, 107 conidia/mL conidial suspensions of
M. acridum were prepared with paraffin oil, and 5 µL was dripped onto the head–thorax
junction of insects. The blank control was dripped with paraffin oil. Mortality of locusts
was determined every 12 h until all locusts in each treatment died. Thirty locusts were
used in each group with three groups for each treatment. The bioassay was performed
in triplicate.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://web.expasy.org/protparam/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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2.7. RNA Isolation and Real-Time qPCR (RT-qPCR)

Total RNA extraction was performed using Ultrapure RNA Kit (CWBIO, Beijing,
China) according to the manufacturer’s instructions. RNAs were reverse transcribed
into cDNAs using PrimeScript™ RT Master Mix (TAKARA, Dalian, China). Quantitative
PCR analysis was performed with TB Green qPCR Master Mix (TAKARA, Dalian, China)
with paired primers. The reference gene is glyceraldehyde 3 phosphate dehydrogenase
(GAPDH). The transcription level of each gene was calculated according to the 2−(∆∆Ct)

method [37]. Transcriptions of conidiation-related genes MedA (XM_007809331.1), Som1
(XM_007810626.1), StuA (XM_007811978.1) and AbaA (XM_007814389.1) were analyzed by
RT-qPCR. These four genes have been reported to be involved in conidiation in other fungi
and M. acridum by our group. The experiments included three replicates.

2.8. Yeast One-Hybrid Assay (Y1H)

Y1H assay was conducted using Matchmaker® One-Hybrid Library Construction &
Screening Kit (Cat. No.PT3529-1, TAKARA, Dalian, China) according to the manufacturer’s
instructions. Simply put, the MaMsn2 promoter fragment was ligated to the pHis2.1 vector
and then the recombinant vector pHis2.1-promoter was transformed into Y187 cells and
screened on the SD-His-Trp with the appropriate 3-amino-1,2,4-triazole (3-AT) working
concentration. The cDNA of MaH1 was linked to the pGADT7 vector to form pGADT7–
MaH1. pHis2.1-promoter and pGADT7–MaH1 vectors were co-transformed into Y187,
and then Y187 was cultured under the 3-AT working concentration selected above on
SD-His-Trp-Leu medium. p53HIS2 and pGAD-Rec-53 were positive controls, and pHis2.1
and pGADT7–MaH1 served as negative controls.

2.9. EMSA Assay

The sequence of the DNA binding domain of MaH1 was ligated to the pET-32a
vector. After sequencing, the recombinant plasmid was introduced into E. coli transetta
(DE3). The recombinant MaH1 protein (rMaH1) expression was induced by 0.5 mM IPTG
at 18 ◦C. rMaH1 was purified by Ni2+ affinity chromatography (Cat. No. DP101-02,
Transgen, Beijing, China) and preserved at −80 ◦C. EMSA was conducted using EMSA
Probe Biotin Labeling Kit and Chemiluminescent EMSA Kit (Cat. No. GS008, GS009,
Beyotime, Shanghai, China). Briefly speaking, the fragments of different MaMsn2 promoter
regions were biotin-labeled, respectively, and used as probes. The probes and the protein
were incubated at 25 ◦C for 30 min. The reactants were separated by PAGE electrophoresis
at 80 V for 90 min, and then proteins and DNAs were transferred to nylon membrane
using a wet transfer unit (Bio-Rad, Hercules, CA, USA) at a constant voltage of 100 V
for 50 min. The nylon membrane was then cross-linked by UV radiation. Finally, the
Chemiluminescent EMSA Kit (GS009, Beyotime, Shanghai, China) was used to detect the
binding of protein and probe.

3. Results
3.1. Bioinformatic Analysis and Deletion of MaMsn2.

The Msn2 homologous gene in M. acridum (MaMsn2, Acc No. MZ556966) has a
1751 bp open reading frame (ORF) and is interrupted by an intron of 152 bp. It en-
codes a protein of 532 amino acids with a predicted pI of 4.77 and a molecular weight
of 56.89 kDa (https://web.expasy.org/protparam/, accessed on 12 November 2019). Mul-
tiple sequence alignment showed that MaMsn2 has two C2H2 zinc finger structures in
tandem at the C-terminal (Figure 1A,B) with a close relationship to that of Metarhizium
rileyi (Figure 1B). In order to analyze the function of MaMsn2, we constructed a MaMsn2
knockout mutant (∆MaMsn2). The MaMsn2 knockout and complement schematic diagrams
are shown in Figure 1C. Southern blot confirmed the correct targeting in ∆MaMsn2 and the
insertion of the MaMsn2 complement cassette in complemented strains (CP) (Figure 1D).

https://web.expasy.org/protparam/
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Figure 1. Sequence analysis and intracellular localization of MaMsn2. (A) Msn2 protein sequence alignment. The Msn2 
homologous genes are from Aspergillus parasiticus, Aureobasidium melanogenum, Beauveria bassiana ARSEF 2860, Diplodia 
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Figure 1. Sequence analysis and intracellular localization of MaMsn2. (A) Msn2 protein sequence alignment. The Msn2
homologous genes are from Aspergillus parasiticus, Aureobasidium melanogenum, Beauveria bassiana ARSEF 2860, Diplodia
corticola, Fusarium longipes, M. acridum CQMa 102, M. rileyi, Pichia kudriavzevii, Saccharomyces cerevisiae, Trichoderma harzianum
and Zygosaccharomyces parabailii. Asterisks indicate conservative C and H loci. (B) Main domains and phylogenetic
relationships of Msn2. N: Msn2 in M. acridum. (C) The knockout (upper) and complement (lower) schematic diagram
of MaMsn2. (D) The Southern blot verification of ∆MaMsn2 and CP strains. Restriction enzymes HindIII and KpnI were
used to digest genomic DNAs. Probe location is shown in the diagram. (E) LSCM images of subcellular localization of
MaMsn2:EGFP. Hyphae were collected from 1/4 SDAY grown for 18 h and conidia were collected on 1/4 SDAY and SYA
grown for 48 h. NC: Conidia produced on 1/4 SDAY, MC: Conidia produced on SYA. White arrows: DAPI-stained nuclei,
red arrows: merged nuclei. Scale bar indicates 5 µm.
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In order to explore the localization of MaMsn2 in cells, we fused MaMsn2 with egfp
at the C-terminal and analyzed the localization of MaMsn2 by laser scanning confocal
microscopy (LSCM). The results showed that the EGFP signal was overlapped with the
DAPI nuclear staining in hyphae and conidia (produced from NC or MC pattern), indicating
that MaMsn2 was located in the nucleus, likely to be a transcription factor (Figure 1E).

3.2. MaMsn2 Affects Germination and Conidial Yield in M. acridum

In order to explore the function of MaMsn2 in the germination and conidiation of
M. acridum, we measured the germination rate and the conidial yields of ∆MaMsn2 on
1/4 SDAY (nutrient-rich medium) and SYA (nutrient-limited medium). ∆MaMsn2 had a
significantly smaller colony and a drastically wrinkled colonial surface compared to the
wild type on both 1/4 SDAY and SYA plates (Figure 2A). The germination rate of ∆MaMsn2
was significantly lower than that of the wild type since the 4th hour of culture. At the 12th
hour, the germination rate of ∆MaMsn2 was 70% while the WT strain had reached almost
100% (Figure 2B). The conidial yield of ∆MaMsn2 was significantly lower than that of WT
and CP strains on 1/4 SDAY (Figure 2C) and SYA media (Figure 2D). Interestingly, at the
early stage of conidiation, e.g., on the 3rd day on 1/4 SDAY and 3rd day and 6th day on
SYA, the conidial yield of ∆MaMsn2 was significantly higher than that of the WT, but was
subsequently exceeded by the WT during the following growth period (Figure 2C,D).
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Figure 2. Growth and conidiation analysis. (A) The colonies of ∆MaMsn2 grown on 1/4 SDAY and SYA media for 5 days.
The scale bar indicates 1 cm. (B) Conidial germination rate of ∆MaMsn2 for 2, 4, 6, 8, 10 and 12 h. (C,D) Conidial yields of
∆MaMsn2 at 3, 6, 9, 12 and 15 days on 1/4 SDAY (C) and SYA (D). (t-test, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

3.3. MaMsn2 Affects Multiple Stress Responses and Virulence in M. acridum

In order to explore the roles of Msn2 in fungal stress tolerance, the germination
rate of conidia was determined after heat shock and UV-B stress treatment. The results
showed that ∆MaMsn2 had a significantly increased germination rate after 3, 6, 9 and
12 h of treatment at 45 ◦C (Figure 3A). However, ∆MaMsn2 had a significantly decreased
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germination rate after exposure to UV-B irradiation (Figure 3B), suggesting a positive role
of MaMsn2 in UV-B stress tolerance and a negative role in heat shock stress tolerance.
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Figure 3. Stress tolerance and insect bioassays. (A) Conidial germination rate of ∆MaMsn2 after heat shock treatment
at 45 ◦C for 0, 3, 6, 9 and 12 h. (B) Conidial germination rate of ∆MaMsn2 after UV-B treatment at 1350 mW/m2 for 0,
1.5, 3.0, 4.5 and 6.0 h. (C) Survival of the locusts following topical inoculation with 5 µL aqueous conidial suspensions
of 1×107 conidia/mL of WT, ∆MaMsn2 and CP strains. Control insects were treated with 5 µL paraffin oil. (D) LT50 of
different strains in topical inoculation. (t-test, *: p < 0.05, **: p < 0.01).

In order to explore the effect of MaMsn2 on the virulence of M. acridum, a bioassay was
conducted using 5th instar nymphs of Locusta by topical inoculation. The results showed
that the virulence of ∆MaMsn2 was significantly lower than that of the WT (Figure 3C),
and the half-lethal time (LT50) of ∆MaMsn2 was 1.4 days longer than that of the WT strain
(Figure 3D).

3.4. MaMsn2 Regulates Conidiation Pattern Shift of M. acridum

M. acridum conducts normal conidiation on 1/4 SDAY and microcycle conidiation on
the SYA medium [8]. In order to analyze the effects of MaMsn2 on the conidiation pattern
of M. acridum, conidiation phenotypes of ∆MaMsn2 were observed on 1/4 SDAY and
SYA, respectively. On the 1/4 SDAY medium, ∆MaMsn2 produced conidia by microcycle
conidiation (Figure 4A), with a drastic suppression of the mycelial growth and extension
compared to that of WT and CP strains (Figure 4B). On the SYA medium, ∆MaMsn2
conducted microcycle conidiation with no mycelia as the WT strain (Figure 4B). These
results indicated that MaMsn2 was essential for NC and regulated the conidiation pattern
shift in M. acridum on 1/4 SDAY.
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Figure 4. The conidiation phenotype of ∆MaMsn2. (A) The conidiation of ∆MaMsn2 on 1/4 SDAY medium at 16, 20 and
24 h. Scale bars indicate 5 µm. Black arrow: normal conidiation; Red arrow: microcycle conidiation. (B) The conidiation
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3.5. MaMsn2 Is Regulated by MaH1

Our previous study showed that MaH1 was involved in the conidiation pattern shift
in M. acridum. Similar to ∆MaMsn2, ∆MaH1 also exhibited a microcycle conidiation pattern
on nutrient-rich medium 1/4 SDAY [22]. Therefore, we would like to know whether these
two genes directly regulate conidiation and whether they have any interaction. First of
all, we analyzed the transcription level of MaMsn2 in the WT on 1/4 SDAY at 16 h and
24 h after inoculation, which are the hyphal stage and the beginning of normal conidiation,
respectively (Figure 4A). The result showed that the transcription level of MaMsn2 increased
by 16 times at 24 h compared to 16 h, suggesting that Msn2 was involved in conidiation
(Figure 5A). To compare the transcription levels of MaMsn2 and MaH1 on 1/4 SDAY and
SYA, we determined their transcriptions at 24 h after inoculation. At this time point,
M. acridum conducts normal conidiation on 1/4 SDAY and microcycle conidiation on SYA.
The results showed that the transcription levels of MaMsn2 and MaH1 were significantly
higher on 1/4 SDAY than that on SYA (Figure 5B). More importantly, quantitative PCR
analysis showed that the transcription level of MaMsn2 was significantly downregulated
in ∆MaH1 (Figure 5C). Therefore, MaH1 might regulate conidiation via MaMsn2. In order
to confirm this speculation, we performed Y1H and electrophoretic mobility shift assay
(EMSA) analysis. Four regions (P1, P2, P3, P4) in the MaMsn2 promoter were assessed,
respectively, for a possible interaction with MaH1 (Figure 5D).
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The Y1H result showed that the MaH1 protein directly interacted with the P3 region
(−1000 bp to −500 bp), but did not bind to the P1, P2 and P4 regions of the MaMsn2
promoter (Figure 5E). The EMSA result showed that MaH1220–366 containing the DNA
binding motif homeobox could bind to a 40 bp fragment of −920 to −880 bp of the
MaMsn2 promoter (Figure 5F). These results indicated that MaH1 could directly bind to
the MaMsn2 promoter cis-element in M. acridum. In order to further verify the interaction
between the binding domain of MaH1 and MaMsn2, we constructed a homeobox domain
deletion mutant (MaH1∆D) (Figure 6A), an engineered strain overexpressing MaMsn2 in
∆MaH1 (∆MaH1:MaMsn2OE) and a promoter P3 region deletion mutant (MaMsn2∆P3).
PCR analysis with VF/VR primer pairs confirmed that the homeobox domain region was
deleted (Figure 6B). Similar to ∆MaMsn2, the ∆MaH1, MaH1∆D and MaMsn2∆P3 colonies
all had significantly smaller size with more wrinkles compared to the WT. Meanwhile,
the colony size of ∆MaH1:MaMsn2OE was between ∆MaH1 and the WT, and the wrinkles
disappeared in ∆MaH1:MaMsn2OE, suggesting a complementation of the defect in ∆MaH1
by overexpressing MaMsn2 (Figure 6C).
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Figure 6. Complementation of ∆MaH1 by MaMsn2. (A) Schematic diagram of deletion of the MaH1 DNA binding domain.
(B) PCR verification of DNA binding domain knockout strain MaH1∆D. Results show a fragment 135 bp smaller in MaH1∆D

than that of the wild type. (C) Colony morphology of ∆MaH1, DNA binding domain knockout strain of MaH1 (MaH1∆D),
∆MaMsn2, promoter P3 region knockout strain of MaMsn2 (MaMsn2∆P3) and ∆MaH1 strain overexpressing MaMsn2
(∆MaH1:MaMsn2OE). Scale bars indicate 0.5 cm. (D) The transcript level of MaMsn2 on 1/4 SDAY medium at 16, 20 and 24 h
in MaH1∆D, MaMsn2∆P3 and ∆MaH1:MaMsn2OE strains (t-test, ***: p < 0.001). (E) The conidiation and hyphal development
of different strains. Black arrow: normal conidiation; Red arrow: microcycle conidiation. The scale bars indicate 5 µm at
24 h and 100 µm at 32 h.

RT-qPCR analysis showed that the transcription of MaMsn2 was significantly downreg-
ulated in MaH1∆D and MaMsn2∆P3, and significantly upregulated in the ∆MaH1:MaMsn2OE

strain compared to the WT (Figure 6D). Consistent with ∆MaH1 and ∆MaMsn2, MaH1∆D

and MaMsn2∆P3 showed microcycle conidiation on 1/4 SDAY, while the conidiation of
∆MaH1:MaMsn2OE shifted to normal conidiation, indicating that MaMsn2 compensated for
the conidiation defect of ∆MaH1 (Figure 6E). These results suggested that the homeobox
domain in MaH1 was essential for activating the transcription of MaMsn2.
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3.6. ∆MaMsn2 and MaH1∆D Had Similar Phenotypes

Interaction assay and RT-qPCR analysis demonstrated that MaH1 directly regulated
the transcription of MaMsn2. We then measured the conidial yield, tolerance to heat shock
and UV-B radiation stresses, virulence and germination rate of MaH1∆D and compared
those results with ∆MaMsn2. The results showed that MaH1∆D had a similar trend to that of
∆MaMsn2 in determined phenotypes, such as lower conidial yields (Figure 7A,B), stronger
resistance to heat shock (Figure 7C), weaker anti-UV-B irradiation ability (Figure 7D) and
decreased virulence with topical inoculation (Figure 7E). However, the germination of
MaH1∆D was earlier than that of the WT (Figure 7F), which was opposite to ∆MaMsn2.
These similar phenotypes between ∆MaMsn2 and MaH1∆D also indicated the direct regula-
tion of MaH1 on MaMsn2.
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of conserved binding sites against the Jaspar 2020 database [38] showed that Msn2 recog-
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Figure 7. Phenotypes of MaH1∆D. (A,B) Conidial yields of MaH1∆D at 3, 6, 9, 12 and 15 days on 1/4 SDAY (A) and SYA (B).
(C) Conidial germination rate of MaH1∆D after heat shock treatment at 45 ◦C for 0, 3, 6, 9 and 12 h. (D) Conidial germination
rate of MaH1∆D after UV-B treatment at 1350 mW/m2 for 0, 1.5, 3.0, 4.5 and 6.0 h. (E) Survival of the locusts following
topical inoculation with 5 µL aqueous conidial suspensions of 1 × 107 conidia/mL of WT and MaH1∆D strains. Control
insects were treated with 5 µL paraffin oil. (F) Conidial germination rate of MaH1∆D for 2, 4, 6, 8, 10 and 12 h (t-test,
*: p < 0.05, **: p < 0.01, ***: p < 0.001).

3.7. MaMsn2 Affected the Expression of AbaA and StuA

In order to explore the effects of MaMsn2 on conidiation, we measured the time-course
transcription level of some conidiation-related genes in ∆MaMsn2. The results showed that
AbaA significantly increased in ∆MaMsn2 (Figure 8A), while StuA was down-regulated
in ∆MaMsn2 (Figure 8B). The transcriptions of other conidiation-related genes, such as
MedA and Som1, did not show consistent changes in ∆MaMsn2 compared to the WT in
the conidiation period (Figure 8C,D). These results indicated that MaMsn2 negatively
regulated the transcription of AbaA and positively regulated StuA. The prediction of
conserved binding sites against the Jaspar 2020 database [38] showed that Msn2 recognition
sites were present on AbaA and StuA promoters (data not shown) but not on MedA or Som1
promoters. Combining all the above results, we can infer that the MaH1–MaMsn2 pathway
affected the central conidiation pathway BrlA–AbaA–WetA by AbaA and StuA (Figure 8E).
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4. Discussion

Msn2 and Msn4 genes widely exist in fungi, and were first reported in yeast as
homologous genes. They have a C2H2-type zinc finger structure and participate in different
stress responses, such as glucose starvation, heat shock and osmotic and oxidative stress.
The transcriptions of stress-related genes CTTI, DDR2 and HSP12 can be regulated through
stress response elements by Msn2/4 [39]. However, in filamentous fungi, only Msn2 gene
was present while Msn4 has not been found [40]. Consistent with Msn2 homologous genes
in other fungi [23,24], MaMsn2 is mainly located in the nucleus in M. acridum.

Msn2 plays an important role in stress response through multiple pathways. In yeast
cells, the Ras–cAMP–PKA pathway can regulate the oxidative stress response through
Msn2/4 [41], and the high osmolarity glucose (HOG) pathway can also regulate the activity
of Msn2/4 [25]. The deletion of the BbMsn2, MrMsn2 or MoMsn2 gene reduced the stress
resistance to varying degrees in B. bassiana, M. robertsii and M. oryzae [31,33]. Our study
found that the anti-UV-B ability of ∆MaMsn2 slightly decreased, which is consistent with
other fungal Msn2. However, different from previous reports, the resistance of ∆MaMsn2 to
heat shock increased significantly, indicating that Msn2 functions differently in regulating
the response to heat stress in different fungal strains. Our data showed that MaMsn2 was
also a virulence factor. Loss of MaMsn2 resulted in decreased virulence. Similar results
have been reported in B. bassiana and M. robertsii [31], M. oryzae [33] and V. dahliae [34].

Msn2 is regulated in the process of carbon and nitrogen utilization. TOR1, which is in-
volved in nitrogen source utilization, upregulates the expression level of phosphatase PP2A,
which then promotes the nucleus localization of Msn2 through phosphorylation [24,28].
Under low glucose conditions, Msn2 is phosphorylated by the activated protein kinase
Snf1 and located in the cytoplasm [23,27]. Microcycle conidiation, as a typical character-
istic of filamentous fungi, can be induced by the change in the nutrient composition. On
the nutrient-rich 1/4 SDAY medium, the wild type M. acridum firstly grows radial polar
hyphae, and then produces conidia on top or both sides of the hyphae. However, ∆MaH1
and ∆MaMsn2 perform microcycle conidiation without hyphal growth on 1/4 SDAY
(Figure 6E). Homeobox proteins are widely involved in the hyphal development and
conidiation process of filamentous fungi [19–21,42–44]. In M. oryzae, homeobox protein
Htf1 may interact with Acr1 to regulate the conidiation process [45]. Msn2 also regulates
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the hyphal growth and conidial yield in filamentous fungi such as M. oryzae, V. dahliae and
B. bassiana [31,33,34]. Similar to other fungi, our data indicate that MaMsn2 can participate
in the nutritional perception process and regulate the process of hyphal development and
conidiation in M. acridum.

Our data show that ∆MaH1 and ∆MaMsn2 have a similar conidial phenotype on
1/4 SDAY, suggesting that these two genes are probably in the same regulatory network in
the conidial process. The results of qPCR, Y1H and EMSA proved that MaMsn2 is directly
regulated by MaH1 in conidiation (Figure 5). Previous studies showed that MaH1 affects
conidiation in M. acridum, but does not affect resistances to heat shock, UV-B radiation
and virulence [22]. On the contrary, MaMsn2 regulates stress resistances and virulence,
indicating that MaMsn2 was not regulated by MaH1 in these two processes. When the
DNA binding domain of MaH1 was deleted (MaH1∆D), the shortened MaH1 could not
bind to the promoter region of MaMsn2. Meanwhile, when the promoter region −1000 to
−500 bp of MaMsn2 was deleted (MaMsn2∆P3), MaMsn2 was significantly downregulated.
MaH1∆D exhibited similar phenotypes to ∆MaMsn2 and MaMsn2∆P3 (Figure 7).

AbaA is a key gene in asexual conidiation in filamentous fungi. The disruption of
AbaA leads to an abnormal conidiophore with an “abacus” phenotype [46–48]. StuA, an
APSES (APSES: Asm1p, Phd1p, Sok2p, Efg1p and StuAp) transcription factor, is necessary
for the spatial expression of BrlA and AbaA [49]. The deletion of StuA leads to a very
short conidiophore, a lack of metulae and phialides and the formation of conidia directly
from vesicles, showing a “stunted” phenotype. The high expression level of StuA inhibits
the expressions of BrlA and AbaA [50]. Here, the disruption of MaMsn2 leads to limited
hyphal growth and a promoted conidiation process, indicating that MaMsn2 plays a role
in maintaining vegetative growth in M. acridum. Based on the qPCR result, MaMsn2
has a strong negative effect on the expression of AbaA, while it has a positive regulatory
role on StuA. In addition, conserved binding sites of Msn2 were found on the promoter
region of AbaA and StuA genes [38]. Therefore, we infer that MaMsn2 can either directly
regulate the expressions of AbaA and StuA or MaMsn2 positively regulated the expression
of StuA. (Figure 8E). These results suggest that MaMsn2 might participate in the conidiation
process of M. acridum by regulating the transcription of AbaA directly or through StuA.
Our analyses expanded the regulatory network of the central conidiation pathway from
BrlA–AbaA–WetA to MaH1–MaMsn2–AbaA/StuA.

Microcycle conidiation is more applicable in mass production and field application
compared with normal conidiation [8]. In this study, we found that MaMsn2 can regu-
late the conidiation pattern shift in M. acridum, and was directly controlled by another
conidiation-related protein MaH1. Our work reports the regulatory mechanism of MC for
the first time, which enriches the knowledge of microcycle conidiation and dimorphism in
filamentous fungi.
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