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Abstract

Controlling a complex network towards a desired state is of great importance in many appli-

cations. Existing works present an approximate algorithm to find the input nodes used to

control partial nodes of the network. However, the input nodes obtained by this algorithm

depend on the node matching order and cannot achieve optimum results. Here we present

a novel algorithm to find the input nodes for target control based on preferential matching.

The algorithm elaborately arranges the matching order of the nodes to reduce the size of the

input node set. The results on both synthetic and real networks indicate that the proposed

algorithm outperforms the previous algorithm.

Introduction

The control of complex networked systems plays an important role in many nature and tech-

nology applications. According to control theory [1–3], a system is controllable if the system

can be driven from any initial state to any desired state in finite time. The external control

signals can be inputted into the system through some suitable selected nodes. The nodes

which received independent external signals are called input nodes [4], controls [5] or driver

nodes[6]. An input node is the first node of a control path which transmits the control

signals.

The input nodes, used to fully control the network, can be obtained by maximum matching

of the network [7]. The unmatched nodes are the minimum set of input nodes (in short, MIS).

Based on this framework, the researchers have analyzed the structural properties of MIS [8–

10], roles of nodes in control [5], and robustness of controllability [11]. The size of MIS is

found to be tied to the degree distribution [6], and mainly dominated by the number of the

source and sink nodes [5]. Furthermore, the possible input nodes which participate in at least

one MIS are connected by the input adjacency [4], and they exhibit a surprising bifurcation

phenomenon of the dense networks [12], which is rooted by the emergence of giant control

component [4].

In many real control scenarios, only a small fraction of nodes need to be controlled. This is

called target control [13]. To control the target community of a network, Piao et.al [14]
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presented a method which used immune nodes to facilitate the control of target communities.

To find the input nodes to control any specific target nodes, a recent work [13] presented an

analysis framework to investigate the target control of complex networks. They proposed an

approximate greedy algorithm (GA) based on multiple maximum matchings to obtain the

input nodes used to control the target nodes.

However, the GA can only find the approximate minimum set of input nodes. If there exists

more than one maximum matching in the network, the results of the GA strongly depend on

which maximum matching is selected. For example, the number of input nodes may vary over

a large range [13] (Fig 1). Therefore, finding the minimum number of input nodes for target

control is still an unsolved problem.

Here, we present a novel algorithm for finding input nodes to control the target nodes of a

network. In contrast to the previous approach, we elaborately arranged the matching order of

the nodes and tried to reduce the total number of input nodes. The results on both synthetic

and real networks showed that we obtained fewer input nodes than the previous approach.

Method

Consider a linear time-invariant system, its states can be described by the following:

dx
dt
¼ Axþ Bu

y ¼ Cx

8
<

:
ð1Þ

Where x(t) = (x1(t),. . ., xN(t))T represents the system’s state; u(t) = (u1(t),. . .,uM(t))T represents

the input vector and y represents the output vector; A is the transpose of the adjacency matrix,

B is the input matrix and C is the output matrix which defines the target nodes we want to con-

trol. Let the network representation of above system be G(V, E), where V is the nodes set and E

Fig 1. Illustration of random matching using GA. (A) A sample network G with target nodes {3, 6, 7, 8}; (B-D). Three MISs obtained by

GA and their matching process, in which D1 = {1, 2, 5}, D2 = {1, 5}, D3 = {1}. The input nodes are obtained by the following process: 1.

Construct a bipartite graph B (sub-bipartite graph 1) in which the right side contains all target nodes and the left side contains the nodes

pointing to the target nodes; 2. Find a maximum matching of B and denote the matched nodes by M; and 3. Let M be the set of new target

nodes, and repeat steps 1 and 2 until no new matched nodes are found. The differences between the three matching processes are

highlighted by the blue shadow.

https://doi.org/10.1371/journal.pone.0175375.g001
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is the edges set. For a target node set T, we say the system is target controllable if the states of

the target node set T can be driven from any initial state to a desired final state [13].

In previous work [13], a k-walk theory was proposed, and this theory proved that in a tree-

like network, if a node has paths of different lengths to each target node, the node can control

these target nodes. However, a single node cannot control all target nodes in many networks.

Therefore, for more general networks with loops, previous work [13] proposed an approxi-

mate algorithm based on multiple maximum matchings to obtain the input nodes. The algo-

rithm constructs a series of bipartite graphs B = {B1(T1,F1,E1),. . .,Bi(Ti,Fi,Ei)} by following

procedures: 1. Let the set of target nodes be T1, find the set of in-neighbor nodes of T1 and

denoted it as F1, construct bipartite graphs B1(T1,F1,E1), where E1 is the set of edges between

nodes set T1 and F1;2. Let the F1 be the new target set T2 and repeat step 1 to get bipartite

graph B2(T2,F2,E2); 3. Repeat above steps until the set of in-neighbor nodes of the current tar-

get set Ti is empty. After constructing the bipartite graphs, the algorithm finds the maximum

matchings of each bipartite graph, and the union of the unmatched nodes of all bipartite

graphs is the set of input nodes used to control the target nodes.

The key idea of this algorithm is to find the maximum matching for each sub-bipartite graph.

However, in most networks, the maximum matchings are not unique. Therefore, even for a sim-

ple network, the algorithm produced different results with different maximum matchings. For

example, for the network shown in Fig 1A, the algorithm obtained three different input node

sets: D1 = {1, 2, 5}, D2 = {1, 5} and D3 = {1}. The reason for the multiple results is that the maxi-

mum matchings used in the algorithm are different. For example, if we matched edge e(1!4)

rather than e(2!4) in sub-bipartite graph 3, node 2 would not act as an input node, resulting in

the input node set D2 = {1, 5}. If we match edge e(6!7) rather than e(5!7) in sub-bipartite

graph 2, we obtain only one input node D1 = {1} to control the entire target node set.

Therefore, to reduce the total number of input nodes, we need to select the appropriate

maximum matching for each sub-bipartite graph. However, the number of unmatched nodes

of each sub-bipartite graph is fixed because the maximum matchings of each bipartite graph

have the same size. The only way to decrease the number of input nodes is to allow the input

nodes of different sub-bipartite graphs to overlap with one another. For example, in Fig 1D,

the unmatched node of all four sub-bipartite graphs is node 1, which decreases the total num-

ber of input nodes from three to one.

To obtain the expected input nodes of each bipartite graph, we use the preferential match-

ing [15] to find maximum matching of each bipartite graph. The preferential matching

method arranges the matching order of the nodes based on a predefined queue, and ensure

that the nodes in the rear of the queue have a high probability of being input nodes. The prefer-

ential matching method first constructs a series of sub-graphs based on the node queue, and

then finds the maximum matching of each sub-graph until the maximum matching of the

whole network is obtained. This iterative matching process ensures that the nodes in the front

of the queue have a high probability to be matched. Therefore, the resulted input nodes are

most likely the nodes in the rear of the queue.

Therefore, the problem is selecting the appropriate input nodes of each sub-bipartite graph

to reduce the total number of input nodes. Here we present the following strategies:

1. The input nodes of the current sub-bipartite graph should be overlapped with the input

nodes of the previous sub-bipartite graph. This process will decrease the total number of

input nodes.

2. The nodes that frequently appear in the matching graph (for all sub-bipartite graphs)

should be input nodes with high priority, which will give the nodes in subsequent sub-

bipartite graphs high probability to overlap with existing input nodes.
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Fig 2 illustrates these strategies on an example network. For the network shown in Fig 2A,

we construct a matching graph (MG) that starts from the target nodes and iteratively adds the

parent nodes of current nodes to the graph, until no more nodes are added. We count the fre-

quency with which each node appeared in the matching graph and arrange the nodes in

ascending order of frequency. For example, Fig 2B shows the matching graph of Fig 2A, and

the counts of nodes are n1 = 4, n2 = 3, n3 = 1, n4 = 3, n5 = 2, n6 = 3, n7 = 2 and n8 = 1, respec-

tively. Therefore, the matching sequence of nodes should be {n8, n3, n7, n5, n4, n6, n2, n1}

according their counts by ascending order. For each sub-bipartite graph of MG, we used this

matching sequence to find input nodes.

Overall, for a network G and target node set T, the algorithm based on preferential match-

ing (PM) for finding input nodes consists of the following steps:

1. For target node set T, construct bipartite graph B1(F, T), where F are the node sets pointing

to target node set T.

2. Let F be the new target node set. Repeat step 1 to construct bipartite graph Bi(F, T) until no

more nodes are found. Define the matching graph M(T) = {B1, B2, . . ., Bi}.

3. For each node in M, compute their counts f(n), arrange the nodes by ascending order of f
(n) and let Q be the matching sequence.

4. For a sub-bipartite graph of M, find the maximum matching based on preferential match-

ing using node sequence Q. Let D = {d1,d2,. . .,di} be the set of input nodes. Rearrange the

node sequence by putting the nodes of D in the rear of Q.

5. Repeat step 4. Find input nodes Di of sub-bipartite graph Bi. The final set of input nodes to

control the target nodes is D = [ Di.

Fig 2. Illustration of preferential matching for target control. (A). A sample network G with target nodes {3, 6, 7, 8}. (B). Matching graph

for target nodes {3, 6, 7, 8}. (C). Matching sequence of nodes based on their counts in the matching graph. The counts for node sequence

{n1,n2,n6,n4,n5,n7,n3,n8} are {4,3,3,3,2,2,1,1}.

https://doi.org/10.1371/journal.pone.0175375.g002
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Result

To quantify the efficiency of the algorithm, we evaluated the fraction of input nodes nD = ND/

N based on a PM algorithm and GA [13]. We used the following two different schemes for tar-

get node selection:

1. Random selection scheme: Select nodes from the network uniformly at random as targets,

until reaching the expected target fraction f.

2. Local selection scheme: Randomly select a seed node, and expand the node based on a

breadth-first search (BFS) tree, until reaching the expected target fraction f.

Fig 3 shows the results of scale-free networks [16] with N = 104. For different target node

fractions f 2 [0,1], the PM algorithm always has better performance than the GA in both target

node selection schemes. Furthermore, the difference in the values of nD obtained by PM and

GA, |ΔnD| = |nD-GA- nD-PM|, increases with the fraction of target nodes f, suggesting that the

PM algorithm is more efficient in controlling large fractions of target nodes.

Fig 3. Efficiency analysis of the target control algorithm for two synthetic networks. (A-B). For the scale-free networks with N = 104

and <k> = 5.2, we show the density of input nodes as a function of the fraction of target nodes. The results are computed based on 100

network instances with the same average degree. (A) Results of the local selection scheme and (B) Results of the random selection

scheme. (C-D) For the scale-free networks with N = 104 and <k> = 13, we show the density of input nodes as a function of the fraction of

target nodes. (C) Results of the local selection scheme and (D) Results of the random selection scheme. For each network, we compute the

fraction of input nodes nD based on the preferential matching and the greedy algorithm. For the greedy algorithm, the nD is computed based

on the results of 100 random experiments.

https://doi.org/10.1371/journal.pone.0175375.g003
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Next, we analyzed nD with different average degrees <k>. Fig 4 shows the results for both

the scale-free networks and ER random networks based on local and random target selection

schemes. The PM algorithm obtains lower nD than GA in all networks. Note that the variations

of nD for the local selection scheme of target nodes are much larger than those variations for

the random selection scheme, suggesting that there are many input nodes set to control target

nodes that are locally connected.

We also evaluated the performance of the PM algorithm in real networks. The networks are

selected based on diversity of topological structure and include food web, transcription, cita-

tion, and Internet networks. The results are shown in Table 1 and Fig 5. For all networks and

fractions of target nodes in both random and local schemes, the PM algorithm outperforms

the GA.

Discussion

The controllability of complex networks is of great importance in many applications. Control-

ling a small fraction of target nodes is a common task in many real control scenarios. Here we

proposed a novel algorithm based on preferential matching to reduce the number of input

Fig 4. The efficiency of the algorithm for different average degree <k>. (A-B). For a scale-free network with N = 104 and target node

fraction f = 0.3, we show (A) the density of input nodes versus <k>, based on the local selection scheme, and (B) the density of input nodes

versus <k>, based on the random selection scheme. (C-D). For an ER random network with N = 104 and target node fraction f = 0.3, we

show (C) the density of input nodes versus <k>, based on the local selection scheme, and (D) the density of input nodes versus <k>, based

on the random selection scheme. For each average degree <k>, the fraction of input nodes nD is computed based on the average results of

100 networks.

https://doi.org/10.1371/journal.pone.0175375.g004
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Table 1. Results for the real networks analyzed in the paper.

Type Name N L <k> Random selection Local selection

npd nrd npd nrd

Food Web Mangrove[17] 97 1492 30.76 3.09% 5.05% 4.12% 6.27%

Silwood[18] 154 370 4.81 30.52% 31.27% 24.03% 25.37%

Neuronal C. elegans[19] 306 2345 15.33 7.07% 7.97% 4.38% 5.55%

Transcription E. coli[20] 423 578 2.73 39.95% 43.04% 32.39% 38.02

TRN-Yeast-1[21] 4441 12873 5.80 45.49% 45.68% 43.75% 44.13%

TRN-Yeast-2[22] 688 1079 3.14 39.68% 40.67% 31.40% 33.33%

Trust Prison inmate[23, 24] 67 182 5.43 13.43% 17.51% 11.94% 13.84%

WikiVote[25] 7115 103689 29.15 39.68% 40.33% 37.26% 38.37%

Electronic circuits s208a[22] 122 189 3.10 9.02% 14.75% 6.56% 10.03%

s420a[22] 252 399 3.17 8.33% 14.43% 3.57% 7.33%

s838a[22] 512 819 3.20 6.64% 12.10% 1.95% 5.77%

Citation ArXiv-HepTh[26] 27770 352807 25.41 13.41% 15.10% 7.62% 10.03%

Kohonen[27] 4470 12731 5.70 17.90% 21.11% 9.49% 13.26%

WWW Political blogs[28] 1224 16718 27.32 10.87% 13.26% 7.84% 10.99%

Internet p2p-1[29] 10876 39994 7.35 3.51% 9.41% 0.77% 4.80%

p2p-2[29] 8846 31839 7.20 4.70% 10.44% 2.32% 6.11%

p2p-3[29] 8717 31525 7.23 4.73% 10.52% 2.44% 7.48%

Social network UClonline[30] 1899 20296 21.38 8.48% 11.14% 3.95% 6.91%

Facebook_0[31] 347 5038 29.04 1.80% 2.69% 0.30% 0.60%

Facebook_107[31] 1912 53498 55.96 0.10% 0.19% 0.10% 0.10%

Facebook_348[31] 572 6384 22.32 0.89% 1.79% 0.45% 0.45%

For each network, we show its type, name, number of nodes (N) and edges (L), average degree <k>, density of input nodes (npd) based on preferential

matching, and density of input nodes (nrd) based on random matching. The fraction of target nodes f = 0.5.

https://doi.org/10.1371/journal.pone.0175375.t001

Fig 5. Results for real networks. We show the fraction of input nodes and the fraction of target nodes. The PM method always achieves

better performance in both the local and random target node selection schemes.

https://doi.org/10.1371/journal.pone.0175375.g005
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nodes. Our algorithm has the same main steps as the previous algorithm [13], based on multi-

maximum matching of the induced bipartite graphs. However, we elaborately arranged the

matching order of the nodes, which can significantly reduce the number of resulting input

nodes.

However, our algorithm still cannot guarantee the optimum result. Future work should

focus on finding an efficient and precise method to reduce the number of input nodes.

Supporting information

S1 Fig. Efficiency analysis of the target control algorithm for three scale-free networks

with N = 104. We show the density of input nodes as a function of the fraction of target nodes

based on local and random schemes. For each network, we compute the density of input nodes

nD based on the preferential matching and the greedy algorithm. For the greedy algorithm, the

nD is computed based on the results of 100 random experiments.

(TIF)

S2 Fig. The density of input nodes nD versus the fraction of target nodes f of real networks.

We show the results of ArXiv-HepTh, C.Elegans, Kohonen and Facebook_0 networks.

(TIF)

S3 Fig. The density of input nodes nD versus the fraction of target nodes f of real networks.

We show the results of P2P-2, P2P-3, S208, S420 and S838 networks.

(TIF)
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