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ABSTRACT: Predicting the binding affinities of large sets of diverse
molecules against a range of macromolecular targets is an extremely
challenging task. The scoring functions that attempt such computational
prediction are essential for exploiting and analyzing the outputs of docking,
which is in turn an important tool in problems such as structure-based drug
design. Classical scoring functions assume a predetermined theory-inspired
functional form for the relationship between the variables that describe an
experimentally determined or modeled structure of a protein−ligand complex
and its binding affinity. The inherent problem of this approach is in the
difficulty of explicitly modeling the various contributions of intermolecular
interactions to binding affinity. New scoring functions based on machine-
learning regression models, which are able to exploit effectively much larger
amounts of experimental data and circumvent the need for a predetermined
functional form, have already been shown to outperform a broad range of state-of-the-art scoring functions in a widely used
benchmark. Here, we investigate the impact of the chemical description of the complex on the predictive power of the resulting
scoring function using a systematic battery of numerical experiments. The latter resulted in the most accurate scoring function to
date on the benchmark. Strikingly, we also found that a more precise chemical description of the protein−ligand complex does
not generally lead to a more accurate prediction of binding affinity. We discuss four factors that may contribute to this result:
modeling assumptions, codependence of representation and regression, data restricted to the bound state, and conformational
heterogeneity in data.

■ INTRODUCTION

Docking can play a key role in addressing a number of
important problems such as protein-function prediction1,2 or
drug-lead identification and optimization.3,4 This technique can
be regarded as a two-stage process. The first is pose generation,
which starts with the determination of the position, orientation,
and conformation of a molecule as docked to the target’s
binding site. The second stage is scoring, which predicts how
strongly the docked pose of such a putative ligand binds to the
target. While pose generation is relatively well handled by
current algorithms, the inaccuracies of current scoring functions
still constitute the main barrier to achieving reliability in
docking.5−7 Indeed, despite intensive research over more than
two decades, accurate prediction of the binding affinities of
large sets of diverse protein−ligand complexes remains one of
the most important open problems in computational
bioscience.
Three classes of scoring functions have emerged over the

years: force field,8,9 knowledge-based,10−14 and empirical.15−19

For the sake of efficiency, scoring functions do not attempt to
simulate certain physical processes that influence the process of
binding. This has an impact on their ability to rank-order and
selects small molecules by predicted binding affinity. Thus, two
major sources of error in scoring functions arise from their

limited description of protein flexibility and the implicit
treatment of solvent. Instead of scoring functions, other
computational methodologies based on molecular dynamics
or Monte Carlo simulations can be used to model protein
flexibility and desolvation upon binding. In principle, a more
accurate prediction of binding affinity than that from scoring
functions is obtained in those cases amenable to these
techniques.20,21 However, such expensive free energy calcu-
lations are not feasible for the evaluation of large numbers of
protein−ligand complexes, and their application is generally
limited to predicting binding affinity in series of congeneric
molecules binding to a single target.22

In addition to these two enabling simplifications, there is a
third factor in scoring function development that, despite its
importance, has received little attention until recently.23 Each
scoring function assumes a predetermined functional form
relating the variables that describe the complex, which may also
include a set of weights that are fitted to experimental or
simulation data, and its predicted binding affinity. Such a
relationship typically takes the form of a sum of weighted
physicochemical contributions to binding in the case of
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empirical scoring functions or a reverse Boltzmann method-
ology in the case of knowledge-based scoring functions. As
previously discussed,23 the inherent drawback of this approach
is that those complexes not conforming to this strong modeling
assumption will be predicted poorly.
As an alternative to these classical scoring functions,

nonparametric machine learning can be used to capture
implicitly the binding interactions that are challenging to
model explicitly. By not imposing a particular functional form
for the scoring function, the collective effect of intermolecular
interactions in binding can be directly inferred from
experimental data. The latter should lead to scoring functions
with greater generality and prediction accuracy. Indeed, this
unconstrained approach had to result in performance improve-
ment given sufficient data, as it is well-known that the strong
assumption of a predetermined functional form for a scoring
function constitutes an additional source of error (e.g.,
imposing an additive form for the considered energetic
contributions24). On the other hand, recent experimental
results have resulted in novelties in the definition of molecular
interactions such as the hydrogen bond25 and the hydrophobic
interaction,26 implying that previously proposed expressions for
these energetic contributions might need to be revised
accordingly.
While a few classifiers exploiting X-ray crystal structural data

for discriminating between binders and nonbinders of a protein
target have been presented,27,28 it is only recently that machine
learning for nonlinear regression has been shown23,29 to be a
particularly powerful approach to build generic scoring
functions. This approach has been highlighted30−33 as very
promising for the improvement of scoring functions. Indeed, a
growing number of studies showing the benefits of machine
learning scoring functions have been presented.23,29,34−37

However, these initial models are relatively coarse in the
description of the complex, and thus the question remains as to
whether the incorporation of additional chemical information
relevant for binding would improve performance further.
Here, we investigate the impact of a more precise chemical

characterization of the protein−ligand complex on the
predictive power of the resulting scoring function. This
includes the use of structural interaction fingerprints,38 using
atom and interaction type definitions from the CREDO
structural interactomics database.39 We show that the new
version of RF-Score performs much better than classical scoring
functions on the same test set. The RF-Score performed best
when describing a complex using a 12 Å distance cutoff
between atom pairs, suggesting that there is a minor
contribution from long-range atom pairs. In the light of the
improved performance obtained and considering the un-
certainty introduced by the static nature of crystal structures,
we discuss the role of interatomic distance cutoffs and binning
as well as protonation states in binding affinity prediction. As a
byproduct of this systematic battery of numerical experiments,
the most accurate scoring function to date on a widely used
pre-existing benchmark is presented. An important conclusion
of our study is that a more chemically precise description of the
protein−ligand complex does not generally lead to more
accurate prediction of binding affinity. We discuss four factors
that may contribute to this result: modeling assumptions,
codependence of representation and regression, data restricted
to the bound state, and conformational heterogeneity in data.

■ METHODS

Defining Descriptors. Each complex was described by a
vector of integer-valued descriptors or features. Three
description schemes were implemented: the Element scheme
uses the combination of the element symbols of the interacting
atoms to classify the interaction, e.g., C−C or N−O. The
fingerprint of this scheme has a position for each pairwise
combination of element symbols, and the directionality is
preserved; i.e., N−O is distinct from O−N. Here, all of the
heavy atoms commonly observed in PDB complexes (C, N, O,
F, P, S, Cl, Br, I) are considered.
The Sybyl scheme uses SYBYL atom types instead of the

element symbols to define the range of considered protein−
ligand atom pairs. These atom types permit deconvoluting the
element into hybridization state and bonding environment. For
instance, instead of having a single C element atom type, the
Sybyl scheme considers the following subtypes: C+, C1, C2, C3,
Cac, and Car (a description of SYBYL atom types can be found
at http://www.tripos.com/mol2/atom_types.html). The latter
leads to 36 distinct C−C descriptors in the Sybyl scheme in
contrast to a single C−C descriptor in the Element scheme.
The credo scheme uses Structural Interaction Fingerprints

(SIFts)38 to encode protein−ligand interactions. Here,
interatomic pairs are categorized as interactions if particular
geometrical and atom type constraints are satisfied. Atom types
were defined through a set of SMARTS patterns that are
completely customizable through a configuration file. The atom
types of atoms belonging to standard amino acids as well as
nonstandard binding site residues that occurred in the used test
sets were precalculated because determining them “on the fly”
was not feasible with the Open Babel toolkit. These atom types
were stored in a separate configuration file and can therefore be
easily changed by the user. The determination of standard and
weak hydrogen bonds required the protonation state to be
known, and there the complexes to rescore must be already
protonated. Twelve different contact types are encoded in SIFt,
of which four are solely distance-based. The latter are covalent
bonds, van der Waals clashes and contacts, and finally proximal
interactions. The other eight “feature” contact types are
hydrogen bonds, weak hydrogen bonds, halogen bonds, ionic,
metal complexes, aromatic, hydrophobic, and carbonyl. The
definition of these including the source of the SMARTS
definitions and other constraints are described in the original
CREDO publication39 with the following exception: the
carbonyl interaction type has since then been implemented
on the basis of the ab initio molecular-orbital calculations of
Allen et al.40 who have shown that carbonyl−carbonyl
interactions can have similar strengths to those from hydrogen
bonds. Appendix A3 in the Supporting Information summarizes
the exact classification scheme for all interactions that was used
for the SIFt descriptor.
Once the scheme is selected, descriptors are generated by

counting interatomic pairs between protein binding sites and
their ligand molecules. These possibly interacting atoms were
assigned a specific interaction type if their distance was within a
distance threshold and if a combination of possible atom type
and geometry constraints was satisfied. The software to
calculate these three description schemes uses the open source
chemistry toolkit Open Babel41 in version 2.3.0 (through
Python bindings) and the SciPy library.42 The molecular
structures of protein targets and their ligands comprising the
used data sets from PDBbind are read-in separately.
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Interatomic contacts for a given distance cutoff are determined
using the KDTree structure in the scipy.spatial module with the
atomic coordinates as input (the KDTree is an efficient space-
partitioning algorithm that limits the search space for
interatomic contacts in order to prevent expensive all-by-all
searches). The interacting atoms are then analyzed depending
on the descriptor and the appropriate position on the
fingerprint incremented.
This descriptor-generating software is also capable of binning

the identified interatomic pairs into arbitrary distance ranges.
For each normal feature on a descriptor, a number of columns
equal to the number of distance bins are created. Using a
distance cutoff of 6 Å and a bin size of 1 Å for example would
create six bins for each feature: from 0 to 1 Å, 1−2 Å, and so
on. The correct bin for each interatomic pair that has to be
incremented is determined using the numpy.digitize function in
the NumPy package (http://numpy.scipy.org).
The complete source code of the software that was used to

generate the described results was released at https://bitbucket.
org/aschreyer/rfscore under the MIT license.
Regression Model. RF-Score uses Random Forest43 (RF)

as the regression model. A RF for regression is an ensemble of
P regression trees randomly generated from the same training
data. In building these trees, RF determines the best split at
each node of the tree from a subset of randomly selected
features of size mtry (the recommended value of this control
parameter is a third of the number of features). Note that
although the selected features are generally different at each
node, the same mtry value is applied to each node across the P
trees of the forest. Here, we operate the RF with the default
value P = 500, as its performance does not generally improve
significantly beyond this threshold. The performance of each
tree on predicting the Out-Of-Bag (OOB) set, here protein−
ligand complexes that were not in the bootstrap sample used to
train that tree, collectively provides an internal validation
measure of RF. Further details about RF and its application to
build RF-Score can be found in ref 23. The RF-Score software
is available at http://pedroballester.com/software.

Training and Test Data. The PDBbind benchmark44 has
become a de facto standard in the validation of scoring
functions. On the basis of the refined set from the 2007 release
of the PDBbind database, it comprises 1300 diverse protein−
ligand complexes with high quality structural and binding data
(the protonation states of both proteins and ligands were
already calculated by these authors44). From this refined set,
Cheng et al.44 constructed a test set, named the core set, with
195 diverse complexes spanning more than 12 orders of
magnitude in measured binding affinities. The PDBbind
benchmark consists of testing the predictions of scoring
functions on the core set, whereas the remaining 1105 refined
set complexes are used as the training set. A discussion on the
composition and suitability of this benchmark can be found in
refs 23 and 29.

■ RESULTS
Preamble. We start this section with a concise description

of the approach to predicting binding affinity using machine
learning.23 This process starts with the characterization of each
protein−ligand complex as a set of intermolecular features or
descriptors relevant to binding affinity prediction. The sketch in
Figure 1 shows an example of how descriptors are generated
from the X-ray crystal structure of a complex (PDB: 2p33).
Each descriptor is given by the occurrence count of a particular
protein−ligand atom pair within a predetermined distance
range of each other. For example, a descriptor could be defined
as the number of times that protein nitrogen and ligand oxygen
are separated by less than a distance cutoff (dcutoff). As in
previous studies,23 nine atom types commonly observed in
PDB complexes were selected by considering atomic number
only (C, N, O, F, P, S, Cl, Br, I) to give rise to 81 protein−
ligand atom pairs which are considered as descriptors (this
descriptor scheme is named here “element”).
Once the descriptor scheme (i.e., considered atom types,

binning, and cutoff) is chosen, the next step is to select a source
of curated structural and interaction data suitable for training
and testing scoring functions. The PDBbind database45 is an
excellent choice for this purpose, with the additional advantage

Figure 1. Sketch of the process of characterizing a protein−ligand complex (PDB: 2p33) as a set of structure-derived descriptors (C.C to I.I). The
discontinuous green lines connect the ligand chlorine atom with all protein carbon atoms within the distance cutoff represented by the green sphere,
with the number of these pairs giving value to the C.Cl descriptor. The rest of the descriptors are calculated in an analogous manner.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci500091r | J. Chem. Inf. Model. 2014, 54, 944−955946

http://numpy.scipy.org
https://bitbucket.org/aschreyer/rfscore
https://bitbucket.org/aschreyer/rfscore
http://pedroballester.com/software


that a large number of scoring functions have already been
benchmarked on a common PDBbind test set,44 which permits
comparing new developments against the state of the art.
Moreover, some scoring functions23,44 have not only been
tested on this common data set but also calibrated on the same
training set (further details can be found in the Methods
section). This is important to avoid the often large bias
introduced by using a different training set for each scoring
function (such bias makes comparisons among scoring
functions unreliable, even if compared on the same test
set29). Therefore, we will be focusing here on these common
training and test sets.
Last, a regression model is needed to predict the binding

affinity of test set complexes from the structural and interaction
data in the training set. Here, we build upon RF-Score,23 a

machine learning scoring function using RF43 for regression. RF
is typically tuned using a single control parameter (mtry, which
controls the number of features that are considered for the split
at each tree node) and may be subjected to a feature selection
strategy intended to remove descriptors with low information
content as a way to improve performance (that is, in addition to
the common practice of removing all those descriptors that
have zero values across training complexes). As usual, predictive
performance is measured as the difference between predicted
and measured binding affinity across test set complexes. Figure
2 summarizes the process of training and testing machine
learning scoring functions. Full details on descriptors, data, and
regression protocols can be found in the Methods section.
We have seen that not only can a protein−ligand complex be

described in various ways, but also the process of building a

Figure 2. Training and testing RF-Score workflow. Top: descriptors are generated from two nonoverlapping data sets with 1105 and 195 complexes
for training and testing, respectively. Bottom: training Random Forest to learn the nonlinear relationship between this atomic-level description of the
complex and its binding affinity (pKd or pKi; pKd/i denotes both without distinction). The resulting scoring function (RF-Score) is used to predict
the binding affinity of the test set.

Figure 3. Test set performance of RF-Score with element descriptors for each of the four distance cutoffs (6 Å, 9 Å, 12 Å, and 15 Å). Performance is
measured as the difference between observed and predicted binding affinity in the test set using three metrics: Pearson’s correlation coefficient (Rp;
left plot), Spearman rank-correlation coefficient (Rs; middle plot), and standard deviation (SD; right plot). Ten models are built from each of these
four versions of the training data sets (6 Å, 9 Å, 12 Å and 15 Å), each time using a different random seed (the boxplot summarizes the performance
on the test set achieved by each of the 10 models). Results showed that the best median performance, i.e., that with the highest correlations and
lowest standard deviation, is obtained with the 12 Å cutoff in all three performance metrics. It is worth noting that optimizing the distance cutoff only
led to a modest performance improvement (+0.017 in median Rp and −0.05 log K units in median SD).
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predictive model from these descriptors involves a number of
choices. In a way, the overall process of training a scoring
function can be regarded as a quest for finding an optimal
combination of these design variables. An exhaustive evaluation
of all possible combinations is impractical, as this would involve
a prohibitively large number of RF training runs (2m runs, one
for each possible subset of m features, even if we fix mtry to its
recommended value). Thus, we were forced to assume the
independence of these design variables and searched for the
optimal value of each variable in a sequential manner as
explained in the next subsections.
Optimal Interatomic Distance Cutoff. The first question

we addressed was which distance cutoff leads to the best
performance on the independent test set (henceforth referred
to as simply the test set). Different distance cutoffs have been
previously used in the literature, some as large as 12 Å (PMF12)
and 15 Å (Fresno46). Here, we addressed this question
empirically by generating element descriptors for four cutoffs (6
Å, 9 Å, 12 Å, and 15 Å), which gave rise to four different
numerical characterizations of the training set with their
corresponding test set counterparts. Thereafter, RF was
calibrated on each of these training set versions and the
resulting model used to predict the binding affinity of the
corresponding test set complexes. As scoring function
calibration is a stochastic process, a slightly different model is

obtained with a different random seed. To assess the variability
in RF prediction due to this factor, we repeated the training 10
times for each cutoff, each time with a different random seed.
Such assessment is needed to establish whether the improve-
ment in prediction is due to using another distance cutoff or
just comes from variability in model calibration (this procedure
is more accurate than basing the analysis on a single model
calibration as has been the case so far). Lastly, we considered
three commonly used metrics for quantifying the difference
between predicted and measured binding affinity across the test
set of protein−ligand complexes: Rp (Pearson’s correlation
coefficient), Rs (Spearman’s correlation coefficient), and SD
(Standard Deviation in log Kd/i units). Figure 3 illustrates the
results of this numerical experiment.

Role of Protonation States and Bonding Neighbor-
hood. The element descriptors used in the previous experi-
ment constitute a coarse representation of the complex.
Distinguishing between atoms of the same element in different
local environments leads to a more chemically precise
characterization (e.g., deconvoluting the occurrence counts of
a carbon−carbon intermolecular pair into pairs that specify the
hybridization state of both atoms), and thus the resulting model
would in principle be expected to perform better. To test this
hypothesis, we used Sybyl atom types with these characteristics.
Further, one could also incorporate additional information into

Figure 4. Test set performance of RF-Score using the optimal 12 Å interatomic distance cutoff with element, Sybyl, and credo descriptors.
Interestingly, the model based on Credo descriptors obtained much lower performance than that using Sybyl and element descriptors. Element
descriptors led to a small improvement over Sybyl descriptors. These results hint at a trade-off between the predictability and interpretability of the
model, which we will discuss later in this paper.

Figure 5. Test set performance of RF-Score with element descriptors and 12 Å interatomic distance cutoff using six different bin sizes (1 Å, 2 Å, 3 Å,
4 Å, 6 Å, and 12 Å). The best median performance is achieved by models with lower bin sizes (1 Å, 2 Å, and 3 Å), representing a modest
improvement with respect to the model based on single-binned descriptors (12 Å).
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the descriptors such as the angle between hydrogen bond
donors, acceptors, and hydrogen atoms as well as covalent and
van der Waals radius. These are the Credo descriptors, which
measure the abundance of a range of intermolecular
interactions such as hydrogen bonds, hydrophobic interactions,
or van der Waals clashes. Using the same training and test set,
each description scheme gives rise to a different set of features
that are used to characterize every complex. The performance
of each of these three description schemes is presented in
Figure 4.
Incorporating Interatomic Distance. The strength of the

interatomic interactions that collectively form the noncovalent
intermolecular bond depends on the separation between the
interacting atoms. Therefore, it is reasonable to think that
partitioning the descriptors into a number of interatomic
distance bins should lead to a model with more predictivity.
Consequently, we generated element descriptors with a 12 Å
cutoff, i.e. using all the optimal values, for six bin sizes (a 12 Å
bin size with a 12 Å cutoff simply corresponds to the case
without binning, which was previously shown in the first
boxplot in Figure 4 and the third boxplot in Figure 3). Figure 5
shows the results for each bin size, where the best median
performance is achieved by models with lower bin sizes (1 Å, 2
Å, and 3 Å), representing a moderate improvement with
respect to the model based on single-binned descriptors (12 Å).

The experiments were repeated using the same bin sizes but
now with Sybyl and Credo descriptors instead of elements
descriptors (the maximum cutoff for a Credo interaction type is
4.5 Å, all other atom pairs in this description scheme are labeled
as “proximal”). It was observed that the performance was not as
high as that with element descriptors (the best median
performance for Sybyl was Rp = 0.779, Rs = 0.771, and SD
= 1.59, whereas that for Credo was Rp = 0.739, Rs = 0.742, and
SD = 1.68).

Feature Selection. In addition to exploring the impact of
different ways to describe the complexes, we also applied basic
feature selection strategies intended to remove sparse features
that increased the complexity of the model without improving
performance. Here, the sparsity (spr) of a descriptor is defined
as the average number of occurrence counts per training
complex. In previous versions of RF-Score, only features with
sparsity higher than the zero threshold (spr = 0), i.e., those that
are nonzero for at least one training complex, were considered.
Here, we also considered two additional sparsity thresholds
(spr = 1 and spr = 2). We conducted this experiment for the
three best bin sizes in Figure 5 (1 Å, 2 Å, and 3 Å), which had
spr = 1 as the optimal value on all three bin sizes. Figure 6
presents the results for the best bin size across the three spr
values (2 Å).

Figure 6. Test set performance of RF-Score with element descriptors, 12 Å cutoff, and 2 Å bin size using three values of the feature selection
threshold (spr). Best median performance is obtained by spr = 1, which corresponds to only considering descriptors that have an average of at least
one atom−atom pair in the considered distance range per training complex. The latter represents a moderate improvement with respect to the
models using descriptors with spr = 0 and spr = 2.

Figure 7. Test set performance of RF-Score with element descriptors, 12 Å cutoff, 2 Å bin size, and feature selection threshold (spr=1) for the
recommended mtry (model selection=0) and mtry selected by OOB validation (model selection=1), which requires 123 times more training than just
using the recommended setting (as many RF training runs as features were selected to describe each complex).
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Model Selection. Last, we have been using the
recommended value for the RF mtry parameter so far. However,
interval validation strategies can be used to select an optimal
value for mtry. One of these strategies is called Out-Of-Bag
(OOB) validation and essentially consists of training the model
for each possible value of mtry and selecting the model that best
performs on the internal validation set (a subset of the training
set, as further explained in the Methods section). Figure 7
shows that this model selection strategy carries a small
improvement in performance at the cost of much higher
computational expense in model selection (one RF training run
per considered mtry value).
Predictive Performance. This systematic battery of

numerical experiments led to the new scoring function RF-
Score::Elem(c12,b2)_spr1_oob (RF-Score::Elem-v2 for short).
As we have seen, the descriptors come from partitioning
occurrence counts of each element atom type pairs into six
interatomic distance bins of 2 Å size, and the RF model is built
with the 123 descriptors that are sufficiently dense (spr = 1)
using the internally validated mtry value (mtry = 14 in this case).
Figure 8 shows the predictive power of RF-Score::Elem-v2 on
the test set.

In terms of efficiency, RF-Score::Elem-v2 scored all 195
protein−ligand complexes in 0.01 s (all of the computation in
this study was carried out with a single processing core Intel
Core i7−2920XM at 2.50 GHz with 16 GB RAM). In addition,
the time to generate these features for the 195 complexes was 8
s, and hence this is the most expensive part of the calculation.
Therefore, the average time to score one protein−ligand
complex is about 0.04 s if the features have not been calculated
before, which makes RF-Score suitable to rescore a high
number of docking poses in virtual screening applications.

The predictive power of RF-Score::Elem-v2 was also
compared against that of a wide selection of scoring functions
on the PDBbind benchmark.44 By using a pre-existing
benchmark, the danger of constructing a benchmark comple-
mentary to the presented scoring function is avoided. It also has
the advantage of ensuring that previously tested scoring
functions were provided with optimal settings by their authors.
Several of the scoring functions tested in the PDBbind
benchmark have different versions or multiple options.
However, for the sake of practicality, only the version/option
of each scoring function that performs best on the PDBbind
benchmark was reported by Cheng et al.44 In addition to these
16 scoring functions, we also tested a more recent function
called IMP::RankScore.47 Figure 9 reports the performance of
all scoring functions on the test set, with RF-Score::Elem-v2
obtaining the best performance with Rp = 0.803 (the
performance of the original version of RF-Score23 is also
included). In contrast, classical scoring functions tested on the
same test set obtained a lower Rp spanning from 0.216 to
0.644. This trend was also observed with the other two
performance measures (Rs, SD). It is worth noting that the
root-mean-square error of the free energy of binding on such a
diverse test set is just 2.1 kcal/mol.
When introducing a scoring function, only the scoring

function built with the random seed that provides the best
performance is generally reported. We have followed here a
more precise way to assess performance differences between
scoring functions by comparing median performances from a
set of independent trials. Moreover, in order to address the
question of how significant is the reported improvement over
the original version of RF-Score, we have trained and tested the
original RF-Score using 10 different random seeds. Thereafter,
we have repeated the process, using the same random seeds,
with the new version of RF-Score. The resulting boxplots are
compared in Figure 10. Lastly, we carried out a two-sample t
test for each performance measure to find out that all
differences are statistically significant (Rp p value= 6.0 ×
10−12, Rs p value=1.5 × 10−11, and SD p value = 3.8 × 10−4).

■ DISCUSSION
The new version of RF-Score performs much better than
classical scoring functions on the same test set. In fact, this
performance gain must be actually larger in most cases since
only RF-Score and X-Score, among all scoring functions
represented in Figure 9, use training sets that do not overlap
with the test set. Having training complexes in the test set
artificially enhances the performance of a scoring function, as it
is not exclusively predicting unseen complexes but merely
reporting the lower training error of those overlapping
complexes. Indeed, adding a third of the test set to the training
set makes RF-Score::Elem-v2’s Rp rise from 0.803 (no overlap
between training and test sets) to 0.872 (65 overlapping
complexes). Clearly, the same training and test set must be
used when comparing scoring functions, but unfortunately this
has not been required in recent community benchmarks.48

Furthermore, it could be argued that there is something
particular about the training/test partition selected by Cheng et
al. in the PDBbind benchmark. This partition was chosen to
compare RF-Score against the best scoring function in that
study under exactly the same experimental conditions. An
experiment to investigate this question was already carried out
in the original RF-Score paper23 (Appendix A4 in the
supplementary data of that paper23) and further discussed in

Figure 8. RF-Score::Elem-v2 predicted versus measured binding
affinity on the independent test set (195 complexes). Pearson’s
correlation coefficient Rp = 0.803, Spearman’s correlation coefficient
Rs = 0.797, standard deviation SD = 1.54 log Kd/i units, and Root
Mean Square Error RMSE = 1.53 log Kd/i units. This plot can be
visually compared to those for the best performing scoring functions in
Cheng et al.’s44 Figure 6. Performance comparisons on the same test
set are presented here in Figure 9.
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a subsequent commentary29 (see Figure 1 therein). The
performances of RF-Score for 25 randomly generated training/
test partitions with the same sizes as the benchmark partition
(1105/195) were calculated. The experiment demonstrated
that there is a minor difference in RF-Score performance
between the benchmark partition and the median of these 25
alternative partitions.
While our study focuses on generic scoring functions, we

would like to briefly comment on how RF-Score would perform
on subgroups of the test set (e.g., complexes whose proteins
belong to the same family). Clearly, the better the performance

of RF-Score over another scoring function on the full test set,
the more test subsets will be better predicted by RF-Score. To
illustrate this, Appendix A1 presents the performance of the
new version of RF-Score (RF-Score::Elem-v2; full test set
RMSE = 1.54) and RF using Credo intermolecular interaction
features (RF-Score::Credo; full test set RMSE = 1.72) on the
four subsets resulting from partitioning the test set by binding
affinity ranges. Appendix A2 presents another experiment
where two small subsets of 23 complexes are generated, one
containing those with the most similar ligands and the other
subset with the most dissimilar ligands in terms of chemical
structure. RF-Score::Elem-v2 outperforms RF-Score::Credo in
all subsets but the one with the most dissimilar ligands, where
RF-Score::Credo performs slightly better. These results
illustrate the fact that, despite RF-Score::Elem-v2 generally
performing better, there could be a few complexes (e.g., ligand-
bound structures of a particular target) where other scoring
functions perform better. We intend to study this issue further
in the future.
On the other hand, it is noteworthy that RF-Score performed

best when describing a complex using a 12 Å distance cutoff
between atom pairs, a distance well beyond direct interatomic
contacts. The improvement over RF-Score with a more
common 6 Å cutoff is, however, modest (+0.017 in median
Rp, +0.003 in median Rs, and −0.05 log K units in median SD;
see Figure 3). This result suggests that there is a minor
favorable contribution from atom pairs separated by a distance
between 6 and 12 Å over the 1300 considered complexes. Such
long-range contributions to protein−ligand binding affinity
have been attributed to the electronic properties of the binding
site and ligand being affected by all protein atoms49 and also to
long-range electrostatics interactions.50 Increasing the non-
covalent cutoff to 12 Å has also been found beneficial in protein

Figure 9. Performance of 18 scoring functions on the PDBbind benchmark as measured by Pearson’s correlation coefficient (Rp), Spearman’s
correlation coefficient (Rs), and standard deviation of the difference between predicted and measured binding affinity (SD). The three plots on the
right visually show the relative predictive power of RF-Score (“x” signs) against that of the other 17 scoring functions (“+” signs). NHA is the
performance of a linear regression model with the number of heavy atoms of the ligand as only variable (this baseline is shown as a horizontal
discontinuous line in the plots).

Figure 10. Performance comparison between the original version and
the new version of RF-Score.
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folding51 and DNA molecular dynamics52 simulations. It seems
therefore that RF-Score is able to capture long-range effects
implicitly to some extent.
The main reason why RF-Score works much better than

classical scoring functions at predicting binding affinity of most
complexes is due to the circumvention of the strong
assumption of a predetermined functional form. All classical
scoring functions consist of a sum of typically nonlinear terms
with respect to selected interatomic distances, such as van der
Waals terms in empirical scoring functions or particular atom−
atom potentials in knowledge-based scoring functions. For
instance, the Scoring Function Consortium (SFC), in a
concerted effort between 10 pharmaceutical companies and
academic institutions, generated an empirical scoring function
(SFCscore),53 which by the time of its development was clearly
superior to most of the then available scoring functions. Very
recently, one of the leading SFC authors has demonstrated54

that, by using Random Forest regression instead of SFCscore’s
additive functional form and keeping all other modeling choices
unaltered (training data, test data, and descriptors), perform-
ance rises from RMSE = 1.84 to RMSE = 1.56 (0.683 to 0.788
in the case of Rs). This is a very large improvement for a single
modification in a generic model, especially taking into account
that scoring functions are highly optimized due to intense work
over the years in this area. Another study demonstrating that
assuming an additive functional form is detrimental for the
performance of empirical scoring functions is by Kinnings et
al.30 As force-field and knowledge-based scoring functions make
the same assumption, these studies strongly suggest that a
machine-learning version of other classical scoring functions
will also result in significant improvement.
Another important conclusion of our study is that a more

precise chemical description of the protein−ligand complex
does not generally lead to more accurate prediction of binding
affinity (see Figure 4). In the first study, Li et al.55 present a
scoring function tested on exactly the same test set as us, with a
much larger training set that includes ours and the use of a very
precise description consisting of 50 calculated descriptors
falling into nine interaction categories: van der Waals,
hydrogen-bonding, electrostatic, pi-system, metal−ligand bond-
ing, desolvation effect, entropic loss effect, shape matching, and
surface property matching (Table 1 on page 593 of Li et al.’s
paper). Li et al. obtained SD = 1.63 and Rs = 0.779 (Table 4 at
page 597 of Li et al.’s paper), whereas RF-Score originally
obtained SD = 1.58 and Rs = 0.762 on the same test set.
Interestingly, these authors referenced RF-Score but did not
include it in the comparison or comment on why its
performance was better in some performance measures despite
using much simpler descriptors and less data for training.
The second independent study provides an even more direct

comparison. Zilian and Sotriffer54 used the same training set,
test set, and regression model as RF-Score. The only difference
between their scoring function and ours is in the 63 used
descriptors, which was one of the outcomes of the industry−
academia Scoring Function Consortium. These descriptors
include the number of rotatable bonds in the ligand, hydrogen
bonds, aromatic interactions, and polar and hydrophobic
contact surfaces, among others (a full list can be found in
Table 1 of page 398 of the original SFC paper53). Their best
scoring function achieved RMSE = 1.56 and Rs = 0.788 (Table
1 of Zilian and Sotriffer’s paper), which is slightly better than
the original version of RF-Score (RMSE = 1.58 and Rs =
0.762). If the modeling assumptions implied in the calculation

of chemical properties were generally accurate, we should have
seen many scoring functions performing much better than RF-
Score thanks to using a more precise chemical description. But
we have actually seen the opposite in these two independent
studies, once we compare the performances achieved by Li et
al. (SD = 1.63 and Rs = 0.779) and Zilian and Sotriffer (RMSE
= 1.56 and Rs = 0.788) to that of the new version of RF-Score
(SD = 1.54, RMSE = 1.54 and Rs = 0.797) on the same diverse
test set. The new version differs from the original version of
RF-Score in that features are distance-dependent but still do
not explicitly incorporate calculated protonation states.
We discuss next four convoluted factors that may contribute

to this result: modeling assumptions, codependence of
representation and regression, data restricted to the bound
state, and conformational heterogeneity in data. The first factor
is that more precise descriptors often mean making modeling
assumptions that introduce additional error. For example, the
protonation state of an atom needs to be estimated in order to
assign its Sybyl type, but the local change in pH induced by
hydrogen bond donors/acceptors in nearby residues and water
molecules is usually not incorporated into scoring functions for
binding affinity prediction. Similar arguments can be con-
structed regarding the calculation of donor-hydrogen-acceptor
angles to perceive hydrogen bonds. The question remains as to
how large the impact of this error is compared to that of not
considering protonation states at all (the element descriptor
scheme).
The second factor, often neglected, is the optimality of

problem representation (description scheme) for the applied
solution construction method (regression technique). From a
purely chemical perspective, deconvoluting elemental atom
types into their various hybridization states constitutes a more
precise description of the complex. However, this scheme also
results in a higher number of features and thus more sparse
features. The latter are detrimental for random forest regression
because as many data as possible are needed to characterize the
interaction between each pair of atom types, best achieved by
minimizing the number of different types defined. In practice,
the definition of atom types must reflect a compromise between
these two conflicting objectives, so as to ensure that the features
are backed up by sufficient data to be statistically as well as
chemically meaningful. This situation gives rise to a trade-off
between the predictability and interpretability of the model,
which is not uncommon in regression problems56 and has also
been observed here (see Figure 4).
For the sake of efficiency, scoring functions only exploit the

information contained in the bound state of the complex, as
represented by a crystal structure. However, binding affinity
also depends on the energetic contributions from ligand and
protein desolvation as well as induced fit upon binding. The
third contributing factor is therefore the uncertainty about how
well a particular description of the bound complex is also
describing the complex just before desolvation and induced fit
takes place. We speculate that descriptors whose values change
less during the binding process might be more suitable for
predicting binding affinity using only data about the bound
state. For instance, element descriptors do not change much in
general during the binding process, as a fixed cutoff will include
roughly the same protein and ligand atoms just before and after
binding. In contrast, protonation states will generally change
significantly upon binding because of desolvation.
The last contributing factor comes from the uncertainty

arising from the fact that the crystallographers deposit a single
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structural model in the PDB while several different models may
fit the electron density equally well.57 The conformational
heterogeneity of a complex (i.e., several bound states are
possible for this complex, at least within experimental
uncertainty) means that different sets of descriptors would be
generated for exactly the same binding affinity. Access to the
multiple structural models of a complex that are significantly
different at the binding site level is likely to be helpful in
deciding how to best address this issue. In particular, it would
be interesting to investigate whether combining the predictions
from each structure is a better strategy than simply predicting
from the deposited structure.
Our finding that binding affinity can be better predicted

when calculated protonation states are not explicitly incorpo-
rated into the scoring function will be certainly seen as a
controversial result by most molecular modellers. We are
providing next an intuitive explanation for this result. In
machine learning nomenclature, the chemical description of
complexes constitutes a data representation. Representations
present an opportunity to incorporate domain knowledge into
the problem, which in principle can help to disentangle the
different explanatory factors for variation of the predicted
variable (binding affinity here) and thus lead to better
performance by simplifying the regression problem. However,
as domain knowledge is affected by confounding factors and
implemented with various degrees of efficacy, it is entirely
possible to obtain better performance by incorporating less
domain knowledge (i.e., introducing less noise) and hence
relying more on pure inference from the data. In our problem,
binding affinity is experimentally determined in solution along a
trajectory in the codependent conformational spaces of the
interacting molecules, whereas the structure represents a
possible final state of that process in a crystallized environment.
Consequently, very precise descriptors calculated from the
structure are not necessarily more representative of the
dynamics of binding than less precise descriptors. This means
that a more precise description will not necessarily lead to a
better prediction of binding affinity, as it has been proven here
using Random Forest. Because the information content of a set
of variables is independent of the adopted regression model, the
use of an alternative regression technique should lead to the
same conclusion, although this point is still to be confirmed
experimentally. We cannot stress enough that we are not
making any claim about the importance of protonation for pose
generation in docking. Pose generation and rescoring are
different problems, and so are the objectives that the
corresponding scoring functions must fulfill.
In summary, we have seen that one can be easily fooled by

uncertainty when investigating more accurate scoring functions.
Given the unavoidable uncertainty, we believe that rigorous and
systematic numerical studies are the most reliable way to make
progress in predicting intermolecular binding affinity. We hope
that the availability of the RF-Score software (links are provided
in the Methods section) will encourage experts in the area to
try to perform better on the PDBbind benchmark using
alternative chemical descriptions as a way to investigate this
issue further. The code permits reproducing the results
obtained by RF-Score::Elem-v2 and can also be used as a
template to test alternative regression techniques implemented
in R. Without any modification, the RF-Score software can be
employed to rescore ligands in crystal structures or docking
poses. There is a range of applications in which more accurate
prediction of binding affinity of a complex would be very useful,

some of them new such as replacing force-fields in molecular
dynamics simulations. Other applications include structure-
based virtual screening and lead optimization. In fact, applying a
simpler variant of RF-Score::Elem-v123 to prospective virtual
screening has already been found37 to excel at discovering
innovative inhibitors of antibacterial targets. Very recently,58

RF-Score::Elem-v1 has been incorporated into an easy-to-set
large-scale docking Web server (http://istar.cse.cuhk.edu.hk/
idock) to carry out virtual screening of up to 17 million
purchasable molecules from the ZINC database,59 which
should be upgraded soon to RF-Score::Elem-v2.
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