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Abstract: The COVID-19 pandemic has reached over 100 million worldwide. Due to the multi-
targeted nature of the virus, it is clear that drugs providing anti-COVID-19 effects need to be
developed at an accelerated rate, and a combinatorial approach may stand to be more successful than
a single drug therapy. Among several targets and pathways that are under investigation, the renin-
angiotensin system (RAS) and specifically angiotensin-converting enzyme (ACE), and Ca2+-mediated
SARS-CoV-2 cellular entry and replication are noteworthy. A combination of ACE inhibitors and
calcium channel blockers (CCBs), a critical line of therapy for pulmonary hypertension, has shown
therapeutic relevance in COVID-19 when investigated independently. To that end, we conducted
in silico modeling using BIOiSIM, an AI-integrated mechanistic modeling platform by utilizing
known preclinical in vitro and in vivo datasets to accurately simulate systemic therapy disposition
and site-of-action penetration of the CCBs and ACEi compounds to tissues implicated in COVID-
19 pathogenesis.

Keywords: COVID-19; ACE inhibitors; calcium channel blockers; artificial intelligence; drug repur-
posing

1. Introduction

The emerging pandemic of COVID-19 presents an extraordinary challenge in identify-
ing effective drugs for prevention and cure [1,2]. Analysis of the cumulative surveillance
data have shown progressively growing number of cases, which are now confirmed to be
100 million plus, as demonstrated by the World Health Organization emergency COVID19
informational dashboard [3]. In the current pandemic scenario, the average mortality rate
was observed to be almost 3.0% [4]. Although the average mortality rate is declining,
7-day moving averages of daily incidence of COVID-19 cases indicate ongoing commu-
nity transmission [5]. Outstanding preventive measures enforced in many countries and
increased load on the health care system has provoked the highest economic impact in XXI
century. Decrease of the weekly economic index in the US during the pandemic period
could potentially reach 12%, which was never observed within the recent decades [6].
As prevention and containment of each COVID-19 outbreak is paramount in present situa-
tion, contingency measures with experimental therapeutics are being urgently investigated
for the immediate unmet medical need.

There are several monotherapies that have been tested for COVID-19. Antiviral drug
remdesevir was shown to be effective for the treatment of COVID-19 in adult patients
and was officially approved by FDA in the United States [7]. The speed of the COVID 19
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vaccine development was [8]. Despite some critical notes [9,10], a few anti-COVID-19
vaccines were approved, and public vaccination procedure have been started. At the
same time, various pharmaceuticals compounds against coronavirus infection are still
being tested and yet to demonstrate their significantly high efficacy rates over placebo as
well as lower mortality. Despite the recent advances in antiviral therapeutic approaches,
the current pipeline for drug interventions for COVID-19 consists largely of older antivirals,
immunomodulatory agents, and traditional Chinese medicines (Table 1) [11]. Hence,
a multitargeted combinatorial approach may have a greater potential to be a more successful
therapy than a single drug target due to the multifactorial-polygenic infectious nature
of the virus. In this critical scenario, development of a novel combination of antiviral
medications is a promising approach and has the potential to be completed in the near
future. Currently, the most effective way of the COVID-19 treatment is the use of the
antibody drug cocktails such as casirivimab and imdevimab combination (REGN-COV2
or REGEN-COV2) [12,13]. Antibody drug cocktail-based treatments may have potential
immunogenicity and hypersensitivity adverse effects in patients with COVID-19 [14],
making the use of small molecule pharmaceutical potentially more beneficial.

There is a need for accelerated development of effective interventions as COVID-
19 confirmed cases are increasing remarkably at a fast pace. While intensive research
and clinical trials to address this critical unmet need are being developed to determine
the efficacy of known drugs and identify potential therapeutic targets to develop new
drugs for treating COVID-19, results to date on the drug efficacy are inconclusive and
inconsistent, and safety profiles are unknown in the context of the disease [15]. Recently,
a number of other drugs such as combinations of ACE inhibitors and CCBs were also
considered for development [7]. Their anti-inflammatory, anti-fibrotic and vasodilatory
roles have been well established in the pathophysiology of pulmonary hypertension (PH),
a chronic health condition recognized as a high risk factor in severe COVID-19 disease [16].
ACE inhibitors and CCBs, used in the treatment for PH, have shown therapeutic efficacy in
COVID-19 [17,18], when investigated separately. Hence, it can be postulated that CCBs in
combination with key proteins such as ACE, pertaining to the renin–angiotensin signaling
system (RAS) family, acting indirectly via ACE, can be potential targets to combat viral
entry and replication and the post-infection proinflammatory responses known as the
“cytokine storm” [19].

Table 1. Select compounds currently in clinical trials for treating COVID-19.

Compound Name Development Overview Source

Remdesivir Gilead, Approved by FDA Antiviral, host factor-targeted.
RNA-dependent/RNA polymerase-targeted [20]

APN01 APEIRON Biologics, Phase I Pilot trial ongoing in China [21]

Brilacidin Innovation Pharmaceuticals,
Phase II

Defensin mimetic drug candidate. Has shown
antibacterial, anti-inflammatory,

and immunomodulatory properties in several
clinical trials

[22]

Hydroxychloroquine Repurposed, Rejected
Host factor-targeted. Antimalarial drug that

affects endosomal function and blocks
autophagosome-lysosome fusion

[23]

Azithromycin Repurposed
Host factor-targeted. Broad-spectrum

antibiotic, blocks autophagosome clearance in
human cells

[23]

Camostat Repurposed Host factor-targeted. TMPRSS2 inhibitor [24]

Nafamostat Repurposed Host factor-targeted. TMPRSS2 inhibitor [25]

Favipiravir Repurposed, Approved in
Russia, Japan

Host factor-targeted. RNA-dependent/RNA
polymerase-targeted [26]
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The growing knowledge regarding SARS-CoV-2 pathophysiology provides a signif-
icant number of potential drug targets, specifically focused on the virion structure and
target tissues. SARS-COV-2 is a large (27–32 kb), enveloped, positive-stranded RNA virus.
Viral capsid consists of four proteins: membrane protein, envelope protein, spike protein,
and nucleocapsid protein [27]. The spike protein facilitates the entry of the virus into host
cells [27], and it is a critical factor of viral host range and tissue tropism and is a major
inducer of host immune response and disease severity [18,28,29]. Viral spike protein is
involved in receptor binding and subsequent viral entry into the host cells [28]. At least
initially, it binds to the cellular angiotensin-converting enzyme 2 receptor (ACE2), cellular
receptor TMPRSS2, and the calcium channel post entry in nasal secretory goblet cells,
lung type II pneumocytes, and gut absorptive enterocytes [30]. Subsequently, these pro-
teins pertaining to the RAS can be considered as potential therapeutic targets. Moreover,
angiotensin II type-I receptor blockers (ARBs), as well as thiazolidinediones and ibuprofen
have been reported to increase the expression of ACE2, thereby increasing the risk of
infection [31]. Therefore, among the components of RAS, ACE, a zinc-metallopeptidase
converting Angiotensin (Ang) I to Ang II is considered as a most promising therapeutic
target. Ang II mostly exerts its activity via a type 1 and type 2 angiotensin receptor main-
taining blood pressure homeostasis, and anti-inflammatory response in addition to salt
and fluid balance [32]. ACE2 generates Ang (1–7) from Ang II, and then Ang (1–7) after
binding and activating the mitochondrial assembly 1 (MAS) receptor broadly, shifts the
balance from vasoconstriction with Ang II to vasodilation, in particularly, in pulmonary
vessels [33]. The role of this vasodilatory effect in the pathogenesis of COVID-19 is not
studied yet, but some animal data suggest a beneficial effect in lung disorders in PH [33].
Additionally, ACE2 and Ang (1–7) have been found to be protective in several different
lung injury models [33,34]. ACE inhibitors may potentially attenuate the COVID-19 asso-
ciated “cytokine storm” by upregulating ACE2, which converts Ang II to Ang (1–7) and
activate MAS receptors producing beneficial vasodilatory and anti-inflammatory effects
that were shown to play a potential role regarding post-infection of COVID-19 [35].

The underlying mechanism of action of CCBs on SARS-CoV-2 needs further eluci-
dation as the underlying mechanism is not fully understood. Several pathogenic viruses
have been known to induce intracellular calcium influx by hijacking predominantly the
voltage-gated Ca2+ channels (VGCC) facilitating viral entry, replication, and prolonged
infection period [36,37]. In previous studies with Ebola and similar viruses CCBs dis-
played inhibition of the replication of viruses after entry [33,34,38]. Case fatality rates were
markedly reduced due to the CCB treatment among patients that were infected with Severe
Fever with Thrombocytopenia Syndrome Virus (SFTSV) [39]. Similarly to SFTSV patients,
CCBs are postulated to interfere with SARS-CoV-2 replication after cellular entry. CCBs may
act as host-signaling targeted compounds that reduce the rate of viral mutations and inter-
feres with the replication process via modulation of virus-hijacked host cellular machinery,
compared to antivirals which target many viral proteins [40]. As a result, this could be
an important factor in the development of compounds against SARS-CoV-2 [40]. The pu-
tative mechanism of action of CCBs entails the interference of the intracellular calcium
influx instigated by the virus and the blocking of calcium-dependent signaling pathways
pivotal to viral replication. The transient receptor potential channel (TRP) is known to
be associated with hypersensitivity induced by chemical or thermal stimuli. Infection of
human bronchial epithelial cells by respiratory viruses including respiratory syncytial virus
(RSV), measles virus (MV) and rhinovirus (RV) was found to increase the expression of TRP
channels in human bronchial epithelial cells. The over-expression of TRP proteins provides
a favorable environment for propagation of virus [17,41]. Additionally, a key consequence
of viral pathogenesis is marked by a strong inflammatory response preceded by a set of
sequentially activated signaling pathways such as increased intracellular calcium levels
leading to mitochondrial dysfunction and eventually cellular apoptosis [42–44]. In prior
clinical outcomes, CCBs attenuated markedly the proinflammatory response by modulat-
ing the intracellular calcium levels to homeostasis in patients and reduced death rates in
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septic animal models with the high systemic proinflammatory state [45,46]. Additionally,
the global attenuation of proinflammatory cytokines and oxidative stress by CCBs was
observed in hypertensive patients compared to baseline [47]. It can be hypothesized that
CCBs, besides interfering with viral replication, may attenuate systemic inflammatory
responses in patients to impart the clinical benefits synergistically with their antiviral
efficacy. These therapies may be particularly relevant to COVID-19 given its association
with an extended proinflammatory state in patients [19].

Taken together, combinatorial approaches using ACE inhibitors, acting in an anti-
inflammatory fashion, and CCBs countering the virus post-entry-stage, re-establishing Ca2+

homeostasis, and consequently down-regulating the proinflammatory signals, may impart
synergistic outcomes in increasing the clinical efficacy via reducing viral load in patients com-
pared to the individual drug treatments (Figure 1). While novel in concept, there is insufficient
data on ACE/CCB combinatorial therapies available to verify whether these observations
are translatable to humans, as no studies have evaluated the effects of combinations of RAS
inhibitors and CCBs in COVID-19 clinical trials. To that end, we propose an in silico based
computational approach for repurposing and predictions of optimal dosage and disposition
of combination of ACEis and CCBs to potentiate therapeutic efficacies in clinical trials.
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Figure 1. Potential model for the combinatorial actions of angiotensin-converting enzyme inhibitors (ACEi) and calcium
channel blockers (CCBs) on SARS-CoV-2 infection, replication, and proinflammatory response. ACEi acting indirectly
through ACE2 and the mitochondrial assembly 1 (MAS), ATR2 axis imparts an anti-inflammatory and anti-fibrotic response,
while CCBs acts at various steps, restores intracellular Ca2+ flux, consequently inhibiting post-infection virus internalization
and genome replication. Both ACEi and CCBs potentially can induce a synergistic anti-inflammatory and anti-fibrotic
response in the attenuation of the “cytokine storm”.

In the present study, the BIOiSIM was used for the computational prediction of ACE
inhibitor and CCB drug dispositions in the context of tissues related to COVID-19 patho-
genesis. Two CCB drugs namely Verapamil and Lacidipine belonging dihydropyridine
and phenylalkylamine derivatives were selected as they cover interaction with both T- and
L-types of calcium channel in cardiovascular system. Captopril, lisinopril, and captopril
were chosen as the typical ACE inhibitors belonging to sulfhydryl- and dicarboxylate-
containing agents showing variable interactions with ACE active centers. BIOiSIM is a
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dynamic, biology-driven platform that provides a scalable computational prediction of
in vivo pharmacokinetic-pharmacodynamic (PK-PD) phenomena. A potential treatment
strategy for COVID-19 will consist of a two-pronged approach; initially, minimizing the rate
and extent of in vivo SARS-CoV-2 infection/replication and second, reducing the systemic
inflammatory effect implicated in the “cytokine storm” post-infection. The aim of the study
was to use the BIOiSIM platform to conduct in silico modeling of the various CCB/ACE
inhibitor compounds with integrated experimental preclinical datasets and prediction of
the drug disposition to tissues, which were shown to be a site of virus residence such as
nasal epithelium, lungs, and intestine [48]. Investigation of the drug disposition in these
tissues would help accelerate the development of the targeted anti-COVID-19 therapy.

2. Results
2.1. Sensitivity and Convergence Testing

For cases where parameter values were not available experimentally, BIOiSIM’s opti-
mization algorithms were utilized to obtain parameter values enabling simulation of drug
disposition in both the plasma venous compartment as well as the COVID-19-associated
sites-of-interest. Figure 2 highlights these outcomes by showing how the objective func-
tion (cost) varies over the trials that were tested during the coarse grid search phase of
optimization. There is confidence in the optimized parameter values because of the clear
absolute minima that can be visualized, looking at the convergence plots for Verapamil,
Spirapril, Lisinopril, Lacidipine, and Captopril (convergence point highlighted with an
arrow). The final optimized values are summarized in Table 2. Table 3 gives an overview
of the experimental conditions in the in vivo datasets used for the study, which were
replicated for the simulation outputs.

Table 2. Classification of identified ACEi, CCB compounds, and utilized physicochemical and pharmacokinetic (PK)
parameters values obtained from literature, default value approximation, or machine learning (ML) optimization.

Drug
Name Class ka LogP pKa Fu,p B:P Clearance

(L/h/kg) Kplung Kpgut

Lisinopril ACEi 0.17 * −1.115 [49] 3.17 (acid), 10.21
(base) [49] 0.99 [49] 0.71 * 0.072 [49] 0.57 0.50

Captopril ACEi N/A 0.34 [50] 4.01 (acid),
−1.2 [49] 0.73 [49] 0.45 * 0.72 [49] 0.15 * 0.15 *

Spirapril ACEi 0.53 [51] 0 * 3.62 (acid), 5.2 (base) [49] 0.314678 * 0.74 ** 0.43 [51] 0.21 * 0.16 *

Lacidipine CCB 1.7843 * 5.51 [52] 19.47 (acid),
−6.4 (base) [49] 0.05 [53] 0.70 * 1.23 [49] 11.72 * 11.72 *

Verapamil CCB N/A 3.795 [54] 9.68 (base) [49] 0.064 [55] 0.88 [36,54] 0.84 [49,54,55] 3.69 * 3.69 *

*—optimized values, **—default values.

Table 3. Background on datasets used for systemic plasma-venous compartment disposition simulation and optimization
of missing PK parameters.

Drug Name Formulation Experimental Setup Reference

Lisinopril 20 mg, oral dose 20 mg of Lisinopril was given orally for 10 consecutive days. 8
subjects in the study. [56]

Captopril 2.78 mg, 5.67 mg, 11.4 mg,
IV dose

1 mL of intravenous injection at three different dosage levels
was administered to 7 healthy subjects. [57]

Spirapril 25 mg, oral dose
25 mg spirapril p.o. prepared by dissolving 25 mg of
lyophilized spirapril in 50 mL tap water was given to the
subjects. 16 subjects.

[51]

Lacidipine 2 mg, 4 mg, oral dose Single dose of 2 mg and 4 mg of Lacidipine was administered.
The study has a total of 24 subjects (12 male, 12 female) [58]

Verapamil 50 mg, IV dose 5 subjects received 5 mg verapamil dissolved in 30 mL of saline
infused over 5 min. [55]
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2.2. Simulation Accuracy

BIOiSIM simulations of plasma concentration over time relative to experimental
data are captured in Figure 3 [49,51,55,56,58]. The performance of the core model across
the different compounds was assessed using a combination of AFE and AAFE values
across the metrics generated from non-compartmental analysis and chi-squared hypothesis
testing. Additionally, visual analysis of the simulation fits against the validation data was
conducted to assess goodness-of-fit, and served as a key metric in assessing the platform
performance in cases where error/variability data was not available from the original
source. As highlighted in Table 4, the AAFE for Tmax, Cmax, and AUC0-t for all of the
compounds—Lisinopril, Captopril, Spirapril, Lacidipine, and Verapamil—was less than
2, indicating that the simulation results were close to recapitulating the actual in vivo
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behavior. The average AFE values for the compound metrics (1.03, 0.92, and 1.08 for
AUC0–t, Cmax, and Tmax, respectively) are within fold-error of ±0.1 and indicate minimal
bias toward systematic over- or under-prediction of output values. Both IV and orally
administered compounds were simulated with similar accuracy. Spirapril had slightly
higher AAFE values for Cmax and Tmax (1.93, 1.75 respectively); however, this can be
attributed to the higher variability in the in vivo datasets, as visualized in Figure 3 and
confirmed with the chi-squared statistic (p-value < 0.001).
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Table 4. Comparison of plasma venous PK metrics between model simulation outputs and experimentally-derived
measurements.

Compounds Lisinopril Captopril Spirapril Lacidipine Verapamil

Output metrics ROA Oral IV IV IV Oral Oral Oral IV
Dose, mg 20 2.78 5.67 11.4 25 2 4 5

AUC0-t, µg·h/L

Observed N/A N/A N/A N/A N/A 3.66 7.66 N/A
Calculated 752.00 42.97 93.93 215.69 991.83 3.12 6.80 703.03
Predicted 823.50 49.16 92.55 212.12 977.60 3.27 8.80 494.26

AAFE 1.10 1.14 1.01 1.02 1.01 1.05 1.29 1.42
AFE 1.10 1.14 0.99 0.98 0.99 1.05 1.29 0.70

Cmax, µg/L

Observed N/A N/A N/A N/A 430.00 1.24 3.09 N/A
Calculated 57.40 104.64 234.55 454.71 378.00 1.17 2.87 1176.82
Predicted 53.93 105.81 183.46 497.25 196.17 1.00 2.01 1696.96

AAFE 1.06 1.01 1.28 1.09 1.93 1.16 1.43 1.44
AFE 0.94 1.01 0.78 1.09 0.52 0.86 0.70 1.44

Tmax, h

Observed N/A N/A N/A N/A 0.90 1.13 1.25 N/A
Calculated 6.04 0.15 0.19 0.13 1.00 1.23 1.05 0.09
Predicted 6.03 0.15 0.19 0.13 1.75 1.05 1.05 0.09

AAFE 1.00 1.00 1.00 1.00 1.75 1.17 1.00 1.00
AFE 1.00 1.00 1.00 1.00 1.75 0.86 1.00 1.00

Statistics
Chi-squared 2803.13 * 22.56 23.01 26.85 2.70 107.9 * 182.15 * 11.57 *

p-values >0.50 >0.50 >0.50 >0.50 <0.001 >0.50 >0.50 0.36

Note: outputs marked as “observed” were extracted directly from the source manuscripts. “Calculated” corresponds to recalculation of the
output values using internal non-compartmental methods. Predicted Cmax values correspond to the maximum sampling concentration
within the time range of observed timepoints. For observed datapoints with poorly visible error bars, an effective error was calculated
using the variability from other timepoints. Chi-squared values and associated p-values were calculated assuming a standard deviation of
0.1× in observed values for manuscript without reported measurement error. * differences considered statistically significant.

Visual analysis of the plots is also indicative of overall high accuracy, with the sim-
ulation outputs accurately captured the ascending and terminal phase that aligns with
the expectation for IV and Oral routes-of-administration. For Lacidipine and Captopril,
the two compounds where data was available for multiple doses, the maintained accuracy
of simulation outputs (AAFE < 1.3 across all metrics) supports the model’s ability to ac-
curately simulate clearance and absorption after oral administration of the compounds.
The chi-squared metrics and associated p-values did not show statistically significant fits;
as referenced in Table 2, the majority of publications reviewed for in vivo data did not
contain timepoint-specific variability, and assumptions made regarding variability are
likely too conservative and result in a failure to reject the null hypothesis of difference in
the plots.

2.3. Simulating Distribution to Gut, Lung, and Nasal Epithelium

After successfully validating the systemic plasma PK across compounds, predictive
models generated outputs of expected tissue concentration profiles in the three COVID-
implicated tissues—gut, lung, and nasal epithelium (Figure 4) with calculated metrics and
conditions (Table 5). The conditions that were simulated matched those used during model
validation, and were assumed to be in the range of typically prescribed dosing regimens.
The simulation values showed that based on the assumed permeability of nasal tissue,
the overall exposure of compound in the nasal epithelium (AUC0-t) is effectively the same
as in the general tissue; however, the Cmax in the nasal tissue is greater for compounds
administered via IV infusion by a factor of 1.4 and 2 for Verapamil and Captopril, respec-
tively. This behavior is likely explained by slower distribution of compound into tissues
than it is noted for PO administration allowing two nasal compartments to noticeably
equilibrate. Thus, it is more important to assume the permeability to the site-of-action may
be an insignificant rate-limiting factor.
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(C) Lisinopril (p.o.), (D) Lacidipine (p.o.), and (E) Captopril (i.v.) to tissues implicated in COVID-19
replication and pathogenesis. Subject conditions are described in Table 3.

One interesting observation from these outcomes is that the effective lag time in
Tmax between the nasal epithelium and the other tissues is minimal, which may indicate
that permeability to the site-of-action is an insignificant rate-limiting factor. Additionally,
the relative Cmax is <2-fold different at the nasal epithelium relative to other tissues,
and indeed, the other tissues are also similar to plasma levels specifically for Spirapril,
Lisinopril, and Captopril. These compounds may therefore be better candidates for rapid
repurposing, given that their systemic plasma profiles are likely to have data around
interaction with Ca2+ and ACE in PH patients, and those levels are directly correlated to
those in tissue.
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Table 5. PK metrics calculated from simulations of drug distribution to ACE-expressing organs and tissues.

Metrics Tissue Lisinopril,
20 mg, oral

Captopril,
2.78 mg, IV

Spirapril,
25 mg, oral

Lacidipine,
2 mg, oral

Verapamil,
50 mg, IV

AUC0–t,
µg·h/L

Lung 341.24 52.36 2315.64 13.86 344.12
Gut 354.03 196.74 2310.31 13.86 354.74

Nasal tissue 196.91 1.48 207.74 31.63 360.48
Nasal epithelium 196.34 1.48 207.58 31.63 360.48

Cmax, µg/L

Lung 34.07 15.26 7514.65 140.24 65.26
Gut 33.68 103.16 3213.00 92.77 70.37

Nasal tissue 19.67 0.43 657.99 256.36 68.36
Nasal epithelium 19.67 0.43 478.23 128.78 68.35

Tmax, h

Lung 6.65 1.13 0.08 0.02 1.84
Gut 5.68 0.57 0.13 0.03 1.30

Nasal tissue 6.66 1.13 0.09 0.02 1.85
Nasal epithelium 6.69 1.17 0.11 0.05 1.89

3. Discussion

The COVID-19 pandemic has been converted to a global crisis on an unprecedented
scale. With synchronous and monumental efforts among researchers worldwide, sev-
eral novel and old therapeutic treatments have been investigated and promoted without
definitive or explicit protocols. Few therapeutic regimens may have developed at a risk;
fortuitously, some demonstrate initial hope and potential efficacy. Albeit, current published
results of exhaustive clinical trials are yet to be interpreted and evaluated for therapeutic
impacts in patients. Several clinical studies that are focusing on the treatments of patients
with COVID-19 have demonstrated an urgent unmet medical need to determine and estab-
lish the optimal treatment for therapeutic approaches currently being tested in a clinical
context. To that end, we developed an in silico modeling approach in repurposing of CCBs
and ACEi compounds, using an AI-integrated mechanistic modeling platform by utilizing
known preclinical in vitro and in vivo datasets to accurately simulate systemic therapy
disposition and site-of-action penetration of the CCBs and ACEi compounds to tissues
implicated in COVID-19 pathogenesis. Numerous studies have been carried out so far
confirming increased ACE expression in response to the ACEi administration. Several
hypotheses exist about how increased tissue ACE2 expression may be protective rather
than harmful during SARS-CoV-2 infection. For example, increased ACE2 expression may
lead to enhanced sequestration of SARS-CoV-2. Moreover, ACEis’ lead to competition
with Ang II for AT1R, resulting in increased Ang II to be processed by ACE2. This in-
creases Ang (1–7) levels, which results in vasodilating and anti-fibrotic effects, providing
crucial protection during coronavirus infections. Furthermore, increased binding of ACE2
to circulating Ang II could induce a conformational change resulting in less favorable
binding of SARSCoV-2 to its receptor and decreased internalization of the virus when
bound to ACE2 [59]. Subsequently, numerous clinical studies have shown no evidence for
deleterious effects of ACEi in COVID-19 patient. In fact, discontinuing these life-saving
medications potentially can have adverse effects in these groups of patients [60].

In the present study, we have demonstrated that representatives of two drug classes,
namely ACE2 inhibitors and CCB, which were recently shown to provide healing effects in
COVIS-19 patients [15,57], possess beneficial pharmacokinetic profile with good accumula-
tion rate in lung and nasal epithelium tissues. Despite some recent publication confirm
significant improvement of the COVID-19 patients’ condition due to monotherapy with
these drugs or their combination, there are neither computation data no experimental
results published confirming their suitable pharmacokinetics in the site of coronavirus po-
tential residence i.e., lung, nala epithelium, and intestine. The simulation results presented
here may serve as potential baselines for metrics designed to repurpose and prioritize com-
pound candidates based on their PK disposition. The simulation of compound penetration
to lung, gut, and nasal tissues was based on direct optimization of partition coefficients
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to simulate the systemic compound distribution and/or calculation using the Rodgers-
Rowland method (Table 2). Thus, fine-tuned dosing optimization of drug exposure to these
specific tissues could vary relative to actual clinical outcomes and the kinetic properties
(e.g., IC50) of the compounds themselves. However, as the PK profile simulation accuracy
is high the effective distribution and overall potency/penetration of these compounds at a
certain dose can be assumed to be relatively accurate and may have utility for prioritizing
compounds based on potential for reaching a desired site-of-action. Given the potential
variability inherent in the methods for compound partitioning, further experimental val-
idation in vitro or in vivo would be required to gain full confidence in the distribution
simulated to these sites.

The approach taken serves as initial validation of computational tools for rapid repur-
posing of therapeutics with an established mechanism-of-action. Specifically, this lays the
groundwork for a potential repurposing pipeline outside of COVID-19 and inclusive of
unmet medical needs where existing drugs may target a pathway relevant to the condition.
The general workflow of scanning a database of compounds, identifying accurately simu-
lated datasets, and using proprietary optimization algorithms filled in knowledge gaps by
optimizing missing experimental information within the bounds of physiological expecta-
tions enables the extension of simulation results beyond experimentally measured data
and into case-specific prediction (Figure 5). Thus, centralized model-integrated databases
well-curated datasets of in vivo compound PK are also critical for accelerated prioritization
of candidates for emerging diseases. There is value in augmenting the data as selected
candidates undergo further in vivo preclinical or clinical testing, specifically for building
confidence in model simulation results.
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Further extension and application of these results may enable greater insight into the
potential therapeutic effects of ACEi and CCB combinations, as highlighted in Figure 6.
One potential includes the development of PD models relating the extent of ACE inhibition
to Ang II levels (postulated to play a role in the “cytokine storm” secondary to COVID-19)
that could drive hypothesis-driven modeling and simulation of patient outcomes. Ad-
ditionally, optimal dosing regimens of the compounds can be derived by exploring the
expression levels of Ca2+ channels and ACE across the relevant tissues and extrapolating
from in vitro studies of channel blocking and inhibition to assess the likelihood that a suffi-
cient concentration of drug can reach a site-of-action to either minimize viral replication or
reduce inflammatory effects. The levels of such endogenous mediators can be linked to the
expected drug concentrations in plasma or active site to gain a deeper understanding of the
interaction of drug with the active site components and their downstream pharmacological
effects—integration of these PK-PD parameters with BIOiSIM platform can extend the



Molecules 2021, 26, 1912 12 of 18

prediction of drug disposition and safety and efficacy applicable to other drug therapies in
healthy and diseased populations.
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As more data is collected, and the pathophysiology of COVID-19 in healthy and
diseased populations is understood, more customized prescriptions of specific CCB/ACEi
combinations can be derived by looking at susceptibility to drug–drug interaction and
variability in relevant gene expression levels between subjects. Overall, these results give
additional confidence in the BIOiSIM platform’s ability to rapidly identify and simulate
drug disposition for compounds that may be efficacious therapies for rapidly emerging,
deadly conditions. Considering the universality ingrained in the core of the BIOiSIM plat-
form, its predictive potential could be implemented across any modalities for repurposing
and consequent treatment of infectious diseases as well as other clinical conditions.

4. Materials and Methods
4.1. Overview of BIOiSIM Platform

The core functionality of the in silico simulation platform described here was outlined
in a recent work around modeling penetration of transdermal formulations to systemic
circulation [47]. Briefly, the platform is comprised of a 16-organ model of compound PK,
validated across an internal database of small molecule compounds. Auxiliary models
(specific PK or PD) can be integrated into the centralized framework to expand the ability to
make specific predictions of compound disposition. Artificial intelligence-Machine learning
(AI-ML) algorithms are utilized to either optimize missing parameters in the case of
insufficient experimental data, or as predictive solutions to train on existing in vivo/in vitro
datasets. The software systems are hosted on Amazon Web Services (AWS) cloud, enable
high throughput of parallelized PK simulations (PK simulator performance is ~0.08 s to
simulate 1 hr of drug exposure at 0.36 s resolution) which is available in the VeriSIM Life
customer portal.

The drug-dependent parameters used in the model are either experimentally deter-
mined or predicted/optimized using a combination of ML cost minimization algorithms;
these include integrating iterative optimization algorithms with random walk methods
(similar to Markov Chain/Monte Carlo) to converge on a global minimum. Details of the
approach are discussed in our recent publication [61].
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4.2. Modeling Compound Disposition

Computing the mass balance between the compartments follows the general form:

Vorgan
dCorgan

dt
= Qorgan(Cblood,in −

Corgan

KT:P,unbound ∗ funbound,plasma
∗ B : P

)
(1)

For metabolizing and eliminating organs (e.g., liver, kidney) the general relationship
in the model is defined as:

Vorgan
dCorgan

dt
= Qorgan

(
Cblood,in −

Corgan

KT:P,unbound ∗ funbound,plasma
∗ B : P− CLorgan ∗ Corgan

)
(2)

where tissue-dependent parameters are expressed as V (organ volume), Q (flow rate),
CL (organ-level clearance), and K (unbound tissue:plasma partition coefficient); B:P rep-
resents whole blood to plasma partition ratio, and C is the drug concentration in the
specific compartment.

This global approach has been previously described in our manuscript [61].
Given the identified relevant tissues for SARS-CoV-2 infection (nasal, lung, and intes-

tine), a critical aspect of the approach was enabling simulation of compound disposition to
those relevant sites-of-action. Generally, the tissues were assumed to be well-mixed; thus,
distribution was characterized using a partition coefficient:

KTissue:Plasma =
Ctissue
Cplasma

(3)

where Ctissue is concentration of the compound-of-interest in a particular organ/tissue,
and KTissue:Plasma is the drug/subject-specific partition coefficient in the tissue. The method-
ology utilized to determine the partition coefficient was derived from the simulation
accuracy of the plasma-concentration curve. There are multiple different methodologies
that have been utilized in an attempt to predict these partition coefficients accurately, in-
cluding industry standards such as the Rodgers-Rowland and Schmitt equations. However,
even these relationships are susceptible to significant variability [62–64]. These models
predict compound partitioning as a function of logP (octanol-water partition coefficient),
pKa, and plasma protein binding (fu,p); however, for specific groups of compounds,
they are found to underperform in their predictive capabilities based on the simplifying
assumptions used [62–66]. Therefore, we utilized the standard Rodgers-Rowland equation,
optimization of the octanol-water partition coefficient, and direct optimization of an aver-
age Kp to increase the simulation accuracy for in vivo PK. Partition coefficient values were
directly optimized for Captopril, Lacidipine, and Verapamil, while octanol-water partition
values (logP) were optimized for Spirapril.

The nasal epithelium mechanism for compound distribution involved integration
with a permeation across a barrier. Given the location of nasal goblet cells in vivo, com-
pound into the epithelium was modeled with assumptions of 1D flux across the barrier
derived from Fick’s Law. To approximate compound buildup in tissue and effective reduc-
tion of the concentration gradient without incorporating semi-infinite sink assumptions,
the epithelium thickness was scaled down by a factor of two. To model penetration to
the nasal epithelium, a model of small molecule penetration across a permeable barrier
was utilized. The developed model was identified and adapted from a combination of
approaches utilized for predicting penetration across the barrier:

dCNa
dt

= QNa

(
Ca −

BP ∗ CNa
kpna

)
− Pnasal ∗ A∗

(
CNa
KpNa

− Cnasal_epi ∗ fnasal

)
(4)

dCnasal_epi

dt
= Pnasal Asur f

(
CNa

Kp,Na
− Cnasal_epi ∗ fnasal

)
(5)
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where Na refers to the nasal tissue compartment, Cnasal_epi the concentration in the nasal
epithelium, fnasal the fraction of compound bound to the tissue, Pnasal the permeability across
the barrier, and A the area across which compound diffusion can occur. Physiological
parameters used in the model were aggregated from a diversity of sources [65–67]. For the
purpose of these simulations, permeability was assumed to be 0.000101 cm/s for all of the
compounds studied, and the partition coefficient into the nasal tissue was assumed to be
equivalent to that of lung tissue, as reported in Table 2 [68–70].

4.3. Rapid Repurposing Workflow
4.3.1. Test Dataset

An internal database largest proprietary curated database consisting of structure-
related data for > 1 M compounds, >3700+ unique in vivo plasma concentration-time
validation datasets from public and proprietary sources (signed data sharing partnerships)
representing ~2000 unique compounds and 83 different subject populations (different
species, gender, strain, sub-strain).

The dataset was compiled through a combination of automated data scraping and
manual data curation, resulting in the development of over 41 coded/automated consis-
tency checks that detect outliers and corrupt data coming from either published literature
on FDA compounds or from ongoing data partnerships. This innovative data curation
approach was applied to CCB/ACE data curation, import and validation.

Screening through the internal database of compounds, comprising >2000 small
molecules PK parameters & in vivo datasets identified five compounds that targeted the
pathway-of-interest and had sufficient validation data available for confident & rapid
simulation of outcomes. To establish the combinatorial effect of ACEis/CCBs combinations
on COVID-19 infection, an accurate prediction of drug concentration at a site-of-action is
required. Figure 2 highlights the approach taken to identify the 5 drugs (3 ACEis, 2 CCBs)
that were candidates for the study as a result of the available in vivo clinical data and
preclinical PK parameters that were already established. to validate the ability to predict
plasma concentration accurately (as the standard metric for PK).

4.3.2. Statistics and Tools

The statistical methodologies utilized for the data analysis have been detailed in a
previous work [61]. Briefly, in vivo plasma concentration datasets and associated error bars,
when available, were manually digitized from source publications using “WebPlotDigitizer”
version 4.2.34. Model development and validation were done using the in-house platform
in Python with Cython integration; matplotlib (v2.0.2) and Numpy (v1.14.2) were auxiliary
packages used in simulation deployment and analysis. Model validation and analysis of
model goodness-of-fit/accuracy were conducted using three quantitative metrics: absolute
average fold error (AAFE), average fold-error (AFE), and chi-squared statistic (X2) with
associated p-value (null hypothesis defined as no difference in predicted vs. experimental
measurements). Sensitivity of the model was evaluated using convergence plots generated
during optimization of the parameters. Non-compartmental calculations were utilized
to compare the accuracy of the simulations to the experimental data; AAFE and AFE
were utilized to evaluate the accuracy of the PK outputs AUC0–t, Cmax, and tmax using the
general equations:

AFE = Average f old error = 10
1
n ∑n

i=1 log (
predictedi
observedi

)
(6)

AAFE = Absolute average f old error = 10
1
n ∑n

i=1 |log (
predictedi
observedi

)|
(7)
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where n is the total number of compounds used in the analysis and Predictedi/Observedi
correspond to predicted and observed values of PK parameters, respectively. χ2 was
calculated using the relationship:

χ2 =
1
n

n

∑
i=1

(
predictedi − observedi

observederror, i

)2
(8)

where observed error is the standard error/deviation in the measurements in the individual
experimental data timepoints, obtained by digitizing the error bars from the respective
publications. Optimization convergence was driven and measured by AAFE of AUC,
Cmax, and tmax. Statistical calculations of AFE, AAFE, and visual plot analysis were done in
GraphPad Prism version 8.4.1 (GraphPad Software, San Diego, CA, USA) and Microsoft
Excel (2016).

4.3.3. Subjects

Species-specific parameters used in the simulations were adapted from literature
sources and included parameters such as organ flow rates, composition, volumes, and pro-
tein levels for the physiological compartments in the BIOiSIM model [71–75]. Parameters
for the model of small molecule diffusion across the nasal tissue and epithelium were
obtained from a thorough literature review [65,66,76,77].

5. Conclusions

As cumulative datasets are collected, and the pathophysiology of COVID-19 in
healthy and diseased populations is understood, more customized prescriptions of specific
CCB/ACEi combinations can be derived by looking at susceptibility to drug–drug inter-
action and the associated variability in relevant gene expression levels between subjects.
The findings of the present study confirm the potential use of a combinatorial approach of
CCB and ACEi as therapeutic agents against COVID-19 infection due to their favorable
tissue distribution with sufficient level of accumulation in the gut, lung, and airway ep-
ithelium. These organs have been demonstrated to be sites of virus infection, residence,
and replication. Therefore, the combinatorial therapy using these drug classes can provide
therapeutic efficacy against COVD-19. Overall, these results evaluate a new paradigm
in using AI/ML-driven computational modeling for repurposing and accelerating the
drug development process for swiftly identifying and simulating drug disposition for com-
pounds that may be effective therapies for rapidly emerging, deadly clinical conditions.
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