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The CALM–AF10 fusion gene, which results from a t(10;11) translocation, is found

in a variety of hematopoietic malignancies. Certain HOXA cluster genes and

MEIS1 genes are upregulated in patients and mouse models that express CALM-

AF10. Wild-type clathrin assembly lymphoid myeloid leukemia protein (CALM)

primarily localizes in a diffuse pattern within the cytoplasm, whereas AF10

localizes in the nucleus; however, it is not clear where CALM-AF10 acts to induce

leukemia. To investigate the influence of localization on leukemogenesis

involving CALM-AF10, we determined the nuclear export signal (NES) within

CALM that is necessary and sufficient for cytoplasmic localization of CALM-AF10.

Mutations in the NES eliminated the capacity of CALM-AF10 to immortalize murine

bone-marrow cells in vitro and to promote development of acute myeloid leukemia

in mouse models. Furthermore, a fusion of AF10 with the minimal NES can

immortalize bone-marrow cells and induce leukemia in mice. These results suggest

that during leukemogenesis, CALM-AF10 plays its critical roles in the cytoplasm.

T he chromosome translocation t(10;11)(p13;q14), found in
T-cell acute lymphoblastic leukemia (T-ALL), acute mye-

loid leukemia (AML) and malignant lymphomas, results in the
fusion of the clathrin assembly lymphoid myeloid leukemia
protein (CALM) and AF10 (1,2). The CALM–AF10 fusion pro-
tein consists of almost all CALM and AF10 proteins, with the
exception of one or two plant homeodomain (PHD).(1,3) AF10,
also known as MLLT10, interacts with the transcription factor
Ikaros and H3K4me3 through its octapeptide motif–leucine
zipper (OM-LZ) region and PHD domains, respectively.(4–6) In
both mice and humans, CALM-AF10 upregulates certain
HOXA cluster genes (HOXA5, HOXA7, HOXA9 and HOXA10)
and MEIS1.(7,8) Hoxa5 upregulation, which is critical for
CALM-AF10-induced leukemogenesis,(9,10) is mediated by an
interaction between the AF10 OM-LZ region and the histone
methyltransferase DOT1L, resulting in H3K79 hypermethyla-
tion at the Hoxa5 locus.(9) These findings suggest that CALM-
AF10 might function in the nucleus.
The CALM protein shuttles between the cytoplasm and the

nucleus under the control of a CRM1-dependent nuclear export
signal (NES).(11) In contrast to AF10, which localizes in the
nucleus,(4) CALM-AF10 primarily localizes in the cyto-
plasm.(6,9) Other fusion partners of AF10 in acute myeloid and
lymphoid leukemias include MLL, DDX3 and HNRNPH1.(12,13)

MLL and hnRNPH1 primarily localize in the nucleus,(14,15)

whereas DDX3, like CALM, is mostly distributed throughout
the cytoplasm.(16,17) These observations prompted us to investi-
gate whether CALM-AF10 exerts its function in the nucleus or
the cytoplasm. We found that mutant CALM-AF10 lacking the
NES localized in the nucleus and lost its ability to induce leuke-
mia in mice. Conversely, a fusion consisting of the minimal
NES and AF10 localized in the cytoplasm and induced leuke-
mia. These results indicate that the cytoplasmic location of
CALM-AF10 is critical for its role in leukemogenesis.

Materials and Methods

Generation of CALM-AF10 mutant constructs. Plasmid encod-
ing pcDNA3b-FLAG-CALM-AF10 was a gift from Y. Zhang
(Department of Biochemistry and Biophysics, University of
North Carolina).(9) Plasmid encoding the NES-deficient mutant
FLAG-CALMNES4A-AF10 and FLAG-CALMNES4A were gener-
ated by introducing four point mutations into the CALM NES
sequence by inverse PCR using a site-specific mutagenesis kit
(Toyobo, Osaka, Japan).(18) Specifically, leucine (L)-544, L-547,
L-551 and isoleucine (I)-553 in the putative NES sequence
within CALM-AF10 were replaced by alanine (A), using
the following primers: L544A, 5′-GCAGCCAACCTTGTGG
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GCAATCTTGGC-3′, and 5′-AGATGAATCCAAGTCATCAGA
TACT-3′; L547A, 5′-GCTGTGGGCAATCTTGGCATCGGAA
AT-3′, and 5-′GTTGGCTGCAGATGAATCCAAGTCA-3′; L551A,
5′-GCTGGCATCGGAAATGGAACCACTAAG-3′, and 5′-ATT
GCCCACAGCGTTGGCTGCAGAT-3′; I553A, 5′-GCCGGAAA
TGGAACCACTAAGAATGAT-3′, and 5′-GCCAGCATTGCCC
ACAGCGTTGGCT-3′. All mutations were confirmed by DNA
sequencing. The AF10 sequence encoding amino acids 81–1027
(mAF10) was amplified by PCR and cloned into pcDNA3b-
FLAG. To generate the fusion of the minimal NES with AF10,
NES1 (amino acids 543–554) or NES2 (amino acids 539–558)
within CALM was generated by PCR amplification using
FLAG-CALM-AF10 as a template, and then cloned into
pcDNA3b-FLAG-mAF10. The pMY-IG-FLAG-CALM-AF10-
IRES-GFP, pMY-IG-FLAG-CALMNES4A-AF10-IRES-GFP,
pMY-IG-FLAG-mAF10-IRES-GFP and pMY-IG-FLAG-NES2-
AF10-IRES-GFP constructs were generated by inserting the
corresponding cDNA into the pMY-IG ⁄ IRES-GFP vector.

Cell culture and transfection. COS-7 cells were maintained in
DMEM supplemented with 10% FBS, 100 U ⁄mL penicillin,
100 lg ⁄mL streptomycin and 2 mM L-glutamine at 37°C in a
humidified 5% CO2 incubator. COS-7 cells were transfected
with pcDNA3b-FLAG constructs using the Effectene Transfec-
tion Reagent (Qiagen, Hilden, Germany).

Immunofluorescence analysis. Forty-eight hours after transfec-
tion, COS-7 cells transfected with pcDNA3b-FLAG constructs
were fixed with 3.7% formaldehyde in PBS and examined by
immunofluorescence staining with anti-FLAG M2 monoclonal
antibody (Sigma-Aldrich, St. Louis, MO, USA), followed by
secondary Alexa Fluor 488-conjugated goat anti-mouse IgG
(Invitrogen, Carlsbad, CA, USA). Stained cells were mounted in
VECTASHIELD mounting medium and observed using a BX50
fluorescence microscope (Olympus, Tokyo, Japan). Cytospins of
murine bone-marrow cells transduced with pMY-IG ⁄ IRES-
GFP viral constructs encoding FLAG-CALM-AF10, FLAG-
CALMNES4A-AF10, FLAG-NES2-AF10 or FLAG-mAF10 were
fixed with 4% paraformaldehyde and stained with anti-FLAG
M2 monoclonal antibody (Sigma-Aldrich) and anti-KMT4 ⁄
DOT1L polyclonal rabbit antibody (Abcam, Cambridge, MA,
USA), followed by secondary Alexa Fluor 568-conjugated goat
anti-mouse IgG (Invitrogen) and Alexa Fluor 488-conjugated
goat anti-rabbit IgG (Invitrogen), respectively. Stained bone-
marrow cells were mounted in VECTASHIELD mounting med-
ium with DAPI (Vector Laboratories, Burlingame, CA, USA) or
Prolong Gold (Invitrogen) and observed under a BZ-9000
fluorescence microscope (Keyence Corporation, Osaka, Japan)
or a FluoView FV10i confocal laser scanning microscopy
(Olympus).

Retroviral infection and bone-marrow transplantation. C57BL
⁄6J mice were purchased from CLEA Japan (Tokyo, Japan). All
mouse experiments were approved by the National Cancer Cen-
ter Animal Ethics Committee and performed in accordance with
the institutional guidelines. The pMY-IG ⁄ IRES-GFP constructs
encoding FLAG-CALM-AF10, FLAG-CALMNES4A-AF10,
FLAG-NES2-AF10 or FLAG-mAF10 were transfected into
PLAT-E cells using the GeneJuice transfection reagent
(Novagen, Nottingham, UK), and retrovirus supernatants were
collected 48 h after transfection. c-kit+ cells (1 9 105 cells),
selected from murine total bone-marrow cells using CD117
MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany),
were incubated with the retrovirus and RetroNectin (Takara Bio,
Madison, WI, USA) for 24 h in StemPro-34 SFM medium
(Invitrogen) containing cytokines (20 ng ⁄mL SCF, 10 ng ⁄mL
IL-6 and 10 ng ⁄mL IL-3). The transduced donor bone-marrow

cells were then transplanted into lethally irradiated (9.5 Gy)
7–8-week-old female C57BL ⁄6J recipient mice by intravenous
injection. For secondary transplants, bone-marrow cells from
the primary leukemia mice were intravenously injected into sub-
lethally irradiated (6 Gy) female C57BL ⁄6J mice.

Serial-replating assay. Bone-marrow cells transduced with
pMY-IG ⁄ IRES-GFP constructs encoding FLAG-CALM-AF10,
FLAG-CALMNES4A-AF10, FLAG-NES2-AF10 or FLAG-
mAF10 were cultured for 3 days in methylcellulose medium
(MethoCult M3234; StemCell Technologies, Vancouver,
Canada) supplemented with murine SCF, IL-3 and GM-CSF.
The GFP+ cells in methylcellulose medium were then sorted
using a JSAN cell sorter (Bay Bioscience, Kobe, Japan) and
replated every 3–4 days in methylcellulose medium; colonies
and cells were counted at each passage. Cells from the second-
round and fifth-round colonies were harvested and analyzed by
real-time PCR (RT-PCR).

Real time-PCR analysis. Total RNA from replating colonies
was purified using an RNeasy Mini Kit (Qiagen). Purified RNA
were reverse-transcribed into cDNA using the High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, Foster
City, CA, USA). Real-time PCR was performed using the 7500
Fast Real-time PCR System (Applied Biosystems) using the
FastStart Universal Probe Master with ROX (Roche, Basel,
Switzerland) and the following TaqMan probes (Applied Biosys-
tems): Hoxa5 (Mm04213381_s1), Hoxa7 (Mm00657963_m1),
Hoxa9 (Mm00439364_m1), Hoxa10 (Mm00433966_m1) and
Meis1 (Mm00487664_m1). The relative expression levels of
these genes were normalized against the level of Actb
(Mm00607939_s1).

Flow-cytometry analysis. Bone-marrow cells from leukemic
mice were pre-incubated with rat IgG (Sigma-Aldrich), and
then incubated on ice with the appropriate staining reagents:
anti-CD115(CSF1R)-PE (eBioscience, San Diego, CA, USA),
anti-Mac-1(M1 ⁄70)-PE-Cy7 (eBioscience), anti-Gr-1(RB6-
8C5)-APC (BD Pharmingen, San Diego, CA, USA) and anti-
c-Kit(2B8)-APC-eF780 (eBioscience). FACS analysis and cell
sorting were performed using the JSAN cell sorter and the
results were analyzed using the FLOWJO software (Tree Star,
Standford, CA, USA).

Results

The nuclear export signal within CALM is required for cytoplas-

mic localization of CALM-AF10. To investigate the role of subcel-
lular localization of CALM-AF10 in leukemogenesis, we
focused on the NES within the CALM portion of the fusion
protein (amino acids 543–554 of CALM).(9) We generated NES-
deficient mutants CALMNES4A-AF10 and CALMNES4A, in which
leucine-544, leucine-547, leucine-551 and isoleucine-553 in the
putative NES region within CALM were substituted with ala-
nines (NES4A) (Fig. 1a). Expression vectors for FLAG-tagged
CALM-AF10, CALM, CALMNES4A-AF10, CALMNES4A and
mAF10 (the AF10 portion of CALM-AF10) were transiently
transfected into COS-7 cells. Immunofluorescence analysis
revealed that CALM and CALM-AF10 primarily localized in the
cytoplasm, whereas mAF10 and the NES mutants CALMNES4A-
AF10 and CALMNES4A localized in the nucleus (Fig. 1b,c).
To determine the minimal NES, two sequences, NES1 (aa.

543–554) and NES2 (aa. 539–558), were fused to AF10
(Fig. 1a,b). As with mAF10, NES1-AF10 was in the nucleus;
by contrast, NES2-AF10 was in the cytoplasm (Fig. 1d). The
same results were obtained when these fusion proteins were
transduced into murine hematopoietic progenitor cells by retro-
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. The NES region within clathrin assembly lymphoid myeloid leukemia protein (CALM) is necessary for cytoplasmic localization. (a) Sche-
matic representations of CALM, AF10, CALM-AF10 and mutant proteins. FLAG-CALMNES4A-AF10 and FLAG-CALMNES4A were generated by alanine
substitution of three leucine residues and one isoleucine residue in the putative CALM NES (red). FLAG-NES1-AF10 and FLAG-NES2-AF10 mutants
were constructed by fusion of the NES sequences of CALM to the AF10 portion of CALM-AF10. (b) Diagrams of the plasmid constructs used
in transfection experiments. (c) Subcellular distribution of CALM-AF10 and the NES point mutations FLAG-CALM-AF10, FLAG-CALM, FLAG-
CALMNES4A-AF10, FLAG-CALMNES4A, and FLAG-NES1-AF10, FLAG-NES2-AF10 and FLAG-mAF10 in COS-7 cells. Transfected cells were stained with
anti-FLAG antibody (green) and observed by fluorescence microscopy. (d) Population of cells expressing transduced genes in the nucleus and
cytoplasm shown in (c). (e) Subcellular distribution of CALM-AF10 and NES mutation proteins in murine bone-marrow cells. Transduced cells were
stained with anti-FLAG antibody (red). (f) Population of cells expressing transduced genes in the nucleus and the cytoplasm shown in (e). Nuclei
were stained with DAPI (blue) and observed by fluorescence microscopy. The scale bar represents 20 lm in (c) and 10 lm in (e). ANTH, AP180
N-terminal homology domain binding phosphatidylinositol 4,5-bisphosphate (PIP2); DIF and DPF, motifs interacts with AP-2; NPF, a motif inter-
acts with the EH (Eps15 homology) domain; CBS-I and -II, putative type I and II clathrin-binding sequences; NES, nuclear export signal; PHD Type1
and 2, plant homeodomain zinc finger domains; NLS, nuclear localization signal; AT-hook, DNA-binding protein motif; OMLZ, octapeptide
motif-leucine zipper domain; Q-rich, glutamine-rich region.
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(a)

(b)

Fig. 2. The nuclear export signal within clathrin assembly lymphoid myeloid leukemia protein (CALM) is critical for in vitro immortalization of
cells by CALM-AF10. (a) Serial colony-replating assays of murine bone-marrow cells transduced with FLAG-tagged wild-type and mutant CALM-
AF10. In each round of replating, 3 9 104 transduced bone-marrow cells were plated. Bars represent the numbers of colonies. (b) Hoxa cluster
and Meis1 expression in cells transduced with wild-type or mutant CALM-AF10. RNA transcripts were analyzed by real-time PCR of murine bone-
marrow cells transduced with wild-type and mutant CALM-AF10 in vitro. Expression levels of Hoxa5, Hoxa7, Hoxa9, Hoxa10 and Meis1 were
normalized against Actb expression and compared with the levels in vector-transfected whole bone-marrow cells. Data are shown as
means � SEM from three independent samples. *P < 0.05; **P < 0.01. (vs normal bone-marrow cells). CA WT, wild-type CALM-AF10.

© 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd
on behalf of Japanese Cancer Association.

Cancer Sci | March 2014 | vol. 105 | no. 3 | 318

Original Article
Role of NES in CALM-AF10 leukemia www.wileyonlinelibrary.com/journal/cas



viral infection (Fig. 1e). These results indicate that NES1 is
not sufficient, but its flanking regions including leucine-540
are necessary for cytoplasmic localization of CALM-AF10.
Thus, we concluded that the NES2 region is the minimal NES
that mediates cytoplasmic localization of CALM-AF10.

The nuclear export signal within CALM is necessary for CALM-

AF10-induced immortalization of cells in vitro. We next investi-
gated whether the NES within CALM-AF10 is required for
leukemogenesis. To this end, primary murine bone-marrow
stem ⁄progenitor cells (HSPC) were infected with retrovirus
encoding CALM-AF10, CALMNES4A-AF10, NES2-AF10 and
mAF10. Serial-replating assays revealed that both CALM-
AF10 and NES2-AF10 immortalized HSPC, and that the cells
formed colonies for at least five rounds of replating (Fig. 2a).
By contrast, neither mAF10 nor CALMNES4A-AF10, which
lacks a functional CALM NES, could immortalize cells. Trans-
duced cells with elevated colony-forming abilities also exhib-

ited upregulation of the Hoxa cluster (Hoxa5, Hoxa7, Hoxa9
and Hoxa10) and Meis1 genes (Fig. 2b)(7,9). These results indi-
cated that the CALM NES is necessary for CALM-AF10 to
immortalize hematopoietic stem ⁄ progenitor cells.

The nuclear export signal within CALM-AF10 is necessary to

induce leukemia in vivo. To determine whether CALM-AF10
and NES2-AF10 can induce leukemia in mice, we injected
bone-marrow progenitor cells transduced with CALM-AF10
and NES2-AF10 into lethally irradiated mice. Seven out of
eight mice transplanted with cells expressing CALM-AF10
developed leukemia within 6 months after transplantation
(Fig. 3a), and all mice transplanted with cells expressing
NES2-AF10 developed leukemia within 3 months after trans-
plantation. When cells prepared from bone marrow of these
leukemic mice were transplanted into secondary recipient
mice, all recipients promptly developed leukemia (medians:
CALM-AF10 donors, 21 days [n = 4]; NES2-AF10 donors,

(a)

(b) (c)

Fig. 3. The nuclear export signal within clathrin assembly lymphoid myeloid leukemia protein (CALM) is sufficient for leukemic transformation
by CALM-AF10. (a) Survival of mice injected with murine bone-marrow cells transduced with FLAG-CALM-AF10 or FLAG-NES2-AF10. The
leukemia-free survivals of the mice were analyzed. CALM-AF10 primary transplantation, n = 8; CALM-AF10 secondary transplantation, n = 4;
NES2-AF10 primary transplantation, n = 4; NES2-AF10 secondary transplantation, n = 9. (b) Peripheral blood smears and bone-marrow cytospins
were stained with May-Giemsa from CALM-AF10-transduced or NES2-AF10-transduced bone-marrow cells. Original magnification is 4009.
(c) Population of blasts and segmented neutrophils in bone-marrow cells shown in (b). The scale bars represent 20 lm.
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25 days [n = 9]). Morphological analysis revealed large
populations of blast cells in leukemic mice receiving cells
transduced with either CALM-AF10 or NES2-AF10 (Fig. 3b,
c). Flow cytometry analysis showed that cells expressing
CALM-AF10 and NES2-AF10 in the bone marrow cells of pri-
mary recipient mice were Mac1+, CSF1R+ and c-kit+ (Fig. 4a).

Moreover, as shown in Figure 4b, Hoxa5, Hoxa7, Hoxa9,
Hoxa10 and Meis1 expression levels were upregulated in cells
expressing CALM-AF10 and NES2-AF10 compared with nor-
mal bone marrow cells, although upregulation of Hoxa5 and
Meis1 in primary recipient mice harboring NES2-AF10 was
not significant (P = 0.084 and P = 0.093, respectively). These

C
S
F1
R

C
S
F1
R

(a)

(b)

Fig. 4. Characterization of leukemic cells in vivo. (a) Flow cytometric analysis of leukemic cells. Murine bone-marrow cells were prepared from
mice that developed leukemia after receiving transplantation of tumor cells transduced with CALM-AF10 or NES2-AF10, and were co-stained for
Gr-1, Mac-1, colony stimulating factor 1 receptor (CSF1R) and c-kit; data are representative of CALM-AF10 primary transplantation (n = 3) and
NES2-AF10 primary transplantation (n = 3). (b) Hoxa cluster and Meis1 expression in mice receiving cells transduced with wild-type and mutant
CALM-AF10. RNA transcripts were analyzed by real-time PCR of bone-marrow cells in mice that developed leukemia after CALM-AF10 and NES2-
AF10 bone-marrow transplantation. Expression levels of Hoxa5, Hoxa7, Hoxa9, Hoxa10 and Meis1 were normalized against Actb and compared
with wild-type whole bone marrow. Data are shown as means � SEM from three independent leukemic mice. *P < 0.05; **P < 0.01 (vs normal
bone-marrow cells).
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(a)

(b)

(c)

Fig. 5. Dot1L mainly localize in the nucleus in CALM-AF10-induced or NES2-AF10-induced leukemic cells. (a) Subcellular distribution of endoge-
nous Dot1L in CALM-AF10-induced or NES2-AF10-induced leukemic cells. Cytospins of the cells were stained with anti-FLAG antibody (red), anti-
DOT1L antibody (green) and DAPI (blue) and observed by confocal laser scanning microscopy. Note that GFP expression was not detected in the
condition. (b) Subcellular distribution of endogenous Dot1L in the control vector-infected murine using fluorescence microscopy. (c) Population
of leukemia cells expressing DOT1L and CALM-AF10 or FLAG-NES2-AF10 in the nucleus and the cytoplasm shown in (a) and (b). The scale bar rep-
resents 5 lm in (a) and 10 lm in (b).
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data demonstrate that the NES within CALM-AF10 is a criti-
cal element for induction of leukemia.
It has been reported that CALM-AF10 interacts with the histone

methyltransferase DOT1L to mediate H3K79 hypermethylation at
the Hoxa5 locus.(9) To determine whether Dot1L colocalizes
with CALM-AF10 and NES2-AF10 in the leukemia cells, we
performed immunofluorescence analysis. Dot1L mainly localized
in the nucleus while CALM-AF10 and NES2-AF10 mainly
localized in the cytoplasm (Fig. 5a,b). Dot1L partially colocalized
with both CALM-AF10 and NES2-AF10, but neither CALM-
AF10 nor NES2-AF10 altered the localization of Dot1L (Fig. 5a).

Discussion

AF10 and CALM localize diffusely in the nucleus and cyto-
plasm, respectively, whereas CALM-AF10 primarily localizes
in cytoplasmic speckle domains (see Fig. 1c,d). The fact that
CALM-AF10 regulates histone methylation at the Hoxa5 locus
suggests that CALM-AF10 is likely to function in the
nucleus.(9) However, the results described here indicate that
the CALM NES is essential for CALM-AF10-induced leuke-
mogenesis, suggesting that cytoplasmic localization (or shut-
tling between nucleus and cytoplasm) is critical for the
function of CALM-AF10. During the preparation of the manu-
script, another group reported similar findings,(19) indicating
that the results are reproducible and the conclusions can be
validated using alternative experimental systems.
The molecular mechanism by which CALM-AF10 exerts its

function in the cytoplasm remains unclear, but two possibilities
are consistent with the existing data: CALM-AF10 may affect
cytoplasmic signaling pathways that regulate expression of its
target genes, including HoxA cluster genes; alternatively,
CALM-AF10 may affect the functions of transcriptional regula-
tors by changing their localization from the nucleus to the cyto-
plasm. DOT1L, a candidate mediator of CALM-AF10-induced
leukemia, interacts with AF10 and induces H3K79 hypermethy-
lation at Hoxa5.(9) However, our present data suggest that
CALM-AF10 and NES2-AF10 did not affect the localization of
Dot1L (see Fig. 5a). It is possible that CALM-AF10 squelches
DOT1L inhibitors by exporting them to the cytoplasm.
CALM plays an important role in clathrin-mediated endocy-

tosis.(17,20,21) It and other endocytosis-related genes, such as

EPS15, EEN, CLTC and HIP1, are involved in multiple types of
leukemia-associated chromosomal translocations (e.g. MLL-
CALM, MLL-EPS15, MLL-EEN, CLTC-ALK and HIP1-
PDGFBR),(22–26) suggesting that these leukemia-associated
fusions might affect endocytosis in a manner that contributes to
leukemogenesis. However, recent reports have shown that the
clathrin-binding domain of CALM is not essential for CALM-
AF10-mediated leukemogenesis.(27,28) Here, we show that
nuclear export of CAL-AF10 is critical for the leukemogenesis.
Because the endocytosis-related proteins mentioned above are
also exported from the nucleus to the cytoplasm, as in the case
of CALM,(11,23,29) it is possible that changes in the localization
of fusions involving endocytosis-related proteins have some
shared consequence that is important for leukemogenesis.
Molecular exchange between the nucleus and cytoplasm

takes place through nuclear pore complexes (NPC). Fusion
proteins containing NUP98 and NUP214, which are compo-
nents of the NPC, have been found in AML and T-ALL;(30,31)

as in cells expressing CALM-AF10, a set of Hoxa and Meis1
genes are upregulated in leukemia cells expressing these
NUP98 fusions and NUP214 fusions.(32,33) In addition, the
NPC-component fusions interact with CRM1, the major recep-
tor for the nuclear export of protein.(33,34) These observations
suggest that alteration of the localization of certain factors by
NUP98 fusions and NUP214 fusions might be important for
leukemogenesis, and that a common mechanism may underlie
leukemias induced by CALM and NUP fusions.
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