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Deep learning boosts sensitivity of mass
spectrometry-based immunopeptidomics
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Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry
(MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the
identification of non-tryptic peptides presents substantial computational challenges. To
address these, we synthesized and analyzed >300,000 peptides by multi-modal LC-MS/MS
within the ProteomeTools project representing HLA class | & Il ligands and products of the
proteases AspN and LysN. The resulting data enabled training of a single model using the deep
learning framework Prosit, allowing the accurate prediction of fragment ion spectra for tryptic
and non-tryptic peptides. Applying Prosit demonstrates that the identification of HLA peptides
can be improved up to 7-fold, that 87% of the proposed proteasomally spliced HLA peptides
may be incorrect and that dozens of additional immunogenic neo-epitopes can be identified
from patient tumors in published data. Together, the provided peptides, spectra and com-
putational tools substantially expand the analytical depth of immunopeptidomics workflows.
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dentifying neo-epitopes in the leukocyte antigen (HLA)

ligandome of cancer patients has become a major source for

potential therapeutic intervention!2. Direct evidence for the
presentation of disease- or patient-specific HLA antigens on
tumor cells can only be obtained by measuring HLA-bound
ligands. Mass spectrometry (LC-MS/MS) is the primary method
for this purpose®*. However, compared to the analysis of (mostly)
tryptic peptides in proteomics, the analysis of HLA peptides poses
substantial challenges. These arise from the fact that HLA pep-
tides are generated by unspecific protease cleavage. This not only
alters the characteristics of the tandem mass spectra (i.e., the type
and intensity of the fragment ions observed), but also vastly
increases the number of sequences a search engine has to consider
as a possible match to a particular MS/MS spectrum?®. As a result,
commonly used search engines do not comprehensively and
confidently identify non-tryptic peptides and many naturally
occurring HLA peptides may, therefore, be missed, diminishing
the chances of discovering therapeutically relevant antigens®. At
least in part, this is because search engine scoring schemes are
biased toward tryptic peptides and do not make use of the
intensities of fragment ions. We and others have recently shown
that including intensity-based matching scores can substantially
increase the number of confidently identified tryptic peptides’~>
but none of the currently available predictors have been trained
on (non-tryptic) HLA peptides. Here we show, that expanding
our deep learning framework Prosit’ to the interpretation of non-
tryptic peptides also greatly improves the identification of HLA
peptides and neo-epitopes and we demonstrate that proteasomal
splicing of peptides is much rarer than anticipated.

Results
Extension of the ProteomeTools libraries of synthetic peptides
and mass spectra to non-tryptic peptides. The number of the-
oretically possible HLA bound (neo)-antigens is orders of mag-
nitude larger than generated by common proteomic workflows
using e.g., trypsin®. Therefore, no collection of empirically
observed HLA peptides and their LC-MS/MS spectra can (likely)
ever be complete. Essentially, this precludes the use of such
resources for comprehensive HLA peptide identification in any
particular sample. Instead, we reasoned that generating high-
quality LC-MS/MS data for a representative set of synthetic
peptides with precisely known sequences may form the basis for
the computational prediction of spectra and chromatographic
retention times for any peptide. Within the ProteomeTools
project!®, we synthesized ~305,000 non-tryptic peptides com-
prising ~169,000 HLA class I, ~73,000 HLA class II, ~32,000
AspN, and ~31,000 LysN sequences and measured all of these
using 11 different LC-MS/MS parameters (Fig. la, median
synthesis/detection success 88%; Supplementary Fig. Sla-c and
Supplementary Data 1). The HLA sequences were selected from
published HLA ligandomes!!-13 (Fig. 1b) and AspN/LysN pep-
tides were drawn from a large unpublished study (kindly pro-
vided by Josh Coon, Univ. of Wisconsin). Together with
previously published tryptic peptides and MS data, the Proteo-
meTools resource now contains ~100 million high-quality tan-
dem mass spectra (Andromeda score >100) from 1.6 million
unique peptide precursors (combination of sequence, charge
state, and modifications), covering nearly all possible N-and C-
terminal amino acid combinations with the exception of peptides
comprising of cysteine residues at the N- and C-terminus which
are underrepresented in all sampled resources (Fig. 1c).
Non-tryptic peptides often exhibit LC-MS/MS characteristics
very distinct from tryptic peptides, both in terms of chromato-
graphy (Supplementary Fig. S1d) and peptide fragmentation. For
instance, strong internal ion series and neutral losses are often

observed and the localization of basic amino acid residues within
the peptide sequence often directs fragmentation in an (at first
sight) unpredictable way. An extreme case is shown in Fig. 1d,
where the assignment of the experimental spectrum (upper panel)
to the peptide sequence TSGYGQSSYSSY (gene FUS) may raise
concerns even for a trained eye. However, the spectra collected
from a tumor-derived HLA preparation!! or from the synthetic
peptide agree extremely well (spectral contrast angle, SA =0.9),
validating their identity.

Due to the differences in fragmentation characteristics of
tryptic and non-tryptic peptides, there is an ongoing debate how
to best acquire LC-MS/MS data for HLA peptides!4. The data
presented here is well suited for addressing this question because
every synthetic peptide was fragmented by up to 11 different LC-
MS/MS parameters (including 6 different collision energy settings
for HCD), resulting in ~24 million high-quality reference spectra
(Andromeda score >100; Fig. le, Supplementary Fig. S2a).
Overall, CID and HCD fragmentation with Orbitrap or ion trap
detection achieved the highest scores and score distributions
resemble those of tryptic peptides (Supplementary Fig. S2b). Not
surprisingly, ETD and combined scan modes generally did not
work well particularly for the short and mostly doubly charged
HLA Class I peptides. In contrast, HLA class II, AspN and LysN
peptides with higher charges also resulted in high scoring ETD
spectra. Compared to data of endogenous peptides from a large
publication!!, especially synthetic HLA class II peptides showed
higher Andromeda scores (Supplementary Fig. S2c). The use of
ion trap detection (IT) showed no linear correlation between
identification scores and fragment ion intensity (R=0.02). In
contrast, Orbitrap detection required stronger signals to achieve
high scores (R=0.33, Supplementary Fig. S2d). One might,
therefore, argue that IT detection is better suited for the analysis
of low abundance peptides as often encountered in clinical
samples. However, direct comparisons of different fragmentation
modes (Supplementary Fig. S3 for HLA Class I peptides,
Supplementary Fig. S4 for a global analysis and other sets)
corroborated previous notions that combining several types of
fragmentation and mass analyzers in a single analysis can offer
advantages!® as no single fragmentation mode and mass analyzer
combination alone was superior in the majority of cases.

While public resources such as SysteMHC!3 also contain
datasets employing a range of fragmentation settings (Supple-
mentary Fig. S5a), there are substantial differences across the
datasets collected nominally using the same normalized collision
energies (NCE; instrument to instrument variation) and chro-
matographic retention times (differences between stationary
phases and gradients; Supplementary Fig. S5b-d, Supplementary
Data 2 and Supplementary Notes). These inconsistencies impair
the use of published data for e.g., spectral library searching or
machine learning which is why all following work is solely based
on data acquired in the ProteomeTools project.

A single Prosit model allows accurate prediction of tryptic and
non-tryptic peptide MS/MS spectra. Combining the 9 million
HCD spectra of non-tryptic peptides collected in this study with
the 21 million previously published tryptic peptide spectra’>10
enabled the training (70% of all spectra), testing (20%), and
validation (10%, referred to as holdout set) of a single high-
performant Prosit model for both types of peptides (Fig. 2a,
Supplementary Fig. S6a, “Methods”). Comparison of the pre-
viously published (HCD Prosit 2019) and the here developed
(HCD Prosit 2020) Prosit models showed a substantially improved
normalized spectral contrast angle (SA, Supplementary Fig. S6b)
between predicted and experimental spectra for non-tryptic pep-
tides (SA>=0.9 for 18% vs 43% of spectra, respectively) and a
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Fig. 1 ProteomeTools' non-tryptic peptide extension. a The ProteomeTools resource was extended in this study by ~305 k non-tryptic synthetic peptides
consisting of ~169 k HLA class |, ~73 k HLA class Il, ~32 k AspN and 31k LysN peptides. All peptides were systematically characterized by multimodal LC-
MS/MS. All data were subsequently used for training the 2020 Prosit fragment intensity prediction model. b Proportional Venn diagrams of HLA class |
(top) and HLA class Il (bottom) peptides in ProteomeTools (blue), SysteMHC Atlas (light red), IEDB (gray), and B.-Sternberg et al.I. (white). ¢ Number of
peptides (log10 color scale, white to dark blue) synthesized for the ProteomeTools resource sorted by N- (y-axis) and C-terminal (x-axis) amino acid
without (top) and with (bottom) the extension of non-tryptic peptides from this study. d Mirror spectrum of the singly charged non-tryptic peptide
TSGYGQSSYSSY acquired by B.-Sternberg and Bréaunlein et al.” (endogenous peptide, top) and ProteomeTools (synthetic peptide, bottom). Fragment ion
peaks with and without neutral losses are annotated in blue, red, green, and orange for b-, y-, a- and internal fragment ions, respectively. The spectral
similarity measured by the normalized spectral contrast angle between the two spectra and the Andromeda matching score of the top spectrum are shown
in the top. e Boxplots of Andromeda scores for the best MS/MS identification per precursor for HLA class | (dark blue), HLA class Il (light blue), AspN
(yellow), and LysN (red) peptides for different fragmentation settings (HCD, CID, ETD, EThcD, ETciD) and mass analyzers (FTMS: Orbitrap mass analyzer,
ITMS: ion trap mass analyzer). The number of spectra (n) and median Andromeda score (median) are depicted at the top and bottom of the boxplot. The
box indicates the interquartile range (IQR). The black line marks the median, notches extend to 1.58 * IQR/sgrt(n), no whiskers or outliers outside IQR
shown. Raw and analysis data are available from the PRIDE repository with identifier PXD021013.

slight improvement for tryptic peptides (SA>=0.9 for 46% vs
50%; Fig. 2b). The 2020 model performed drastically better for
singly charged peptides (median SA of 0.89 vs 0.56; Fig. 2c) and
also improved prediction accuracy for higher charged peptides
(Supplementary Fig. S7a), across different C-terminal amino acids
(Supplementary Fig. S7b, c) as well as peptides with internal or N-
terminal basic residues (Supplementary Fig. S7d, e). The 2020
model also performed well across the different peptide sets, pre-
cursor charges, and the wide range of collision energies used for
training (Supplementary Fig. S8a—c) and showed little bias for C-
terminal amino acids (Supplementary Fig. S8d) and combinations
of peptide N- and C-termini (Supplementary Fig. S9). This
demonstrates that the 2020 Prosit model is well suited for the

analysis of both tryptic and non-tryptic peptides. A representative
example is shown in Fig. 2d (YPYPVSNSV; [M+ H]*; gene
ATXN2L). It is apparent that the experimental and predicted
fragment ion intensities of the annotated b- and y-ions are in very
good agreement (SA = 0.88). Perhaps surprisingly, no major bia-
ses were observed when comparing measured and predicted b-
and y- fragment jon intensities even for peptides that show
dominant internal or neutral loss ion series (Fig. 1d; Supple-
mentary Fig. S10 and Supplementary Notes).

Because CID fragmentation can be valuable for the analysis of
non-tryptic peptides (see above), and the fact that linear ion trap
instruments are widely used in the proteomic community, we also
trained a dedicated Prosit CID model using the CID ITMS
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Fig. 2 Deep learning framework Prosit for tryptic and non-tryptic peptide fragment intensity prediction. a The deep learning framework Prosit was
trained on data available prior to this study (tryptic peptides, top panel; tryptic extension, middle panel) and data on non-tryptic peptides (bottom panel)
generated in this study. b Beanplots comparing the prediction accuracy of the HCD Prosit 2020 model (red, this study) against the prediction accuracy of
the previously published HCD Prosit 2019 model (gray, tryptic only, Gessulat and Schmidt et al.”) for the four introduced peptides sets (HLA class |, HLA
class II, LysN, and AspN) and the previously published tryptic peptides. The number of underlying spectra (n) is indicated at the bottom. The black solid
line and corresponding numbers indicate the median spectral angle for each distribution. ¢ Beanplot comparing the prediction accuracy of the HCD Prosit
2020 model (red, this study) against the HCD Prosit 2019 model (gray, Gessulat and Schmidt et al.”) for singly charged peptides. The number of
underlying spectra is indicated at the bottom. The black solid line and corresponding numbers indicate the median spectral angle for each model. d Mirror
spectrum of the singly charged non-tryptic peptide YPYPVSNSV comparing the experimentally acquired HCD ProteomeTools spectrum (top panel, top
spectrum) to its predicted spectrum by the HCD Prosit 2020 model (top panel, bottom spectrum) and the experimentally acquired CID ProteomeTools
spectrum (bottom panel, top spectrum) to its predicted spectrum by the CID Prosit 2020 model (bottom panel, bottom spectrum). Fragment ions are
labeled in blue and red for b- and y-ions, respectively. Matching peaks (present in both spectra) are visualized in black, whereas peaks only present in the
top (experimental) spectra are colored in gray. Red and blue fractions of matching peaks indicate the normalized difference in intensity between the
experimental and predicted spectra. e Beanplots comparing the prediction accuracy of the CID Prosit 2020 model between the training (light blue) and
holdout (dark blue) set for the four introduced peptides sets (HLA class I, HLA class Il, LysN, and AspN) and previously published tryptic peptides. The
number of underlying spectra (n) is indicated at the bottom. The black solid line and corresponding numbers indicate the median spectral angle for each
distribution. Raw and analysis data are available from the PRIDE repository with identifiers PXD0O04732, PXD010595, and PXD021013.

dataset. Exemplified by the mirror plot shown in Fig. 2d (lower
panel; SA = 0.92) the CID model showed similar performance as
the HCD model for all types of peptides (Fig. 2e; Supplementary
Fig. S11). No adaptations to the Prosit indexed retention time
(iRT) 2019 model for the prediction of chromatographic
retention times were necessary. It, therefore, appears that Prosit
had already learned a generic representation of peptide hydro-
phobicity such that the old model could be directly applied to
non-tryptic peptides and leading to outstanding agreement
between measured and predicted iRT values (AiRT 95% = 4.68,
Pearson R >0.99, Supplementary Fig. S6b). To demonstrate the

practical utility and impact of the Prosit models developed here,
the following sections provide three pertinent use cases.

Prosit boosts the number of identified HLA peptides from
human cell lines. Akin to what was previously observed for
tryptic peptides, we hypothesized that the integration of fragment
ion intensity predictions into the database matching process
should lead to an improvement in the number of HLA peptide
identifications. To test this, we re-processed data from a recent
study that analyzed HLA class I peptides from 95 monoallelic cell
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Fig. 3 Deep learning-assisted rescoring of data from 92 monoallelic cell lines. a Vennbars (simplification of Venn diagram as depicted in the inset)
showing the number of peptides lost (red), shared (blue) and gained (green) from Prosit-based rescoring of MaxQuant results of data published by
Sarkizova and Klaeger et al.1® (using Spectrum Mill HLA v2) for each of the 92 monoallelic cell lines investigated in this study. b Peptide motif plot of 1846
9-mers confidently identified to be present in the cell line expressing allele C*12:03 from the published results (top panel) and 1369 9-mers added by the
Prosit-based rescoring of MaxQuant results (bottom). Amino acids are colored according to their physio-chemical properties (black denotes hydrophpbic,
red acidic, blue basic, purple neutral, and green polar amino acids). The difference between the motifs was estimated by Jensen-Shannon divergence
(indicated in the bottom motif) comparing the positional weight matrices of both motifs. € Vennbars showing the number of peptides lost (red bar), shared
(blue), and gained (green) when comparing results obtained from different workflows to results published by Sarkizova and Klaeger et al.’® (left of solid
vertical line). The bar to the right of the vertical line compares the number of lost, shared, and gained peptides when comparing the Prosit-based rescored
results of Spectrum Mill HLA v3 to the Prosit-based rescored results of MaxQuant. d Boxplots of the average emission probabilities (probability that a
peptide is derived from a certain motif, see “Methods") per allele of peptides shared (blue), gained (green) and lost (red) when comparing results obtained
from the workflows indicated at the bottom of the plot. The number of alleles (n) for which an average emission probability was calculated is depicted at
the bottom. Peptides lost (not confidently identified) by the rescored SM HLA v3 workflow in comparison to the SM HLA v3 workflow are shown
separately depending on whether the fragment intensities of the peptide could be predicted by Prosit (rescorable) or not (non-rescorable). The box
indicates the interquartile range (IQR). The black line marks the median, notches extend to 1.58 * IQR/sqgrt(n), whiskers to 1.5 * IQR from the hinge. Data
outside whiskers are plotted individually as black dots. Raw and analysis data are available from the PRIDE repository with identifier PXD021398 and
MassIVE repository with identifiers MSV000084172 and MSV000080527.

lines!® using MaxQuant and re-scored all proposed peptide
spectrum matches (PSMs) by integrating Prosit’s fragment
intensity predictions (“Methods”; Supplementary Data 3). Com-
paring the results to those obtained by Spectrum Mill (SM) HLA
v2 (Fig. 3a), a search engine that is optimized for the identifica-
tion of HLA peptides and that was used in the aforementioned
study, showed an average improvement by a factor of 1.5 (green
bars) across all alleles and only marginal losses (red bars). The
alleles A*31:01 (C-terminal arginine) and G*01:03 (internal

prolines and C-terminal leucine) exhibited the largest increase by
a factor of 2 whereas the allele A*11:01 (C-terminal lysine and
arginine) showed the least increase, further corroborating that
Prosit’s prediction accuracy is well suited for the analysis of both
tryptic and non-tryptic peptides. The observed improvement
could be solely attributed to rescoring MaxQuant results by
integrating intensity information of the fragment ions, as stan-
dalone MaxQuant showed substantially fewer peptide identifica-
tions (Supplementary Fig. S12a-e).
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This monoallelic dataset allowed us to investigate the allele-
specific prediction accuracy and extent of possible overfitting of
the 2020 Prosit models by mapping our holdout dataset to the
results obtained by Sarkizova and Klaeger et al.!®. The results
show that, on average, a spectral angle of 0.92 was achieved
without substantial bias for any allele (Supplementary Fig. S13a),
further supporting that the 2020 Prosit model can accurately
predict fragment intensities. To further validate the earlier
observation that the 2020 Prosit model was substantially
improved particularly for singly charged peptides, we rescored
the allele C*08:02 showing a high prevalence of singly charged
peptides using the 2019 and 2020 model. While the 2019 model
already led to a net improvement of ~300 peptides when
rescoring MaxQuant results, the 2020 model shows substantially
fewer losses (70 vs ~200 using the 2019 model) and led to a net
increase of ~850 peptides (Supplementary Fig. 13b).

In order to validate that peptides added by rescoring
MaxQuant results are likely true binders, we compared their
binding motifs to those from the original study. As an example,
the extracted 9mer peptide motifs of allele C*12:03 from the
original study (Fig. 3b top panel) and the peptides added by the
rescored MaxQuant results (Fig. 3b bottom panel) are almost
indistinguishable (Jensen-Shannon divergence of 0.04; “Meth-
o0ds”). No major differences were observed when investigating the
sequence motifs of all 8-11mers for any of the 92 alleles
suggesting that the rescoring workflow retains peptides that are
likely true HLA binders (Supplementary Data 4).

The original study reported the identification of ~131,000
unique peptides for the 92 alleles reprocessed here (Fig. 3c). Prosit
rescoring of MaxQuant retained ~116,000 of these peptides and
added nearly 50,000 further peptides (38%) resulting in a net
increase of ~35,000 peptides (27%). The loss of ~15,000 peptides
(11%) is attributed to the difference in data processing by
MaxQuant and SM HLA v2 since the majority of these were not
on the candidate list of MaxQuant and thus could not be rescored
by Prosit (Supplementary Fig. S13c).

In follow up to some of the above observations, the dataset was
re-processed by Spectrum Mill using further optimized HLA
scoring (referred to as SM HLA v3; Supplementary Notes) which
led to a net increase of ~33,000 peptides (25%) without major
losses when compared to SM HLA v2 (Fig. 3c). Next, the SM
HLA v3 results were rescored using Prosit which added further
23,000 peptides (17%) to the published results (combined net
total of 55,000 additional peptides). Comparing rescored
MaxQuant results to rescored SM HLA v3 results (Fig. 3c, last
bars) showed that, although SM HLA v3 rescoring outperformed
MaxQuant rescoring, the gains and losses are in the range of what
one might expect from using different search engines.

Peptides added by either SM HLA v3 or rescored SM HLA v3
again exhibited the expected peptide binding motif across all
alleles and peptide lengths (Supplementary Data 4). More
specifically, the motifs of gained peptides were much more
similar to those of the original set than the lost peptides (assessed
by the motif-dependent emission probability; Fig. 3d, left panel;
“Methods”; Supplementary Fig. S13f). This further corroborates
that Prosit rescoring retains more potential true binders while
rejecting more potential non-binders (false positives). Because the
current Prosit HLA model was not trained on peptides containing
free cysteine side chains or other amino acid modifications that
may be identified on HLA peptides, 3912 peptides were lost
because they could not be rescored (Fig. 3d, right panel). These
lost peptides show a similar emission probability distribution
compared to lost rescorable peptides (12,212 peptides). This does
not mean that these specific cases are necessarily false positives,
because neither motif generation nor emission probability
calculation take the modification status of peptides into account.

Therefore, other factors might be responsible for their apparently
reduced emission probabilities. Taken together, re-processing the
92 monoallelic cell lines using SM HLA v3 and subsequent Prosit
rescoring identified, on average, 58% more peptides per allele and
led to the identification of a total of ~186,000 peptides (42%),
attesting to the substantial gains that may be made in the analysis
of HLA peptides from cell lines when fragment ion intensities are
incorporated into the identification process.

Prosit rescoring questions the prevalence of proteasomal spli-
cing of peptides. The high prediction accuracy of Prosit provided
an opportunity to investigate the much debated prevalence of
HLA peptides that originate from splicing events during pro-
teolysis within the proteoasome!”~1°. We retrieved the identifi-
cation results (PSMs) from the seven HCD raw files?? from which
1230 spliced peptides (23.6% of all identified HLA ligands) were
identified in a prior analysis?! using Mascot and predicted their
spectra (8329 non-spliced and 1588 spliced PSMs) using Prosit.
When comparing the spectral angle distributions of the reported
non-spliced (canonical) peptides to spliced peptides (Fig. 4a), it is
apparent that most of the proposed spliced peptides have much
lower spectral similarity to the Prosit predictions compared to the
canonical peptides (SA = 0.72 vs SA = 0.87) and 23.3% vs 2.4% of
the PSMs have SA values lower than 0.5, respectively. The latter
in particular suggests that a large proportion of the proposed
spliced peptides may not be correct.

To investigate this further, the raw MS data were also re-
analyzed using MaxQuant and MSFragger and rescored by Prosit
(Fig. 4b) using a database consisting of canonical peptides only to
ask if the spectra assigned to spliced peptides may be better
explained by canonical sequences. To be able to compare the
results obtained from the three different search engines (original
Mascot, re-analyzed MaxQuant, and MSFragger), we rescored all
PSMs of each search engine separately, but trained a single
Percolator model?? using only the features calculated by the re-
scoring pipeline (Fig. 4b, red arrows). This allowed to reassess and
estimate the global FDR of the Mascot results of the original
study, as the original results were filtered by the Mascot ion score
only. More importantly, it also allowed the ranking of the best
PSM from each of the three search engines for every spectrum
(“Methods”; Supplementary Notes).

Comparing the results from the three different search engines
(Supplementary Fig. S14a) revealed that while spectra annotated
as spliced peptides showed very high agreement between
predicted and experimental fragment intensities, the same spectra
can also be confidently matched to canonical peptides found by
rescored MaxQuant and/or MSFragger results (Supplementary
Data 5-6). Figure 4c shows an example where the spliced peptide
proposed in the original study using Mascot (top panel,
splice position indicated by the pipe symbol) and the canonical
peptide proposed by rescored MaxQuant and rescored MSFragger
(bottom panel) only differ by the isobaric amino acid combina-
tion of GVA and NL in the 3 C-terminal amino acids
(Levenshtein distance of 3). The spectral angles between the
experimental and both predicted spectra are the same (SA = 0.95)
and the Percolator score difference between the proposed spliced
(Score=2.9) and canonical peptide (Score=2.5) is small. In
other words, there is essentially no information in the experi-
mental or predicted spectra to indicate that either sequence may
be the more confident match. Thus, we propose that the
canonical peptide should be the favorable hypothesis over a
proteasomal splicing event.

In total, the re-analysis indicates that 1067 of the 1,230 (87%)
proposed spliced peptides are not conclusively supported by the
mass spectrometry data (Fig. 4d). This is because either (i) they
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Fig. 4 Re-assessment of HLA peptides proposed to be generated by splicing. a Spectral angle distributions comparing HCD Prosit 2020 predicted
spectra against experimentally acquired spectra of non-spliced (gray) and proposed spliced (orange) peptides extracted from Liepe et al.2'. b Identification
results by Mascot from the original study were retrieved and rescored with Prosit. The raw MS data were also retrieved, re-searched by MaxQuant and
MSFragger and rescored using Prosit. A single Percolator model was trained for confidence estimation, based on the results obtained from the MaxQuant
analysis. This model was applied to the data from the rescored Mascot and rescored MSFragger results. € Two mirror plots of an experimental spectrum
(top spectrum in both) identified either as the proposed spliced peptide FAGDLVR|GVA (top mirror plot, pipe symbol indicates splicing position) or non-
spliced peptide alternative FAGDLVRNL (bottom mirror plot) plotted against the corresponding HCD Prosit 2020 predicted spectrum (bottom spectrum
each). The spliced and non-spliced peptide sequences differ in 3 amino acids (Levenshtein distance 3). The spectral angle (SA) compares the predicted b-
and y-ion intensities to the corresponding matching peaks in the experimental spectrum (excluding any observed but not matched peaks in the
experimental spectrum). Matching fragments are highlighted in black whereas peaks without match are shown in gray. Fragment ions which are exclusively
present in the predicted spectrum are marked with an asterisk (*). The blue and red fractions of the matched b- and y-ions (respectively) indicate the
normalized intensity difference of these fragments. The confidence score (Score) of the proposed match was estimated by the shared Percolator model
and is indicated at the top. d Barplots of different consecutive filtering steps of retained (blue) and rejected (red) proposed spliced peptides by various
quality control steps. Raw and analysis data are available from the PRIDE repository with identifiers PXD021398, PXD000394, and Mendeley with

identifier y2cvb5nvgn.1.

did not remain confident when using the Prosit-based rescoring
pipeline (rejecting 596 spliced peptides, 48%), or (ii) the spliced
and canonical peptides are I/L isomers (90 spliced peptides, 7%)
that cannot be distinguished by mass spectrometry or (iii) a more
confident canonical PSM was identified by MaxQuant and/or
MSFragger (315 spliced peptides, 26%), or (iv) the proposed
spliced peptide did not have a substantially better percolator score
supporting its identification over a canonical peptide (66 peptides,
5%; also see the example in Fig. 4c, Supplementary Fig. S14, and
Supplementary Notes). A similar analysis performed for the 3994
reported canonical peptides from the same study rejected just 179
(4%) peptides because they did not remain confident after
rescoring the Mascot results and another 296 peptides (7%)
because a more confident canonical PSMs was identified by
MaxQuant and/or MSFragger.

Together, the re-analysis of the data indicates that only 3%
(instead of the published 23%) of the HLA peptides in the original
study may represent genuine spliced peptides. However, there
may well be additional factors not investigated here which may
reduce the number of candidate spliced peptides further. For
example, as previously observed?3 the predicted and observed
retention time (RT) of the proposed spliced peptides differ
substantially from non-spliced peptides. We performed a similar
analysis using Prosit and the results show that the retained
proposed spliced peptides exhibit substantially larger than
expected RT deviations (Supplementary Fig. 14d). Re-analysis
of a database collecting proposed spliced peptide sequences for
community use!®, showed similar signs of inflated numbers of
proposed spliced peptides. Also here, spliced peptides showed
lower identification scores compared to non-spliced peptides
(Supplementary Fig. 14e).

Our findings agree with previous studies that criticized the
identification of proteasomal splicing of HLA peptides?>?* and,
more broadly suggest that additional evidence is required for the

unambiduous identification of spliced HLA peptides. While
Prosit shows very high overall prediction accuracy, it is possible
that it makes mistakes for some sequences and which could
include HLA peptides. Here, spectra of sysnthetic peptides of
proposed spliced peptides may be used to find such prediction
inaccuracies and lend more support to the identification of
spliced HLA peptides. However, spectra of synthetic peptides will
not always be conclusive because finding appropriate spectrum
similarity thresholds between spectra of synthetic and endogen-
ous peptides is not trivial. While our analysis does not rule out
that proteasomal splicing exists and that this may represent
important biology, it currently appears to be much less prevalent
than anticipated.

Prosit rescoring increases the chances of finding (immuno-
genic) neoepitopes in cancer patients. As a third case, we
investigated the potential of Prosit rescoring for the detection of
neoepitopes in cancer patients. Strikingly, re-processing of pub-
lished HLA Class I and Class II immune peptidome data from 25
human melanoma patients!! identified on average 3-fold more
HLA class I peptides per patient (Fig. 5a; Supplementary
Fig. S15a) and on average 2.4-fold for HLA class II peptides
(Supplementary Fig. S15b, c). This is a stronger gain than
observed for the cell lines above likely because the limited sample
quantities obtained from patients led to weaker spectra. These
benefit from rescoring more strongly than those collected from
cell lines (Supplementary Fig. S15d). To find out if such extended
patient immunopeptidomes would translate into higher chances
of finding patient-specific neoepitopes, we reanalyzed the HLA
class T raw data from patient Mell5 using a patient-specific
protein sequence database containing its genomic alterations
(mutations, inserts, deletions, or frameshifts). Rescoring identified
78 neo-epitopes (Fig. 5b, “Methods”) substantially surpassing
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Fig. 5 Prosit rescoring of 25 patient melanoma samples. a Vennbars showing the number of peptides lost (red), shared (blue) and gained (green) by the
MaxQuant rescoring pipeline compared to the results published by B.-Sternberg and Braunlein et al.™ for each patient. b Venn diagram comparing identified
mutated neoepitopes by MaxQuant only (red) and by Prosit-based rescoring of MaxQuant only (dark green) and shared identifications (blue). Peptides
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against Mel15 derived PBMCs. Readout was the number of spot forming cells probing interferon-gamma secretion. All batches and replicates were
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underlined amino acids. Raw and analysis data are available from the PRIDE repository with identifiers PXD021398, PXD004894, and Supplementary

Data 7.

both the original study (8 neo-epitopes) as well as the MaxQuant
results from this study (36 neo-epitopes). 14 peptides exclusively
identified by MaxQuant were rejected by the rescoring pipeline
due to their low spectral similarity (SA <0.5) to the predictions
(Supplementary Data 7).

From the list of additionally identified neo-epitopes, 20 were
selected for immunogenicity testing in an accelerated co-cultured
dendritic cell (acDC) assay using Mell5-derived PBMCs
(Supplementary Data 7). Pure synthetic peptides were obtained
and subjected to ELISpot analysis probing INF-y secretion after
stimulation of the PBMCs. Three peptide sequences triggered an
immune response that substantially exceeded the response of
unstimulated cells and canonical peptide controls (Fig. 5c). One
particular peptide harboring a Proline to Leucine mutation in the
KIF2C gene showed a very consistent immune response in all
examined PBMCs batches (green dots). This mutation has been
recently identified by a large-scale in silico approach based on
MHC affinity predictions?® of all peptides harboring mutations
identified by RNASeq®. Our study presents solid experimental
evidence (Supplementary Fig. S15e) that the mutated KIF2C gene
is expressed and presented on the surface of tumor cells of the
patient. In addition, we show the expression, presentation, and

immunogenicity of the mutated VIM gene2. Such direct evidence
is important when it comes to assessing neo-epitopes for their
therapeutic potential. As such, the Prosit rescoring workflow
presented here constitutes a substantial improvement over purely
computational approaches and can reduce the overall number of
peptide candidates that need to be evaluated.

Discussion
Artificial intelligence is revolutionizing many areas of research and
is also making substantial contributions to mass spectrometry-
based proteomics. As we and others have shown recently”-%7, it is
possible to predict the retention times and tandem mass spectra of
tryptic peptides with great precision which has led to substantial
improvements in terms of the comprehensiveness and quality of
proteomic experiments. Here, we demonstrated that the predic-
tion of spectra using the deep learning architecture Prosit can be
generalized to the simultaneous analysis of tryptic and non-tryptic
peptides which greatly extends the range of experiments to which
such predictions can be applied.

At the technical level, we note that while Prosit is currently
limited to predicting b- and y-fragment ion intensities, it is robust
against the presence of even a large number of neutral loss or
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internal ion series. Prosit’s ability to predict collision energies and
to calibrate it to a particular dataset automatically removes the
necessity to train dedicated models for individual projects, makes
the analysis robust against variations in MS instrument para-
meters over time and, within reason, between mass spectro-
meters. In the future, Prosit may be further extended to include
further fragment ion types as well as post-translational mod-
ifications. The need for the latter is particularly high for e. g.
phosphorylated peptides because it is still difficult to assign the
phosphorylation to a particular amino acid side chain. We also
envisage Prosit to be implemented more broadly into peptide
identification pipelines currently used in proteomics. This is
expected to make results from different pipelines more compar-
able. In addition, it should also make the use of alternative
proteases more successful than in the past.

The above examples demonstrate Prosit’s practical utility for
the analysis of HLA ligands—an application where spectral pre-
dictions turned out to be particularly successful. First, we show
that Prosit more than doubles the number of HLA ligands that
can be identified on the surface of human cells. Second, we
provide strong evidence that the prevalence of proteasomal cis- or
trans-splicing for the generation of HLA peptides is much lower
than anticipated?4. Third, we demonstrate that Prosit provides
more comprehensive identification of neo-epitopes from patient
tumors which, in turn, streamlines the subsequent testing and
validation of these ligands as targets for immune-oncology. Many
more biological and biomedical applications can be envisaged. To
name a few, there is more and more evidence for the translation
of small open reading frames (sORFs) which may be validated
experimentally by Prosit re-scoring of MS data. Human body
fluids contain rich peptidomes and glandular organs or cells
secrete bioactive peptides all of which have not been compre-
hensively been mapped. To facilitate further research and appli-
cations, the rescoring toolchain is available online (https://www.
proteomicsdb.org/prosit/).

Methods
Synthetic peptides. Peptides selected for synthesis can be classified into four sets
according to their origin. First, we generated a set termed HLA Class I that con-
tained 168,688 peptides with 8-12 amino acids. The sequence list was compiled
from entries in the Immune Epitope Database (IEDB, https://www.iedb.org!?),
where all human, MHC I binding peptides (status March 2017) were downloaded
and the HLA large scale study from Bassani-Sternberg et al.!l. Second, we gen-
erated a set termed HLA Class II that contained 73,464 peptides with 10-25 amino
acids. Sequences were taken from the SysteMHC Atlas project (https://
systemhcatlas.org), included were all sequences denoted as class II peptides (release
April 2017)!3. The datasets termed AspN and LysN consists of peptides derived
from the digest with the respective proteases and contain 31,744 and 31,435
peptides with 7-25 amino acids. Peptide sequences were derived from the com-
bined results of two large scale studies employing the respective protease for deep
proteome studies of cell lines and tissues?® and from an unpublished study (kindly
provided by Josh Coon, Univ. of Wisconsin). The maximum number of peptides
per protein was limited to the top 3 most frequently identified peptides per protein.
All sequences and protein mappings are available in Supplementary Data 1.
Peptide Pool design, peptide synthesis, sample preparation, and LC-MS of
synthetic peptides were previously described in Zolg and Wilhelm et al.1% 2017,
including the Supplementary Information. In brief, peptide pools for synthesis and
measurement contained roughly 1000 peptides each. Near-isobaric peptides (+10 p.
p-m.) were distributed across different pools of similar length to avoid ambiguous
masses in pools wherever possible. All peptides were individually synthesized on
cellulose membrane following the Fmoc-based solid phase synthesis strategy using
a purpose-built peptide synthesizer2®. The crude peptides were cleaved off the
membrane in the predefined pools of 1000 peptides and dried. Dried peptide pools were
initially solubilized in 100% dimethyl sulfoxide (DMSO) to a concentration of 10 pmol
pl~! by vortexing for 30 min at room temperature. The pools were then diluted to 10%
DMSO using 1% formic acid in high-performance liquid chromatography (HPLC)-
grade water to a stock solution concentration of 1 pmol pl~! and stored at —20 °C
until use.

Data acquisition and database searching. Ten microliter of the stock solution
were transferred to a 96-well plate and spiked with two retention time standards
(Pierce Retention Time Standard and PROCAL) at 100 fmol per injection®. An

estimated amount of 200 or 500 fmol of every peptide in a pool was subjected to
liquid chromatography using a Dionex 3000 HPLC system (Thermo Fisher Sci-
entific) using in-house-packed C18 columns. The setup consisted of a 75 pm x 2 cm
trap column packed with 5-um particles of Reprosil Pur ODS-3 (Dr. Maisch) and a
75 pum x 40 cm analytical column packed with 3-um particles of C18 Reprosil Gold
120 (Dr. Maisch). Peptides were loaded onto the trap column using 0.1% formic
acid in water. We separated the peptides by using a linear gradient from 4% to 35%
acetonitrile with 5% DMSO, 0.1% formic acid in water over 50 min followed by a
washing step (60 min total method length) at a flow rate of 300 nl min~! and a
column temperature of 50 °C3!. The HPLC system was coupled online to an
Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific). Each pep-
tide pool was first measured using a survey method consisting of an HCD (NCE,
28; Fourier transform mass spectrometry (FTMS)) and collision-induced dis-
sociation (CID;NCE 35, ion trap mass spectrometry (ITMS)) fragmentation event.
From these identifications, three further methods were created to target only full-
length synthesis products (Xcalibur v4.2 and Orbitrap Fusion Lumos Tune v3.0
were used): (1) the 3xHCD method comprised HCD events at NCE 25, 30, 35 (all
FTMS); (2) the 2xIT_2xHCD method comprised scans for CID NCE 35 ITMS,
HCD NCE 28 ITMS, HCD NCE 20 FTMS, HCD NCE 23 FTMS; and (3) the ETD
method comprised an ETD and FTMS scan (charge depended reaction time),
electron-transfer/collision-induced dissociation (ETciD) NCE 35 FTMS and elec-
tron-transfer/HCD (EThcD) NCE 28 FTMS. For the peptide sets HLA Class I and
HLA Class II mass ranges were specified each charge state to enhance coverage.
Ranges were established by estimating the charge state by generating the 1% and
99%-percentile of the distribution of the synthesized peptide mass divided by the
number of basic residues within the peptide. For HLA Class I the defined ranges
were 145-1700 m/z for charge 3-6+; 280-1700 m/z for charge 24 and 500-1700 m/z
for charge 1+. For HLA Class II the defined ranges were defined as 230-2000 m/z for
charge 3-6+4; 490-1700 m/z for charge 2+ and 850-2000 /z for charge 1+.

Acquired RAW data from synthetic peptides were analyzed using MaxQuant
v.1.5.3.3032 searching individual LC-MS runs against pool-specific databases’3. If
not mentioned otherwise, default parameters were used: carbamidomethylated
cysteine was specified as fixed modification, methionine oxidation as variable
modification. The first search tolerance was set to 20 p.p.m., main search tolerance
to 4.5 p.p.m. and filtered for PSM and protein FDR of 1%. Visualization of
MaxQuant result engine files was performed using custom R and python scripts.

In addition to the above-mentioned synthetic peptide pools, we also acquired
data for the previously published proteoytpic and missing gene dataset!? to
assemble more training data for longer peptides. Pools that had an average peptide
length above 25 were re-measured using the published settings, however without
using an inclusion list for data acquisition. Using a regular DDA mode, allowed to
record not only the full-length peptide products but also truncation products
thereof. Accordingly, we performed the MaxQuant v.1.5.3.30 search using semi-
tryptic digestion, allowing a free N-terminus.

Deep learning using Prosit framework

Fragmentation model and preparation. Preparation of training data and deep
learning of peptide fragment ion intensities was performed using the Prosit model
architecture’ using keras (2.1.1), tensorflow (1.4.0), numpy (1.14.5) and scipy
(1.1.0). The peptide encoder consists of 3 layers: a bi-directional recurrent neural
network (BDN) with gated recurrent memory units (GRU), a recurrerrent GRU
layer and an attention layer all with dropout. The recurrent layers use 512 memory
cells each. The latent space is 512-dimensional. Precursor charge and NCE encoder
is a single dense layer with the same output size as the peptide encoder. The latent
peptide vector is decorated with the precursor charge and NCE vector by element-
wise multiplication. A 1-layer length 29 BDN with GRUs, dropout and attention
acts as decoder for fragment intensity. A keras model file was deposited in GitHub
(www.github.com/kusterlab/prosit/) and zendoro with DOI zenodo.472135334. In
brief, the publicly available ProteomeTools data (PRIDE Dataset PXD004732,
PXD010595), as well as the data presented in this study (PRIDE Dataset
PXD021013), were utilized as training data. RAW data was searched using Max-
Quant (version 1.5.3.30) using standard settings with 1% FDR filter at PSM,
Protein or Site level. Unprocessed spectra for MaxQuant’s rank 1 PSMs (from
msms.txt) were extracted from the RAW files using Thermo Fisher’s Raw-
FileReader (http://planetorbitrap.com/rawfilereader) and b- and y-ions annotated
for fragment charges 1 up to 3. Initial data included all PSMs for the same peptide
and restricted peptides length to 7 to 30 amino acids length and precursor charge
to <7 and Andromeda score to >40. NCE values of all runs were calibrated as
described and spectra were transformed into a tensor format compatible with the
machine learning models.

Learning fragment ion intensities. HCD Training data was split into three distinct
sets with each peptide sequence only included in one of the three: Training (70%,
~593k modified peptides, ~9.9 M PSMs), Test (20%, ~170 k modified peptides, ~2.8
M PSMs) and Holdout (10%, ~84 k modified peptides, ~ 1.4 M PSMs). CID Training
data was split into three distinct sets with each peptide sequence only included in one
of the three: Training (70%, ~500 k modified peptides, ~2.9 M PSMs), Test (20%,
~142k modified peptides, ~0.8 M PSMs) and Holdout (10%, ~71 k modified pep-
tides, ~ 0.4 M PSMs). The model was trained and optimized on Training. Test was
used to control for overfitting with early stopping. The Holdout dataset was used to
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evaluate the model’s generalization and potential biases. Normalized spectral contrast
loss” was used as a loss function. We used the Adam optimizer with a cyclic learning
rate (CLR) algorithm3®. During training, the learning rate will cycle between a
constant lower limit (0.0000001) and an upper limit (initially training started with
0.001, after restart for HCD 0.0001) which is continuously scaled by a factor of 0.95
every 8 epochs. Models were trained on a Nvidia TitanXp GPUs with 512 samples
per batch. Models were trained on a Nvidia TitanXp GPUs for 195 epochs. During
training, fragment ions out-of-range or out-of-charge were masked and not regarded
in further analysis. For example, for a length 10 peptide y- and b-ions 10 to 29 as well
as fragment ions with a charge higher than its precursor are masked. For training, the
data was restricted to the top 3 highest scoring spectra for a peptide sequence,
modification status, precursor charge, fragmentation method, fragmentation energy,
and mass analyzer combination.

General rescoring pipeline. For the spectral intensity-based rescoring of search
engine results 7an unfiltered search result output including decoy PSMs (config-
uration and search engine for the individual datasets are detailed below) is used as
input (minimal information content rawfile, scan number, modified sequence, and
precursor charge state). Unprocessed MS2 spectra corresponding to the identifi-
cations were extracted from the RAW files using Thermo Fisher’s RawFileReader
(http://planetorbitrap.com/rawfilereader). The y and b ions of the extracted spectra
were annotated at fragment charges 1 up to 3. Matching tolerances were 25 ppm for
FTMS. We included all PSMs for the same peptide and restricted peptides length to
7-30 amino acids and precursor charge to <7, methionine oxidation as allowed
variable modifications and cysteine carbamidomethylation as fixed modification.
Annotation files were transformed to tensor format suitable for our machine
learning models with a custom Python script. Ion intensities are continuous values
and base-peak normalized. The best matching collision energy for prediction was
automatically determined for every dataset by taking high scoring peptide identi-
fications and comparing these to predicted spectra with NCE ranging from 20-40.
Afterward, spectral comparison was performed for all spectra from the dataset
using the determined best-matching CE and calculating previously described
similarity measures (e.g., SA) between experimental and predicted fragment ion
intensities using the annotated y and b ions. If not otherwise stated, we used the
SVM Percolator 3.00 (https://percolator.ms)3¢ with its standard settings for FDR
calculation. Percolator was set to use the provided calculated spectral features to
optimize for 1% FDR on PSM and 1% FDR on peptide level. Target-decoy-
competition (-Y flag) was explicitly specified. Only spectral similarity features
calculated in the rescoring process were used as features to achieve the best
separation of target and decoys identifications, all search engine related scores were
disregarded. The percolator input files with calculated feature sets, PSM and
peptide level output tables files were used for visualization of the results using
custom R scripts.

Application of Prosit and rescoring to external datasets

Re-analysis of a large monoallelic HLA Class I cell line study. For the analysis of the
large monoallelic HLA Class I cell line study by Sarkizova and Klaeger et al.!6, raw
data and the original Spectrum Mill (SM) HLA v2 search results were downloaded
from MassIVE proteomics repository (identifier MSV000084172 and
MSV000080527). The raw files corresponding to the three alleles B¥07:01, B*35:01
and B*50:01 were excluded from the analysis. Remaining raw files were searched
using MaxQuant 1.5.3.30 using the provided fasta file from the study. RAW files
containing peptides that were not alkylated (noIAA) during sample processing
were searched separate from RAW files containing alkylated peptides (IAA). The
MaxQuant searches were performed using standard settings, each search was
performed once with filtering for 1% FDR on PSM and once without (100%)
filtering FDR on PSM level. Filters on protein level were not applied. The 100%
FDR MaxQuant search results for IAA and nolAA were concatenated and
rescored together. We further obtained unfiltered search engine results from SM
HLA v3 (see below). The search result files from the improved SM HLA version
(SM HLA v3) were rescored per allele. For this, the SM HLA output (ssv files) was
converted into msms.txt-like files.SM provides the highest-ranking target and
decoy match (sequence and score) per spectrum. During conversion, a spectrum is
annotated as a target with the respective peptide sequence in case its score was
higher or equal to the best decoy peptide match. Since SM annotates target and
decoy cases that have an identical score as decoys, the Prosit handling may result
in lower FDR estimates. Peptides which cannot be predicted with Prosit were
counted as lost peptide for the analysis. These included peptides containing
modifications for which Prosit was not trained: unmodified Cys, cysteinylated Cys,
and acetylated peptide N-termini.

For comparison of the identification numbers (filtered for 1% FDR on PSM, and
peptide level), either by allele or globally the search engine outputs of MaxQuant,
the rescored MaxQuant data, the published SM HLA data, the improved SM HLA
data, the rescored improved SM HLA data were visualized using a Vennbar plot.
Vennbars are barplot representation of a venn diagrams, with proportional area
corresponding to the overlap (blue area) and non-overlap (red and green)
comparing two (data) sets. Sequence logos for all identified peptides in the original
publication and peptides identified by either rescoring pipeline were visualized
using the R library ggseqlogo®’. Sequence logos for all alleles identified by the
respective search engines can be found in Supplementary Data 4.

The probability of a peptide originating from a given motif (referred to as
emission probability) was estimated by the summation of the corresponding
(peptide dependent) positional amino acids frequencies in the positional weight
matrix. The positional weight matrix was generated using the only peptides
previously published (SM HLA v2). In order to allow the comparison of emission
probabilities across all investigated 8-11mers, only the top 5 most diverging
positions in the positional weight matrix were used for summation. The ranking of
the positions in each positional weight matrix was performed using the maximum
observed frequency at every position in decreasing order, assuming that high values
indicate high dependence on this position of a particular allele and peptide length.
Emission probabilities were average across all investigated peptide length and
reported for each allele separately (92 alleles).

Reprocessing of HLA Class I monoallelic dataset with improved Spectrum Mill HLA
v3 scoring. Spectrum Mill (SM) v6.1 Pre-release with HLA v2 scoring was used in
the large monoallelic HLA Class I cell line study!®. Here, 92 out of the 95 alleles
were reprocessed using SM v7.0 pre-release with the HLA v3 scoring update using
the same protein sequence database searched for the previously published results.
The primary enhancement to SM HLA v3 scoring is a revision to the noise level
calculation performed for each spectrum prior to signal/noise based peak detection.
This provides more sensitive peak detection in spectra of low abundance peptides
with very little noise, and led not only to higher identification scores for low-signal
spectra, but also allows more low-signal spectra to pass the sequence tag length
based spectral quality threshold typically employed in SM prior to a database
search. With the explicit goal of enabling re-scoring by Prosit of lower quality
peptide spectrum matches with less-complete sequence coverage some SM
thresholds were lowered. The sequence tag length spectral quality pre-filter was
disabled, the threshold for minimum matched peak intensity was lowered from
30% to 10%, and the minimum identification score for result output was lowered
from 5 to 0. The re-processed searches also included a variable modification,
acetylation of the protein N-termini, which was not previously available in SM for
searches that are unconstrained by enzyme digestion specificity.

The following unchanged parameters from the previously published result:
included: no-enzyme specificity; fixed modification: cysteinylation of cysteine;
variable modifications: carbamidomethylation of cysteine, oxidation of methionine
and pyroglutamic acid at peptide N-terminal glutamine; precursor mass tolerance
of £10 ppm; and a product mass tolerance of +10 ppm. Variable modification of
carbamidomethylation of cysteine was only used for HLA alleles that included an
alkylation step (performed in 2017 or later). Peptide spectrum matches (PSMs) for
individual spectra were automatically designated as confidently assigned using the
SM autovalidation module to apply target-decoy-based FDR estimation at the PSM
level of <1% FDR. Peptide autovalidation was done separately for each HLA allele
with an auto thresholds strategy to optimize score and delta Rankl1-Rank2 score
thresholds separately for each precursor charge state (1 through 4) across all LC-
MS/MS runs for an HLA allele. Score threshold determination also required that
peptides had a minimum sequence length of 7, and PSMs had a minimum
backbone cleavage score (BCS) of 5. BCS is a peptide sequence coverage metric and
the BCS threshold enforces a uniformly higher minimum sequence coverage for
each PSM, at least four or five residues of unambiguous sequence. The BCS metric
serves to decrease false positives associated with spectra having fragmentation in a
limited portion of the peptide that yield multiple ion types.

516

Investigation of proteasomal splicing events using predicted fragment spectra. As
baseline for the investigation of proteasomal splicing events we downloaded the
Mascot search result lists from a recent publication by Liepe et al.2! from Mendeley
(DOI: 10.17632/y2cvb5nvgn.1 [https://data.mendeley.com/datasets/y2cvb5nvgn/1].
Data used for analysis were the identification results from the HCD HCT116 and
HCC1143 cell line MHC-I immunopeptidomes. The respective 7 raw files which
were reanalyzed in the study, were obtained from the PRIDE repository from the
original publication with identifier PXD00039420.

For generation of a percolator model, the raw files were searched with
MaxQuant 1.5.3.30 against a human Swiss-Prot protein sequence database
including annotated isoforms (downloaded 2 July 2016; 42,164 protein
sequences) using default settings, but no enzyme specificity defined and no FDR
filtering on any level. Spectra for resulting target and decoy PSMs were extracted
from the raw file and rescored as described above with the difference that
Percolator v3.053¢ was employed for FDR calculation taking into account only
features that are calculated during the rescoring and neglecting all search engine
derived scores. The percolator input files with calculated feature sets, PSM and
peptide level output tables files were used for visualization of the results using
custom R scripts.

As the obtained Mascot results of the alleged spliced and non-spliced peptide
identifications did not contain comprehensive target and decoy information and
were filtered according to the Mascot ion score, rescoring of the peptide
identifications had to be performed with a pre-trained percolator model. Hence, the
general rescoring pipeline was executed as described above, however only the PSMs
recorded in the Mascot output were rescored and handed to Percolator for FDR
estimation, using the Percolator model pre-trained on the MaxQuant results. This
had the favorable effect that the results from the different search engines were in
the same confidence space and could directly be compared. Again, the percolator
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input files with calculated feature sets, PSM and peptide level output tables files
were used for visualization of the results using custom R scripts.

For MSFragger analysis, MSFragger v3.038 was used in conjunction with
FragPipe v12 GUI and the Swiss-Prot protein sequence database including
annotated isoforms (downloaded 2 July 2016; 42,164 protein sequences) was used.
Default parameters for a closed search were employed, with a defined precursor
tolerance of 20 ppm, mass recalibration switched off and no enzyme specificity for
database digest. Raw files were searched without decoy database, no PSM or
peptide FDR estimation was performed. Resulting PSM lists were submitted to the
rescoring pipeline as described above and handed to Percolator for FDR estimation,
using the Percolator model pre-trained on the MaxQuant results. Again, the
percolator input files with calculated feature sets, PSM and peptide level output
tables files were used for visualization of the results using custom R scripts.

For all proposed spliced peptide spectra from the Liepe et al.2! dataset, we
generated mirror plots comparing the raw spectrum with the predicted spectrum of
the alleged peptide identification by Mascot, MaxQuant, and MSFragger. Proposed
spliced peptides that did get rejected based on the results of one of the other search
engines are marked with rejected in the Supplemental File 2.

Rescoring of melanoma patient HLA dataset. For the reprocessing of a large clinical
cohort of melanoma patients, submitted RAW and search data from the original
study were obtained from the PRIDE repository with the identifier PXD004894!1.
To apply the rescoring toolchain, the RAW files from the study were reprocessed
(HLA Class I and Class II RAW files separately) using MaxQuant 1.5.3.30 and the
human fasta file provided from the original study (HUMAN_2014 fasta containing
Swissprot and Trembl identifiers and a total of 85.919 entries). Standard MaxQuant
settings were used for processing but no enzyme specificity and no FDR filtering on
PSM or protein level was applied. The results of this search were then rescored as
described above. Results of the rescoring pipeline were compared to the original

study data and visualized using the described Vennbar plot.

To assess the number of mutated peptides in the patient Mell5, RAW files
belonging to patient Mell5 were processed using MaxQuant 1.6.1.0 with a
concatenated protein sequence database established from the ensemble release 92
database (107,844 protein sequences) and Mell5 specific mutated sequences
(126,906 protein sequences). Mutant protein sequences were derived from the
analysis of patient-specific whole-exome sequencing (WES) and RNA-Seq data.
Mutation calling was performed using MuTect2 4.1.0.03% for WES and Strelka2
2.9.10%0 for RNA-Seq data. All coding and non-coding transcripts containing one
or more non-synonymous somatic mutations were then translated into
corresponding amino acid sequences. Two MaxQuant searches were performed:
One using 1%/100% FDR on PSM and protein level for comparison and one using
100%/100% PSM and protein level FDR for rescoring. We estimated the resulting
peptide FDR from the MaxQuant 1%/100% to approximately 3% FDR and adjusted
the rescoring peptide FDR accordingly. Candidate peptides that exclusively
matched into the database containing the patient-specific sequencing derived
proteins with mutations were flagged as candidates. We further manually
annotated and filtered the identified peptides to either contain a mutation within
the peptide or selected peptides where a frameshift upstream mutation would cause
the expression of such a peptide. Mutated peptide sequences were submitted to
NetMHCA4.04! server to retrieve binding affinity predictions for the Mel15 alleles
HLA-A*03:01, HLA-A*68:01, HLA-B*27:05, and HLA-B*35:03 analogous to a
previous publication!! using standard settings. Resulting classification als weak
binder or strong binder are available in Supplementary Data 7. Similarly, mutated
peptide sequences were submitted to the HLAthena!® webservice [http://hlathena.
tools] for binding prediction to the above-stated alleles using standard settings and
a rank based threshold of 0.1. Resulting predicted binding are available in
Supplementary Data 7.

Immunogenicity assessment of identified peptide ligands. Informed consent of all
healthy and diseased participants was obtained following requirements of the
institutional review board (Application 193/17S; Ethics Commission, Faculty of
Medicine, Technical University of Munich, Germany). Recall antigen-experienced T
cell-responses to 20 selected peptides were investigated as previously described with
slight modifications! 142 In brief, between 0.3 and 0.7 Mio PBMCs per well derived
from six different blood samples from patient Mell5 were used for in vitro
screening. For peptide stimulation, 1 uM of each synthetic peptide (>90% purity,
ordered from DGPeptidesCo Ltd.) was added to the culture along with 0.5 ng/ml
Interleukin (IL)—7 (Peprotech), 50 ng/ml Tumor necrosis factor (TNF)-a (Pepro-
tech) and 10 ng/ml IL-1B (Peprotech). As antigen-presenting target cells for the
second stimulation on day 13, a Lymphoblastoid cell line (LCL) derived from the
same patient was used. The target cells were either pulsed with the selected mutated
peptide, an irrelevant peptide (KIF2C wildtype) or without any peptide prior to co-
culture with the T cells. The co-cultures were performed with an effecter-to-target
ratio of 1:2 using 10,000 target and 20,000 pre-stimulated T cells per well.
Reactivity of T-cells to the synthetic peptide ligands was assessed by specific
Interferon (IFN)-y release by ELISpot assay after 1 day and 13 days. ELISpot plates
(MAHAS4510) were coated with an IFN-y capture antibody (1-D1K, Mabtech),
development was performed with an IFN-y-detection antibody (7-B6-1-biotin,
Mabtech) and Streptavidin-HRP (Mabtech). ELISpot plates were read out on
an ImmunoSpot S6 Ultra-V Analyzer using Immunospot software 5.4.0.1

(CTL-Europe). The average normalized ELISpot intensity at day 13 to the average
of the controls was used for data visualisation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Reference spectra for synthetic peptide originating from the proteases LysN and AspN
are available at https://www.proteomicsdb.org, and updates to the resource are available
at https://www.proteometools.org. Updated models of Prosit
(Prosit_2020_intensity_HCD and Prosit_2020_intensity_CID) and the presented
rescoring functionality are freely available through the web interface at https://www.
proteomicsdb.org/prosit. Trained model files (https://figshare.com/articles/dataset/
Prosit_Non_tryptic_-_Model_-_Fragmentation/12936947) and training data (https://
figshare.com/articles/dataset/ProteomeTools_non_tryptic_-_Prosit_fragmentation_-
_Data/12937092) are available on figshare. The mass spectrometric raw and search data
of the synthetic ProteomeTools peptides have been deposited with the ProteomeXchange
Consortium via the PRIDE repository with the dataset identifier PXD021013. The search
data including intermediate results underlying the presented analysis have been
deposited under the dataset identifier PXD021398.

Code availability

Source code and scripts are available on GitHub at https://github.com/kusterlab/prosit/
and zenodo with DOI zenodo.472135334. Custom analysis scripts are available upon
request. Prosit rescoring can be performed online at ProteomicsDB [https://www.
proteomicsdb.org/prosit/].
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