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Abstract

Motivation: Dropout is a common phenomenon in single-cell RNA-seq (scRNA-seq) data, and

when left unaddressed it affects the validity of the statistical analyses. Despite this, few current

methods for differential expression (DE) analysis of scRNA-seq data explicitly model the process

that gives rise to the dropout events. We develop DECENT, a method for DE analysis of scRNA-seq

data that explicitly and accurately models the molecule capture process in scRNA-seq

experiments.

Results: We show that DECENT demonstrates improved DE performance over existing DE methods

that do not explicitly model dropout. This improvement is consistently observed across several

public scRNA-seq datasets generated using different technological platforms. The gain in improve-

ment is especially large when the capture process is overdispersed. DECENT maintains type I error

well while achieving better sensitivity. Its performance without spike-ins is almost as good as when

spike-ins are used to calibrate the capture model.

Availability and implementation: The method is implemented as a publicly available R package

available from https://github.com/cz-ye/DECENT.

Contact: a.salim@latrobe.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent developments in sequencing technology have enabled high-

throughput whole-transcriptome profiling at single-cell resolution.

Single-cell RNA-seq (scRNA-seq) allows the quantification of gene

expression of thousands of individual cells in a single experiment. It

has already led to profound new discoveries that could not be have

been made using data from bulk transcriptome sequencing, ranging

from the identification of novel cell types to the study of global pat-

terns of stochastic gene expression (Kolodziejczyk et al., 2015;

Wagner et al., 2016). However, there are still many statistical

challenges in drawing inferences from scRNA-seq data. Due to the

small amount of starting material and the imperfect capturing of

RNA molecules in current scRNA-seq experiments, failure to detect

expressed transcripts in single cells is still common. This gives rise to

the characteristic dropout phenomenon in scRNA-seq data, in which

a gene shows zero or very low abundance in a fraction of cells in

spite of moderate to high expression in others (Finak et al., 2015;

Hashimshony et al., 2012; Ramskold et al., 2012). Also, the capture

rates can vary between cells and across genes (Brennecke et al.,

2013), showing as a major source of unwanted variation in
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scRNA-seq data, with the first principal component of raw counts

typically exhibiting high correlation with the proportions of zero

counts (Risso et al., 2018). This unique feature of scRNA-seq will

hinder downstream analyses if not properly modeled. Lots of effort

has been made in order to alleviate this issue, including specialized

normalization methods (Bacher et al., 2017; Lun et al., 2016), clus-

tering algorithms (Kiselev et al., 2017; Wang et al., 2018; Zeisel

et al., 2015) and methods for differential expression analysis (Finak

et al., 2015; Jia et al., 2017; Kharchenko et al., 2014).

One way to resolve this is through explicit modeling of the mol-

ecule capturing process and hence separating the biological variation

of interest from unwanted variation in the experimental procedures.

For instance, several methods (Huang et al., 2018; van Dijk et al.,

2018; Wang et al., 2018) are designed to recover the pre-dropout ex-

pression matrix by modeling the process from RNA molecule to

read count. However, a difficulty in modeling the molecule captur-

ing and dropout events is that this process is usually mixed up with

other sources of technical variation, such as amplification and

sequencing biases (Wagner et al., 2016). The unique molecular iden-

tifier (UMI) barcoding approach has become increasingly popular in

scRNA-seq experiments as an effective way to address this issue

(Islam et al., 2014; Svensson et al., 2017). Random barcodes are

attached to cDNA molecules during reverse transcription. Each indi-

vidual molecule from a particular gene in each cell is expected to

have a distinct UMI (Islam et al., 2014). Therefore, after sequencing,

by counting UMI barcodes instead of reads per se, the resulting UMI

counts will be a more faithful representation of the original cDNA

counts, with amplification and sequencing bias largely avoided. But

the UMI count will still show as zero if an RNA molecule failed to

convert to cDNA, or was completely lost in amplification and

sequencing.

As a consequence, the main source of technical variation left in

UMI counts is the loss of molecules during the experimental proced-

ure, namely, dropouts. Hence, UMI count data provides us with an

opportunity to model the molecule capturing process in depth. Also,

given the distinct features of UMI-based data, it is necessary to build

specific models in order to perform statistical tests reliably.

Currently scRNA-seq experiments mainly focus on cell-wise

analyses such as clustering and trajectory inference for studying het-

erogeneity within cellular populations (Qiu et al., 2017; Trapnell

et al., 2014; Zeisel et al., 2015). Nevertheless, differential gene ex-

pression (DE), as one of the most common gene-wise analyses, still

plays an essential role in complementing these analyses. For ex-

ample, it is used to identify cluster-specific markers for identifying

the cell types. It is also used to derive disease-associated gene signa-

tures (Savas et al., 2018; Sun et al., 2018; Zhao et al., 2017).

However, DE methods originally designed for bulk RNA-seq tend to

produce unreliable results due to failing to account for the extra

variation in single-cell data (Jia et al., 2017; Van den Berge et al.,

2018). Driven by this, a few DE methods have been designed specif-

ically for scRNA-seq data. All of them use some strategy to deal

with the large variation and number of zero observations. However,

most of them do not distinguish biological from technical factors

that are causing the phenomenon. For example, SCDE (Kharchenko

et al., 2014) uses a mixture model to distinguish counts affected by

dropout from the rest of the data. This model almost always assigns

a probability of one that a zero count belongs to the dropout compo-

nent, in essence assuming all observed zeroes to be technical. MAST

(Finak et al., 2015) uses a two-part generalized linear model (GLM)

in which the dropout rates are adjusted by the inclusion of the

observed fraction of non-zero counts as a term in their regression

model. This still does not differentiate the dropouts from real

biological zeros. Additionally, the effect of dropout events is likely

to be non-linear, especially for genes with low to moderate expres-

sion (Bacher et al., 2017), and so the inclusion of simple linear term

that represents capture rates in the regression model is unlikely to be

optimal. Zero-inflated negative binomial (ZINB)-WaVE (Van den

Berge et al., 2018) uses a zero-inflated model directly fitted to the

observed data to derive observation weights for adjusting bulk DE

methods. Only Jia et al. (2017) proposed a DE method, TASC, that

relies on external RNA spike-in data (Jiang et al., 2011) to fit a tech-

nical variation model in order to explicitly cater for dropouts, thus

enabling separation of the biological variation for DE analysis. They

showed improved performance of their method compared with

methods that perform DE analysis directly using the observed data.

Note that the methods mentioned so far are not specifically designed

for UMI-count data. There are two existing methods that considers

the unique features of UMI-based experiments: Monocle2 (Qiu

et al., 2017; Trapnell et al., 2014) and NBID (Chen et al., 2018).

They both fit negative binomial (NB) models directly to the

observed UMI count without any explicit modeling of dropouts.

Here we propose a novel model for the DE analysis of UMI-

based scRNA-seq data. Leveraging the features UMI-count data, we

are able to model the molecule capturing process precisely. We build

a capture model to account for the gene- and cell-specific properties

of molecule capturing. This allows us to perform DE analysis on the

inferred pre-dropout distributions of RNA molecules. We named

our method Differential Expression with Capture Efficiency

adjustmeNT (DECENT). DECENT can use the external RNA spike-

in data to calibrate the capture model, but also works without spike-

ins. In this paper, we describe the DECENT model and benchmark

it against existing methods using both simulated data and four pub-

lished UMI-based scRNA-seq datasets. The results showed im

proved performance of DECENT in various settings when compared

with existing methods.

2 Materials and methods

2.1 Model formulation
DECENT assumes that UMIs (Islam et al., 2014) have been used in

the scRNA-seq experiment. Our statistical model is hierarchical,

involving modelling the observed count Zij of mRNA molecules

‘captured’ from gene i in cell j, and the unobserved total mRNA

count Yij of all mRNA molecules from gene i in cell j that could have

been captured had there been no molecule dropout. We will subse-

quently use the term ‘pre-dropout count’ when referring to Yij. Cells

will in general be of more than one type, and our inferences will con-

cern the mean parameters lij of the distribution of the unobserved

pre-dropout count across cell types. Other parameters in our model

for the unobserved pre-dropout count are zero inflation parameters

p0i and (over) dispersion parameters wi specific to gene i, and a size-

factor parameter sj specific to cell j, to account for differences in

total mRNA molecules across cells. To summarize, we use ZINB

distribution with the following probability density function to

model the unobserved pre-dropout count:

P Yij ¼ k; p0i; sj; lij;wi

� �
¼

p0i þ 1� p0ið Þ 1
1þwisjlij

� �w�1
i
; k ¼ 0:

1� p0ið Þ
C w�1

i þ k
� �
k!C w�1

i

� � 1

1þ wisjlij

 !w�1
i wisjlij

1þ wisjlij

 !k

; k > 0:

8>>>>><
>>>>>:

(1)

Note that, as wi ! 0, our ZINB model reduced to a zero-inflated

Poisson model (ZIP). When p0i ¼0, our model reduces to the NB
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model and finally when p0i ¼0 and wi ! 0, our model reduces to

the Poisson model.

The second part of the DECENT model involves the specifica-

tion of the capture model for modelling the distribution of the

observed data Zij given the unobserved pre-dropout count Yij. We

use a binomial model for the molecule capture, assuming ZijjYij ¼
k; gij � Binomialðgij; kÞ where gij is the capture rates for gene i with-

in cell j. The probability density function for the capture model is

given by,

PðZij ¼ ljYij ¼ k; gijÞ / gl
ijð1� gijÞk�l (2)

Finally, to account for variability in the capture rate, we assume a

beta prior for the capture rate parameter gij with the prior mean

equal to the cell-specific capture rates gj and the prior variance char-

acterized by a dispersion parameter qij; 0 � qij � 1. When qij ¼ 0,

our capture model reduces to the standard Binomial model with all

genes within a cell having the same capture rate, gij ¼ gj;8i. In our

DECENT model, backed up by empirical evidence from published

scRNA-seq datasets, we assume that the dispersion parameter is

related to gene abundance through a logistic linear model:

log
qij

1� qij

¼ s0j þ s1j log lijð1� p0iÞ
� �

(3)

where s0j and s1j are cell-specific parameters estimated from the

data. In our experience with real datasets, we usually found that

assuming global parameters s0j ¼ s0 and s1j ¼ s1; 8j is adequate.

Furthermore, from real datasets we also found that s1 <0, which

suggests that within a cell, capture rates for highly abundant genes

vary around the cell-specific capture rates much less than the capture

rates for low or moderately abundant genes. As an alternative to

estimating a global s ¼ ðs0; s1ÞT parameter, DECENT also has an

option for estimating cell-specific sj ¼ ðs0j; s1jÞT if there is evidence

that the parameters vary significantly between cells.

Our hierarchical DECENT model specification can be summar-

ized as follows:

Yij; p0i; sj; lij;wi � ZINBðp0i; sjlij;wiÞ (4)

ZijjYij ¼ k; gij � Binomialðgij; kÞ (5)

gij � Betaðaij;bijÞ (6)

where the parameters of the beta prior for gij satisfy

gj ¼
aij

aij þ bij

log
qij

1� qij

¼ s0j þ s1j log lijð1� p0iÞ
� �

¼ �logðaij þ bijÞ

Next, we describe empirical evidence that motivated us to choose

this specification for DECENT.

2.1.1 Empirical evidence for beta-binomial capture model

We investigated the appropriateness of our capture model using six

ERCC spike-in datasets, consisting of three plate-based (Grun et al.,

2014; Tung et al., 2017; Zeisel et al., 2015) and three droplet-based

experiments (Klein et al., 2015; Macosko et al., 2015; Zheng et al.,

2017) (Supplementary Table S1). We use spike-ins because their

average (nominal) pre-dropout count are known, with no biological

variation between cells expected. To model the distribution of their

unobserved pre-dropout counts, we thus use a Poisson distribution

with mean equal to the nominal count for each spike-in. The full

results from all six datasets are shown in Supplementary Figure S2.

But as an example, we will use results from the Tung et al. data as

shown in Figure 1. Figure 1a shows that the simple Binomial capture

model does not provide an adequate fit to the data because the devi-

ance statistic (see Supplementary Materials, pp. 13–14) for this

model is much larger than the expected distribution when the model

is adequate. Further analyses suggests that variation in capture rates

between spikes contribute to this inadequate fit (Supplementary Fig.

S1). We therefore model this extra variation by allowing capture

rates to have a beta prior with cell-specific mean and dispersion par-

ameter that differs from one spike to another. We find that the dis-

persion parameter can be well-approximated by a linear logistic

model as a function of the spikes’ abundance (Fig. 1b). We then

compare the fit of the beta-binomial capture model with the simple

binomial model and find that the beta-binomial model provides

much better fit to the data (Fig. 1c). The same analyses were carried

out using the spike-in data from the other five experiments and simi-

lar results were obtained (Supplementary Fig. S2).

2.1.2 Empirical evidence for pre-dropout count distribution

The ZINB distribution has two extra parameters when compared

with the simple Poisson distribution for count data, namely the over-

dispersion and the zero-inflation parameters. To examine whether

the ZINB distribution is needed for modelling the unobserved pre-

dropout count, we used two scRNA-seq datasets (Tung et al., 2017;

Zeisel et al., 2015). To investigate the need for overdispersion par-

ameter, we first fit the DECENT model assuming a Poisson pre-

dropout distribution to the data without considering zero-inflation.

We found that the expected variances of most genes were noticeably

lower than the observed values for the Zeisel et al. dataset. This

extra variation was well-modeled by assuming NB as pre-dropout

count distribution, hence indicating the need for the dispersion par-

ameter (Supplementary Fig. S3a). For the Tung et al. data, the

expected variances under the Poisson pre-dropout count assumption

were already close to the observed values for most genes, showing

Fig. 1. Modeling extra-binomial variation in the molecule capturing process.

We evaluate the binomial and beta-binomial capture models using the ERCC

spike-in data from the Tung et al. experiment. (a) The observed distribution

(red) of deviances with cell-wise binomial capture model shows notable devi-

ation from the expected v2 distribution under the null hypothesis. This indi-

cates inadequacy of the binomial capture model. (b) Modeling the

relationship between the spike-in nominal count ci and the dispersion param-

eter q in the beta-binomial capture model. If the parameter is estimated in a

spike-in specific manner, a high correlation between the qi estimates and the

true pre-dropout mean abundance, namely the nominal count ci, can be

observed, which are shown as black points. We build a cell-wise linear model

to characterize this relationship. Each blue line represents a fitted cell-wise

model, which is shown to adequately describe this relationship. (c) A scatter

plot comparing the cell-wise deviances under the binomial and beta-binomial

capture models to assess goodness-of-fit. Deviances were standardized by

dividing by the degrees of freedom to enable comparison, and logged. The

blue and red marginal densities represent the observed distributions of devi-

ances under the two models, respectively. It can be seen that the beta-bino-

mial capture model fits better than the binomial model in the majority of the

cells
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little need for the extra parameter (Supplementary Fig. S3b). This

suggests that overdispersion in pre-dropout counts is dataset-specific

and depends on the amount of biological variability in the sample.

The Tung et al. data used here are from one iPSC cell line where cells

were highly homogeneous and hence lack biological variation. On

the other hand, the Zeisel et al. data are from mouse brain tissue,

which has a complex cellular composition. To investigate the need

for zero-inflation parameter, we further fitted the DECENT model

assuming a ZINB pre-dropout count distribution and compared this

with the model that assumes NB pre-dropout count distribution. We

performed chi-square goodness-of-fits test on the DECENT models

with ZINB and NB pre-dropout count distribution to assess their

adequacy. Consistent with previous findings (Chen et al., 2018;

Vieth et al., 2017), the majority of genes do not appear to require

zero-inflated model. However we still found a small number of

genes in both datasets in which models with ZINB provide a more

adequate fit than NB (Supplementary Fig. S4).

We also investigated the appropriateness of the ZINB distribu-

tion using a single-molecule fluorescence in situ hybridization

(smFISH) dataset. The smFISH technology allows precise quantifica-

tion of RNA molecules from a list of targeted genes. This technology

can achieve nearly 100% sensitivity detection of the RNA molecules

(Raj et al., 2008). Hence, the smFISH count data is a good approxi-

mation to the pre-dropout molecule counts that would normally be

unobserved. We used the data from an experiment that profiled 33

marker genes in mouse somatosensory cortex (Codeluppi et al.,

2018). We examined three of the clusters identified by the authors,

Oligodendrocyte Mature, Pyramidal L4 and Inhibitory Vip, finding

most of the gene count distributions to be significantly overdispersed

relative to the Poisson (Supplementary Fig. S5a). Yet we did not find

zero-inflated genes in these clusters. This is quite possibly because

the targeted genes are all canonical markers, which are expected to

mostly exhibit constitutive expression and hence unlikely to have

inflated zeros caused by transcriptional bursting. However, hetero-

geneity within a population can also result in zero-inflation, which

is common in actual DE analysis. When we looked at 3 major cell

types with higher within-group heterogeneity (Oligodendrocytes,

Pyramidal neurons and Inhibitory neurons), we identified 2, 1 and 2

out of the 33 genes to have significant zero-inflation (Supplementary

Fig. S5b).

2.2 Estimating capture rate parameters
Our capture model requires estimates of a cell-specific capture rate

that will be used as part of the beta prior in the beta-binomial cap-

ture model. This capture rate needs to be estimated externally out-

side the main algorithm, for reasons that we will explain below.

When the dataset contains spike-ins, their data are used to estimate

the capture rates. Suppose we added ns spike-ins at the known con-

centrations c1; c2; . . . cns
into cell j and subsequently observe

z1j; z2j; . . . znsj molecules respectively. The cell-specific capture effi-

ciency for any cell j is estimated as the proportion of molecules

observed after sequencing relative to the total number of molecules

initially added:

ĝ j ¼

Pns

i¼1

zij

Pns

i¼1

ci

;

This is the method of moments estimator of the capture rate gj under

the beta-binomial-Poisson model for spike-ins.

However, many scRNA-seq data do not have spike-ins.

Interestingly, we found that if we specified a set of inexact capture

rates, other components of the model will compensate for the in-

accuracy and produce DE results almost as reliable as if we had the

correct values. This is due to a property of the our model that is

explained below:

Let Y be the unobserved pre-dropout count where Y �
ZINBðp0; sl;wÞ and ZjY ¼ k; a; b � Beta� Binomialðk; a; bÞ, with

the capture rate given by g ¼ a
aþb. It turns out that the marginal dis-

tribution of Z in this case is almost indistinguishable from the mar-

ginal distribution of Z when the capture rate is g0 and the size-factor

parameter of the ZINB distribution is s0¼s(g/g0) (see Supplementary

Fig. S6). This feature means that if we incorrectly specify the capture

rate as g0 rather than g, the misspecification can be approximately

corrected by scaling the size factor estimates accordingly.

Nevertheless, it is still preferable to get capture efficiency estimates

as close as possible to the true value. This identifiability issue involv-

ing a cell’s size-factor and capture rate parameter also means that it

is nearly impossible to simultaneously estimate these parameters in-

side the main algorithm. Our approach here is to estimate the cap-

ture rate parameters before invoking the expectation conditional

maximization (ECM) algorithm, and given these, we estimate the

size-factor parameters within the ECM algorithm.

Motivated by the above results and our experience with real

datasets showing that capture efficiency is the biggest factor contri-

buting to the variation in the observed library sizes, we devised a

method for generating functional capture rates when spike-ins are

not available. We refer to this as the ranked random capture effi-

ciency. To use this method, users will need to specify an interval of

plausible capture rate parameters in their experiment. DECENT

uses ð0:02; 0:10Þ as its default and we have found this to work well

in all the datasets without spike-ins that we have analyzed. As an al-

ternative, users can refer to Ziegenhain et al. (2017) for guidance on

plausible range of capture rate parameters across various different

sequencing protocols.

Let the lower and upper bounds of capture rates be gmin and

gmax, respectively. The cell-specific capture rates are specified as

follows:

• Compute library size for each cell and denote the log 10 of these

by L1;L2; . . . Ln, where n is the number of cells. To minimize the

impact of a few genes having very large counts, we can also use

trimmed sums instead of full sums here. Denote the minimum

and maximum log 10 library size as Lmin and Lmax.
• Calculate weight for cell j as wj¼Lj�Lmin/Lmax�Lmin.
• Estimate the capture efficiency for cell j as

ð1�wjÞgmin þwjgmax. This ensures that cells with larger library

size will have larger capture efficiency and the capture efficiency

estimates are bounded within the ðming;maxgÞ interval.

2.3 Parameter estimation and DE analyses
DECENT’s main aim is to estimate parameters of the unobserved

pre-dropout count and perform statistical inference on these param-

eters for the purpose of identifying differentially expressed genes

(DEGs). Because the pre-dropout count is unobserved, we use an

ECM algorithm to estimate these parameters (see Supplementary

Materials for details). The algorithm works as follows:

1. First, capture rate parameters g ¼ ðg1; g2; . . . ; gnÞT are estimated

prior to invoking the ECM algorithm.

2. Given the capture rates, initial estimates of cell-specific size fac-

tor parameters sj and gene-specific parameters hi ¼ ðp0i; lij;wiÞ
T ,
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as well as sj ¼ ðs0j; s1jÞT , the parameters that control the uncer-

tainties in the beta prior for capture rates are calculated using

method-of-moment approaches, assuming no DE genes and a

simple Binomial capture model.

3. Perform an E-step to estimate the following conditional expecta-

tions given the observed count: PðYij < 0jZij ¼ 0; sj; hi; sj; gjÞ
and EðYijjZij; sj; hi; sj; gjÞ.

4. For each gene, perform an M-step to update the gene-specific

parameters hi (see Supplementary Materials for details).

5. For each cell, perform an M-step to update the cell-specific size-

factor parameters sj (see Supplementary Materials for details).

6. Perform an M-step to update the (possibly) cell-specific parame-

ters of the beta prior for capture rates, sj (see Supplementary

Materials for details).

7. Iterate between step [2] to [5] until convergence is achieved.

To facilitate DE analysis, the gene-wise mean parameter

l ¼ ðlijÞ is assumed to depend on the cell type or group through a

log-linear model:

log l ¼ XbþWc

where X is the design matrix providing group information and b are

the coefficients. We also allow the mean parameter to depend on

cell-wise covariates W to remove unwanted variation (e.g. batch

effects, cell-cycle phases). In the most common two group compari-

sons, we have

log lij ¼ b0i þ b1ixj þ cT
i wj

where xj is simply the binary indicator of cellular group, b0i is loga-

rithm of mean parameter for gene i in the reference cell type, b1i is

the log fold-change parameter for gene i and the ci is the gene-

specific regression coefficients that adjust the DE analysis for the un-

wanted, cell-specific factors wj.

Differential expression across two cellular groups for the gene i

is assessed by testing the hypotheses:

H0 : b1i ¼ 0 versus H1 : b1i 6¼ 0

using the likelihood ratio test statistic,

�2f‘Iðhi ¼ hH0

i Þ � ‘Iðhi ¼ ĥ iÞg

where hH0

i is the maximum likelihood estimator (MLE) of hi under

the restriction that b1i ¼ 0; ĥ i is the MLE under the unrestricted

model and ‘I is the log-likelihood based on the observed data Zij

[see Supplementary Materials; Equation (9)]. For simple two cell

type comparisons, the statistic is approximately distributed as v2
1

under H0. More generally, when performing DE across p different

cell types or conditions, the statistic is approximately distributed as

v2
p�1 under H0.

3 Results

3.1 Benchmarking using simulated data
We simulated 20 datasets, each consisting of 500 cells belonging to

2 cell types (224 cells from cell type 1 versus 276 cells from cell type

2) with 3000 endogenous genes and 50 spike-ins. The observed

count were generated under the DECENT model using parameters

estimated from Tung’s dataset (see Supplementary Materials for

details). In each dataset, we set �10% of the genes to be DEGs.

Figure 2 shows that DECENT estimates gene-specific pre-dropout

proportion of zeroes and variance, as well as the actual pre-dropout

counts unbiasedly. Figure 3 shows that DECENT’s performance in

detecting DEGs also appear to be competitive when compared with

existing methods, namely SCDE (Kharchenko et al., 2014), MAST

(Finak et al., 2015), Monocle2 (Qiu et al., 2017; Trapnell et al.,

2014), ZINB-WaVE adjusted edgeR (Van den Berge et al., 2018)

and edgeR (McCarthy et al., 2012). Over the 20 datasets, the

mean(SD) of the partial area under the receiver operating character-

istic (pAUROC) for DECENT is 0.708(0.001), followed by MAST

with 0.687(0.001) (see Supplementary Table S3). DECENT’s per-

formance also appears to be relatively robust to misspecification of

capture rates parameters (Supplementary Fig. S7).

3.2 Benchmarking using real data
We further benchmarked our method against existing methods using

real datasets. The difficulty in benchmarking using real datasets is

that the genuine DEGs are usually unknown. In order to obtain a

credible list of genuine DEGs, we searched for scRNA-seq datasets

that have matching bulk RNA-seq experiments, which means a bulk

RNA-seq was also performed using cells from exactly the same tis-

sues or cell lines. We found four such experiments in total that also

used UMI. Then a DEG list derived from these bulk data can be

used as the reference set for benchmarking. These includes two

plate-based experiments and two droplet-based experiments, with

different scales, sources of tissues or cell lines and observed propor-

tion of zero counts (Supplementary Table S2) (Chen et al., 2018;

Savas et al., 2018; Soumillon et al., 2014; Tung et al., 2017). We use

these datasets to benchmark DECENT against existing methods (see

Supplementary Materials: Benchmarking for more details about

these datasets).

The same existing methods were benchmarked using all four

datasets, except that we also applied TASC to the Tung et al. data

where spike-ins are available. All of these datasets have gone

through careful quality control steps by the authors of the original

publications. Therefore, we do not further filter any cells. The only

further filtering we perform is filtering very low abundance genes

that correspond to the second peak in the histogram of average gene

count distribution (Supplementary Fig. S13). We fitted the

DECENT model to all four datasets and found that a global s par-

ameter was adequate for all datasets, except Tung’s where

Fig. 2. Inferring pre-dropout molecule counts in simulation. (a) Scatter plot

comparing for each gene the estimated proportion of zeros of the fitted pre-

dropout distribution with the true proportion of zeros in the pre-dropout

counts. (b) Scatter plot comparing the expected variance of the fitted pre-

dropout distribution with the true gene-wise variance in the pre-dropout

counts. (c) Scatter plot comparing the expected value of pre-dropout counts

(see Supplementary Methods for details) under the fitted model with the true

pre-dropout counts. We shows a random subsample of 5% of all the non-zero

counts. The estimated pre-dropout counts used to calculate (a) and (b) were

based on single imputation, i.e. drawing a single value from the conditional

pre-dropout distribution for each gene and each cell given the observed data.

The estimated pre-dropout counts shown in (c) were calculated as the

expected value of the conditional pre-dropout distribution (see

Supplementary Methods)
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substantial variation in the s0 and s1 parameters was observed

(Supplementary Fig. S14). As shown in Figures 4 and 5, DECENT

showed superior performance on all four datasets. In particular,

DECENT performs better than other methods for the Soumillon and

Chen datasets where the dispersion parameters for the beta prior are

larger and thus the capture models are more overdispersed relative

to the Binomial model (Supplementary Fig. S15).

Among the other methods, MAST showed stable and generally

good performance across datasets, while the performance of SCDE

appeared to be dataset-specific, showing inadequacy for droplet-

based experiments. The Monocle NB-based model based on

observed UMI counts did not show satisfactory performance. The

ZINB-WaVE adjustment of edgeR did not show noticeable improve-

ments over standard edgeR for three out of four datasets. But it re-

markably outperformed edgeR on the Chen et al. data, where both

molecule counts and the cell numbers were high. To demonstrate

the merit of performing DE analysis using a inferred pre-dropout ra-

ther than the observed expression, we selected a few genuine DEGs

in the Tung et al. data that are detected by our method and not the

others and compared their expression levels between the two cellular

groups using either the observed counts or inferred pre-dropout

counts. We discovered that the differential expression between two

groups became more prominent in the pre-dropout counts

(Supplementary Fig. S8).

ERCC spike-ins were available in Tung et al. data. We thus used

capture rates estimated from spike-ins for the result shown. This

dataset also enabled us to examine how specifying the ranked ran-

dom capture rates impacts DE performance on real data. We per-

formed DECENT DE analysis again using the ranked random

capture rates specifying the range as half, the same and 1.5 times the

range of the spike-in estimates. The results turned out to be in con-

cordance with the simulation studies. Although optimal perform-

ance was achieved when capture rates estimated from spike-ins were

used, there were only small decreases in performance when using the

ranked random capture rates (Supplementary Fig. S9). This convin-

cingly demonstrated the viability of using the spike-in capture rates

for endogenous RNA and that DECENT’s DE performance is also

robust to misspecified capture rates.

For the Soumillon et al. data, the median of the log fold-change

estimates deviates from zero when the standard MLEs were used to

estimate the cell size factors sj. This default size factor estimator

effectively performs library size normalization on the inferred pre-

dropout counts. The bias is greatly reduced when using the trimmed

mean of M values method (Robinson and Oshlack, 2010) to esti-

mate the size factors instead and the overall performance of

DECENT was slightly improved (Supplementary Fig. S10). This sug-

gests that different datasets may require different normalization

strategies, and highlights the flexibility of our method with regards

to normalization.

The benchmarking so far was based on two group comparisons.

DECENT performs statistical tests under the under the well-

established GLM framework and can readily accommodate more

complex experimental designs. The Soumillon et al.’s data are a

time course experiment, with three time points involved in adipose

stem cell differentiation. This allowed us to have a glance at how

different DE methods perform on more complex UMI-based

scRNA-seq experiments beyond two-group comparisons. We tested

the hypothesis that expression of a gene is constant across the three

time points. Except for SCDE, which is designed only for two group

comparison, and TASC, which requires spike-ins, other methods

were compared in this setting. The reference genuine DEGs across

the three time points were also derived from the matching bulk

experiments. DECENT again outperformed all other methods with

an even more pronounced advantage (Supplementary Fig. S11).

In terms of controlling type I error, our in-silico investigation

(see Supplementary Materials and Fig. S12) demonstrates that

DECENT controls the type I error quite well.

(a) (b)

Fig. 3. Differential expression analysis of simulated data. (a) Partial receiver

operating characteristic curve for differential expression methods on the

simulated data. (b) False discovery rate curves for differential expression

methods on the simulated data. Both curves only focus on the low P-value re-

gion, since other regions were of little interest in actual DE analysis. Z-edgeR

stands for ZINB-WaVE-adjusted edgeR

(a) (b)

(c) (d)

Fig. 4. Partial receiver operating characteristic curves for differential expres-

sion methods on real datasets. Evaluating the performance of different meth-

ods by partial receiver operating characteristic curves using the (a) Tung

et al., (b) Soumillon et al., (c) Savas et al. and (d) Chen et al. datasets. DEGs

from matching bulk RNA-seq data were used as gold-standard for bench-

marking. DECENT achieves competitive accuracy of identifying genuine

DEGs in all four datasets. We used pROC to focus on the low P-value region

with high specificity. DE methods are denoted by different colors. Z-edgeR

stands for ZINB-WaVE-adjusted edgeR. TASC requires spike-ins and was only

evaluated using the Tung et al. data
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4 Discussion

We presented DECENT, a novel statistical method for performing

DE analysis on UMI-based scRNA-seq data. UMI count data have

provided us with an excellent opportunity to model the molecule

capturing process. We found that the technical variation arising in

this process can be characterized by a gene and cell-specific beta-bi-

nomial capture model. We were able to perform DE analysis on the

inferred pre-dropout counts, and achieve good performance. Our

model is usable either with or without spike-ins and is compatible

with different normalization strategies. Also, we can draw on estab-

lished statistical theory and use the model for analyzing data from

experiments and studies more complex than two group compari-

sons. Used in a three group setting, the model gave promising

results. Adding more cell-level covariates is straightforward (see

Section 2) and is catered for in our software. External RNA spike-

ins, such as the ERCC spike-ins (Jiang et al., 2011) can give valuable

insights into the technical variation in scRNA-seq data. They have

been used in this way in some scRNA-seq methods (Jia et al., 2017;

Lun et al., 2017). However, spiked-in molecules differ from en-

dogenous transcripts in properties such as overall length, and length

of the poly(A) tract, and in their technical variation such as capture

rates (Svensson et al., 2017). This raises the question of whether and

how to use spike-ins in analyses like ours. When they are available

we use them to estimate the capture rates in our model, that is, to

center the beta-binomial distribution in each cell. During the devel-

opment of our beta-binomial capture model, we found more vari-

ation in the data than would be found in a cell-specific binomial

capture model. This extra variation is more likely to be due to spike-

specific biases in capture rates rather than due to random noise

(Supplementary Fig. S2). However, unlike cell-specific capture rates,

the estimated spike-specific biases cannot be generalized to endogen-

ous genes. Indeed we are unable to estimate the such gene-specific

biases using only gene abundance, because it is not separable from a

gene’s mean expression. Such a separation would only be achievable

if extra information was available. For example, it is plausible that

capture rates would depend on features of the gene sequence such as

GC-content and the length of the poly(A) tract. A more refined cap-

ture model might then be built by modeling the relationship between

these gene-specific features and the gene-specific biases of capture

rates. Fortunately, our method is flexible enough to permit the

amount of over-dispersion in the capture process to differ between

the spike-ins and endogenous genes to reflect any differences in the

capture process of the two types of molecules. In this way we deal

with the issue just mentioned.

Although multilevel models fitted with an ECM algorithm are in-

trinsically computationally intensive, DECENT has achieved accept-

able speed with a series of acceleration approaches such as a

gaussian quadrature approximation for large integration and paral-

lelization of all the main steps. For instance, our simulated data with

500 cells and 3000 genes took 18 min, while the largest dataset,

Chen et al. with 6875 cells and 12 929 genes took �8 h to finish on

a 28-core XENON Radon Duo R1885 server node with Intel(R)

Xeon(R) E5-2690 v4 CPUS @ 2.60 GHz. Some existing models for

scRNA-seq allow tests beyond the comparison of means, such as

comparisons of zero fractions, of biological variation or even the

overall distributions (Korthauer et al., 2016; Wang et al., 2018; Wu

et al., 2018). But there remains a difficulty in assessing the type I

error control and power of these tests due to lack of ground-truth.

Single molecule FISH technology is under rapid development and is

able to produce accurate measurements of distributions, biological

variation and the zero fractions. As the amount of such data and

number of genes profiled in this way increases, we should soon have

the opportunity to assess these tests objectively.

While DECENT focuses on performing reliable statistical tests

concerning gene mean abundance, it can be easily be extended to

carry out other types of tests. For example, we can permit the zero-

inflation parameter in the pre-dropout distribution to be a function

of cell type. Then a linear logistic model can be used to test for bio-

logical differences in zero inflation. However, some alteration of the

parameter estimation strategy may be needed to achieve valid testing

results.

We have not incorporated any forms of Empirical Bayes (EB) in

the estimation of DECENT model parameters. Several bulk RNA-

seq methods for differential expression such as edgeR (McCarthy

et al., 2012) and DESeq2 (Love et al., 2014) use EB shrinkage to sta-

bilize estimates of gene-specific dispersion parameter. Among meth-

ods for scRNA-seq data, MAST (Finak et al., 2015) uses EB to

shrink the gene-specific variance parameter. Given that scRNA-seq

data are very sparse, we certainly think there is potential benefit in

using EB to improve DECENT’s performance. One major challenge

is there is no natural conjugate prior for the dispersion parameter of

the ZINB or NB distribution that we use to model the count data.

This is in contrast to MAST that uses Gaussian distribution to model

the log(TPM) þ 1 data and therefore able to take advantage of the

inverse Gamma conjugate prior for the variance parameter.

DECENT also estimates the parameters associated with the unob-

served rather than the observed data, which makes it less straightfor-

ward to introduce Bayes or EB variants. Our current thinking is that

to implement EB within DECENT, we need to either use a form of

(a) (b)

(c) (d)

Fig. 5. False discovery rate (FDR) curves for differential expression methods

on real datasets. Evaluating the performance different method by FDR curves

using the (a) Tung et al., (b) Soumillon et al., (c) Savas et al. and (d) Chen

et al. datasets. Bulk DEGs were considered as conditional positives. DECENT

consistently showed low number of false discoveries at the same number of

declared DEGs across all four datasets. Again, only the top one thousand

DEGs were considered to focus on the region of interested. DE methods are

denoted by different colors. Z-edgeR denotes ZINB-WaVE-adjusted edgeR.

TASC requires spike-ins and was only evaluated using the Tung et al. data
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variational Bayes (Beal, 2003) or something similar to the weighted

likelihood method (Robinson and Smyth, 2007) that has been suc-

cessfully used for bulk RNA-seq data.
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