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ABSTRACT

RNA-small molecule binding is a key regulatory
mechanism which can stabilize 3D structures and
activate molecular functions. The discovery of RNA-
targeting compounds is thus a current topic of inter-
est for novel therapies. Our work is a first attempt
at bringing the scalability and generalization abil-
ities of machine learning methods to the problem
of RNA drug discovery, as well as a step towards
understanding the interactions which drive binding
specificity. Our tool, RNAmigos, builds and encodes
a network representation of RNA structures to pre-
dict likely ligands for novel binding sites. We sub-
ject ligand predictions to virtual screening and show
that we are able to place the true ligand in the 71st-
73rd percentile in two decoy libraries, showing a sig-
nificant improvement over several baselines, and a
state of the art method. Furthermore, we observe that
augmenting structural networks with non-canonical
base pairing data is the only representation able to
uncover a significant signal, suggesting that such in-
teractions are a necessary source of binding speci-
ficity. We also find that pre-training with an auxil-
iary graph representation learning task significantly
boosts performance of ligand prediction. This finding
can serve as a general principle for RNA structure-
function prediction when data is scarce. RNAmigos
shows that RNA binding data contains structural pat-
terns with potential for drug discovery, and provides
methodological insights for possible applications to
other structure-function learning tasks. The source
code, data and a Web server are freely available at
http://rnamigos.cs.mcgill.ca.

INTRODUCTION

Recent studies have identified small organic molecules as
important non-covalent regulators of RNA function (1).
These discoveries contribute to a better understanding of
pathways present in all organisms, but also pose RNA
molecules as a large class of promising novel drug targets.
For example, Ribocil, which has recently been uncovered
through a phenotypic assay to target the FMN riboswitch,
is currently undergoing clinical trials as a novel antibi-
otic (2). Various other small molecule-activated RNA sys-
tems are also being proposed (3-5). Notable among these
is the application to CRISPR activation regulation (6). The
list of possible therapies is likely to expand given the obser-
vations of KD Warner et al. that only a small fraction of the
genome is translated into protein (1.5%) while the vast ma-
jority is transcribed into potentially druggable non-coding
RNA (70%) (7).

RNA structural organization

RNAs possess multiple levels of structural organization
which together determine function, and by extension, lig-
and binding ability. At the simplest level, RNA is a string of
monomers {A, U, C, G} linked by a chain of covalent bonds
known as the backbone. This is commonly known as as the
primary structure of RNA. Non-covalent pairwise interac-
tions between nucleotides (bases) in the chain give rise to the
secondary and tertiary structure. Canonical pairs (i.e. A--
U, C- -G) give rise to the secondary structure. Notably, these
pairs form loops and stacks (helices), assembling a stable
scaffold for the full structure (8). The experimental deter-
mination of binding energies for these pairs (9) prompted
a boom of algorithms for sequence to secondary structure
prediction such as RNAfo1d, (10). In seminal work, Leontis
and Westhof identified 11 additional types of base pairing
occurring in 3D structures (11,12), known as non-canonical
base pairs. These interactions can occur between any pair
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of nucleotides and are defined by the relative orientations of
three faces of the interacting bases in 3D. By considering all
combinations of faces and a cis and frans orientation, we ar-
rive at 12 possible base pairing geometries. Whereas canon-
ical pairs form stable helices, non-canonical pairs are typ-
ically found in loops (i.e. regions without canonical pairs)
and create more complex structural patterns (13,14). These
pairings fine-tune RNA function by defining structure at the
3D level (15). Interestingly, non-canonical pairs were also
found to be enriched in ligand binding sites (16,17), which
corroborates with the observation that increased structural
complexity is associated with binding specificity (7).

These observations, together with the well-studied role
of secondary structure in RNA ligand binding (18), led
us to hypothesize that studying RNA structures at the
augmented base-pairing level (i.e. including non-canonical
pairs) holds useful spatial and chemical information about
ligand binding. However, studying RNA at this level of
structure comes with major algorithmic challenges, such
as the lack of binding energies and more complex inter-
action patterns. For these reasons, non-canonical interac-
tions are typically modeled with statistical methods, and
represented using more general data structures such as
graphs (19). In practice, this means that a graph using ver-
tices to represent nucleotides and multi-relational edges to
encode base-pairing interactions could offer a signature
for RNA ligand binding sites (see Figure 1 for an exam-
ple of a binding site and its associated base pairing net-
work). We call this graphical representation of RNA sites
annotated with canonical and non-canonical interactions
an Augmented Base Pairing Network (ABPN) since we con-
sider base pairs beyond the canonicals. Indeed, similar rep-
resentations of RINA base pairing networks have been ex-
ploited in various tools (14,19-21) for their ability to cap-
ture RNA-specific interactions in an interpretable man-
ner. This paradigm distinguishes RNA from protein-ligand
interactions where surface-cavity topologies tend to drive
binding preferences (22), hence direct use of atomic coordi-
nates can be more appropriate.

Structure-based drug discovery and RNA base pairing net-
works

The central aim of structure-based drug discovery is to iden-
tify compounds with high affinity to a given site or set of
binding sites. A natural problem to address in this context
is the prediction of binding affinity from a binding site—
ligand pair. Machine learning models which solve this task
can be used as alternatives to computationally expensive
docking simulations to screen ligand databases for strong
binders (24). And in some cases have shown superior perfor-
mance to methods built on explicit chemicophysical knowl-
edge (25). This setting is quite feasible in the protein domain
as affinities and drug screens are abundant, hence various
methods have been proposed (26). Recently, some reposi-
tories of RNA small molecule data have been made public
(27) however, only a handful of binding affinities are known.
Given a pose for a ligand inside a binding site, various scor-
ing approaches have been proposed; DrugScoreRNA, and
LigandRNA (28,29), SPA-LN (30) which are built on a pri-
ori chemical knowledge and rely on accurate docking. While
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RNA docking methods which search for the optimal pose
in a binding site are still showing limited success (22,31).

The fundamental commonality in these tools is that they
all require a binding site and ligand as input. Therefore,
identifying a binder consists of docking and scoring all
combinations of RNA and small molecules from a desired
library in all putative poses, which can be prohibitive. In this
work, we ask whether base pairing patterns, which creates
a scaffold for the 3D structures and is easier to obtain, can
be used to accelerate these searches. Or in other words, if a
coarse-grained representation of RNA structures provides
sufficient information about potential ligands.

To our knowledge, the closest contribution to this work
is a template-based approach named Inforna (32). Inforna
searches through an input sequence and secondary struc-
ture for motifs that are similar to those found in a library of
small-molecule structural binding motifs, and return can-
didate ligands. Here, we propose two major innovations to
such approaches. First, we take the first step towards learn-
ing a generalizable RNA binding landscape that can be used
to infer compounds which are not explicitly present in com-
pound libraries. Previous contributions have shown success
in using protein 3D structures information to reach this
objective in proteins (25,33-35), but this is to our knowl-
edge the first attempt to apply a similar strategy to RNAs.
Next, because we also aim to leverage the specificity of the
RNA structural organization, we investigate the impact of
higher-order base pair interactions (beyond classical sec-
ondary structure), which has yet to be explored.

Contribution

RNAmigos brings together domain knowledge of RNA
structure, currently available crystal structure data, and
graph neural networks, to show that base pairing networks
can be used to automatically predict ligands for RNA struc-
tures. Importantly, we propose the use of Augmented Base
Pairing (ABPNs) networks, an enriched alphabet of base
pairing interactions, and demonstrate that they are a nec-
essary component for capturing binding signatures. Molec-
ular fingerprints predicted by RNAmigos serve as ligand
search tools across diverse ligand classes and show strong
performance in two different ligand screens, as well as com-
pared to a state of the art method, Inforna (32). Addition-
ally, we explore the use of an unsupervised graph represen-
tation learning scheme for boosting model performance in
this low-data setting. The implications of our work are 2-
fold (i) we show for the first time that we can learn from
non-canonical interaction data to make predictions about
RNA function and (ii) our ability to enrich for actives in
compound libraries shows potential for RNAmigos as an
upstream filtering step for more fine-grained drug discovery
tools such as docking. The core implementation of RNAm1 -
gos is built in Pytorch (36) and DGL (37) and is available
as an open source Python 3.6 software package.

MATERIALS AND METHODS

Model overview

Our model (RNAmigos) seeks to identify possible ligands
for a given coarse-grained representation of an RNA bind-
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Figure 1. (A) Binding site atomic coordinates. (B) Graph encoding of binding site as an augmented base pairing network (ABPN). RNA structure repre-
sentation of the THF riboswitch binding site (PDB: 4L.VV) as atomic coordinates using UCSF Chimera (23)(left) and resulting augmented base pairing
network (ABPN) (right). We superpose the ABPN in the 3D visualization. Nodes are drawn as white spheres, backbone connections are in white, and
canonical and non-canonical base pairs are green and red tubes respectively. We color the edges simply to guide the eye to the corresponding base pairs
but note that edge color has no special meaning to our graphs. We annotate the graph representation with the standard Leontis-Westhof nomenclature for
pairing type symbols. In this case, the binding site has three canonical interactions denoted (e), and three non canonicals of types (IO, >, Or>).

ing site (see Figure 2). More precisely, our input is an ABPN
modelling the RNA structure, from which we predict a
molecular fingerprint for a potential ligand. This fingerprint
can be used to search a library of compounds for active
binders. We train RNAmigos on RNA-ligand pairs found
in the RCSB PDB Data Bank (38), and use graph neural
networks (39) to learn the relationship between RNA struc-
ture and ligand binding preferences.

Dataset preparation

We begin by collecting a set of RNA-small molecule com-
plexes from the PDB Data Bank (38). We download all crys-
tal structures (90% identity threshold) which contain RNA
and at least one ligand. This results in 2993 PDB struc-
tures. We omit ions such as magnesium (Mg+) from the
set of valid ligands as they vastly outnumber organic lig-
ands and likely require customized models. (40) We choose a
maximum allowable distance between any ligand atom and
any RNA atom of 10 Angstroms according to David-Eden
et al. (16) which statistically characterized ribosome antibi-
otic binding sites. The number of valid sites is further re-
duced when we remove binding sites with fewer than five
RNA residues and remove binding sites containing a large
proportion of protein residues, (See Supplementary Figure
S1). The final training set consists of 773 binding sites asso-
ciated to 270 unique ligands.

Finally, we build an ABPN from the 3D structure of each
binding site identified in the previous step. In the ABPN,
each node corresponds to a residue in the binding site,
and links/edges are formed between nodes if they form
a backbone or base pair interaction. Node and edge an-
notations are taken from the BGSU RNA 3D Motif At-
las (14) database which maintains base pairing annotations
of all PDBs with Leontis-Westhof and backbone interac-

tion types computed by the software FR3D (41). In this
manner, each ABPNs stores the nucleotide identity (2, U,
C, G) of each of its residues as a node attribute, and each
base pairing interaction corresponds to an edge with one
of 13 different types (backbone + 12 base pairing geome-
tries). The resulting graphs are on average 15.76 nodes in
size. At this point, the ligand is removed from the struc-
ture so that the graph contains only RNA base-pairing in-
formation. While atomic coordinates are the current source
of data, we highlight that a key feature of taking ABPNs
as input is that we can eventually learn from many other
sources of ABPN data which are easier to obtain than crys-
tal structures. A promising example comes from recent de-
velopments in predicting base pairing networks from RNA
sequences in high-throughput (21,42). Our model would
then be able to directly use such predictions once they are
linked to a functional label (such as a ligand in this case).
For full details on binding site extraction and graph con-
struction, see Supplementary Material S1.1.

Fingerprint prediction

Given a binding site, our model predicts a set of chemi-
cal features which can be used to identify a ligand. This
set of features is typically known as a molecular finger-
print (43). Many approaches to compute fingerprints from
chemical structures have been developed; all with the com-
mon aim of numerically encoding chemicals (44-46). Such
encodings greatly facilitate searches for similar compounds
in databases and screens. In this work, we use a common
fingerprint implementation known as the MDL Molecular
Access Keys (MACCYS) fingerprint (47) which has the ad-
vantage of providing compact and interpretable entries. For
a given chemical compound ¢, the MACCS fingerprint f, is
a 166 bit binary vector where each entry indicates the pres-
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Figure 2. Outline of the RNAmigos pipeline. A base pairing network is passed as input to RNAmigos. In training mode, it is paired with a native ligand
(Target) from which a target fingerprint y is constructed. The embedding network (RGCN) produces a matrix of node embeddings of dimension n x d
where 7 is the number of nodes in the graph, and d is a fixed embedding size. This is followed by a pooling step which reduces node embeddings to a single
graph-level vector. Finally, the graph representation is fed through a multi-layer perceptron (MLP) to produce a predicted fingerprint y that minimizes
the distance L. to the native fingerprint y. The fingerprint is then used to search for similar ligands to the prediction in a ligand screen and thus enriches
the probability of identifying an active compound. The RGCN network is pre-trained using an unsupervised node embedding framework which allows us
to leverage structural patterns from a large dataset of RNA structures. This network is trained to generate embeddings which minimize the distance (£,)

between kernel similarities k(u, v) and embedding similarities (z,, zv).

ence or absence of a chemical property. For the i chemical

property, f[i] is set to 1 if the chemical property is present
and is 0 otherwise. We use the set of 166 predefined chemi-
cal properties from the Pybel (48) implementation as a tar-
get vector for our model. We emphasize that the computa-
tion of the fingerprint depends only on the chemical com-
position of the ligand and not on the RNA binding site.
The main objective of our model is to predict the set of
chemical features (fingerprint) that is close to that of the co-
crystallized ligand using only RNA base pairing networks.
For convenience, we call the ligand co-crystallized with a
given site its native ligand.

Model architecture

Since a key feature of our ABPNs is the fact that we en-
code base pairing geometry as an edge category (or relation
type) in a graph, we use a Relational Graph Convolutional
Network (RGCN) (39) as the core of the fingerprint predic-
tion model (see Figure 2). An RGCN is a specialized neural
network which acts directly on graphs, allowing us to nat-
urally model ABPN structures. Here, a nucleotide is asso-
ciated with a node and a base pair interaction represented
by an edge. At a high level, the RGCN computes an encod-
ing for each node, known as a node embedding. Formally,
we denote a node embedding for node i as a d-dimensional
real-valued vector, z; € R?. The notion of a node embed-
ding can be understood in a similar manner to molecular
fingerprints. Each entry of the vector numerically encodes

a feature of the node and its neighbourhood (i.e. the nu-
cleotide).

We can choose the embeddings such that they maxi-
mize performance on some classification task (supervised;
analogous to image classification), or to capture structural
similarity relationships (unsupervised; analogous to dimen-
sionality reduction, and molecular fingerprints). More for-
mally, a supervised task is one where each training point
has an associated external label (i.e. the feature we want to
predict). In our case, the native ligand acts as a label for
the binding site. On the other hand, an unsupervised task
is one where we only have the input data but no ground
truth; and the task becomes to compute the best possi-
ble classification of the data points. We will therefore ad-
ditionally train a model to recognize structurally similar
RNA neighbourhoods via unsupervised node embedding
techniques.

In this work, we propose a pipeline that combines super-
vised and unsupervised node embedding methods to best
represent ABPN structure and maximize predictive perfor-
mance. Figure 2 provides an overview of our system. Given
an ABPN, (Figure 2A) we use an RGCN to compute an
embedding for each node, to which add the identity of the
corresponding nucleotide. In this manner, node embeddings
represent structure and sequence identity. The node embed-
ding RGCN is pre-trained using an unsupervised structure
encoding task (Figure 2B). Since our task is to associate the
entire ABPN with a molecular fingeprint, we use a pooling
process (Figure 2C), which aggregates node-level embed-
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dings into a graph-level (binding site) representation. The
final graph-level representation (the vector /4 in Figure 2C),
is fed through a simple neural network to output the final
fingerprint. The entire network is trained to minimize the
difference between the predicted fingerprint y and the na-
tive fingerprint y using a standard binary cross-entropy loss.
Finally, we evaluate our predictions by using the predicted
fingerprint to identify the native ligand from a compound li-
brary (Figure 2D). See Supplemental Material S2 for a full
description of the neural network.

Unsupervised pre-training: ABPN node embeddings

Since RNA-small molecule binding events are relatively
infrequent in the set of RNA 3D structures, the number
of training points for ligand prediction (supervised learn-
ing) is limited. However, we are still able to leverage the
full set of RNA 3D structures (3,972 full RNA structures
versus 773 binding sites) using unsupervised pre-training,
which is known to boost performance when labeled data is
scarce (49). Recent methods have been developed for un-
supervised learning on network data (50,51). As described
in the preceding section, node embeddings can be trained to
maximize performance on a prediction task (e.g. ligand pre-
diction), or an unsupervised task (encoding similarity rela-
tionships, e.g. molecular fingerprints). In our case, we would
train an RGCN to simply produce similar embeddings for
RNA nodes with similar local structures. This would define
a learning task on RNA structures for which we don’t have
a label (native ligand).

This process is analogous to molecular fingerprint build-
ing, where we wish to numerically encode structural similar-
ity relationships. Once the RGCN has learned to encode the
local structure of each node, the downstream task of ligand
prediction becomes less prone to overfitting and more likely
to learn general patterns (49). In the unsupervised setting,
we train a model to produce embeddings for a pair nodes
such that the similarity between the embeddings z, and zv
is proportional to a user-defined similarity measure K which
compares nodes u and v in the graph.

We are free to choose the pairwise node similarity func-
tion K: (u, v) — [0, 1] according to the application domain.

Here, we adapt the node similarity function proposed in
struc2vec (52) which allows us to capture local struc-
tural similarity across graphs. Other node similarity func-
tions such as the ones used in GraphClust for RNA 2D
structures (53) are only able to compare nodes within the
same graph and are affected by the distance between nodes
which is not necessarily related to structural identity. Our
similarity function addresses these limitations by compar-
ing the counts of edge types in the local neighbourhood
of u and v. We provide an example of a comparison be-
tween a pair of two nodes on simplified graphs in Figure 3
and show the result on a sample ABPNs in Supplementary
Figure S3.

Therefore, in the first training phase, our network tries to
learn node embeddings on a large data set which are aware
of general RNA structural patterns. Once this phase has
converged, the model is then asked to predict ligand finger-
prints.

Figure 3. Here, we compare the local neighbourhoods of node u in graph
G and node v in graph H. In this simple example, graphs only have one of
two possible edge types, red and black. We compare the distributions of
edge labels at each distance from the source nodes (z and v) to obtain the
final similarity value K(u, v).

Ligand screen

Here, we propose a test to interpret the usefulness of our
model by measuring its performance in a ligand screen set-
ting. In a ligand screen, we are given a set of compounds
and we seek to identify the most promising one. For vali-
dation, we know a native binder and we hide it in a set of
inactive compounds, also known as as decoys. The model
is asked to find back the active. Given a binding site, our
model produces a predicted fingerprint. We then rank all
compounds of the decoy set according to distance to the
predicted fingerprint. We normalize this score by the size of
the set. Thus, a successful predictor will rank the native lig-
and as closest to its prediction (normalized rank close to 1),
while a random predictor will result in an average rank of
0.5.

Considering that the distribution of RNA ligands ap-
pears to cluster to specific sub-regions (see Supplementary
Figure S2), this evaluation method also ensures that a clas-
sifier does not obtain a good score by simply predicting the
average ligand as it would when only considering the abso-
lute distance between the predicted and the native finger-
prints.

We construct two decoy sets for our experiments. Since
there are currently no experimentally validated data sets of
active and inactive binders for a given RNA site (such as
DUDE for protein (54)), our first set consists of all RNA-
binding ligands in the PDB (270 ligands). The second de-
coy set is constructed using Decoy Finder (55) on default set-
tings, which samples a list of 36 decoys for each compound
such that generic chemical properties are preserved while
potentially disturbing binding potential. Of course, this test
assumes that chemical dissimilarity between an active com-
pound implies inactivity which is not always the case (56).
However, the current aim of our work is simply to determine
whether ABPNSs retain significant amount of information
about its observed ligand preferences, for which this test is
sufficient.



RESULTS

We report resulting rank over the list of all RNA-small
molecule pairs as well as the set of all decoys for each ligand,
following the two decoy benchmark process.

Due to the limited size of our labeled data set, we per-
formed a 10-fold cross-validation to include all training
pairs in the evaluation and provide a more accurate measure
of performance. All results are reported from the held-out
sets in our validation, hence the model is never trained on
the same binding sites that are being predicted on.

Node embeddings are computed using a three-layer
RGCN, each layer consisting of 16 dimensional inputs
and outputs, a graph attention layer computing a 16-
dimensional graph embedding and a fully-connected layer,
which outputs a 166-dimensional vector. See Supplemen-
tary Table S1 for full model architecture and hyperparame-
ters. Variations of the architecture used did not have strong
effects on performance, so no extensive hyper-parameter
search was conducted. We leave the exploration of other ar-
chitecture choices for future work.

Augmented RNA base pairing networks encode binding pref-
erences

Setting. The first hypothesis to test is that the proposed
framework (ABPN) is able to retrieve some information
about ligand binding. To explore this question, we compute
the rank and distance metrics on ablated data. We compare
this performance to three baselines:

e random consists of a synthetic label set where each bind-
ing site is assigned a uniformly random 166-dimensional
binary vector (fingerprint).

e swap is designed to account for imbalances in the data
(some ligands are more frequent than others): each bind-
ing site is assigned a fingerprint selected at random from
the set of observed fingerprints. The overall distribu-
tion of ligand fingerprints thus remains the same but the
input-output correlations are broken.

e majority is a constant ligand annotation computed as a
majority vote over all fingerprints at each index. This is
to be compared to the swap to check that the only thing
that can be learnt on swapped data is over-representation
of some ligands within the experiment.

The distributions of performance over each binding site—
ligand pair is visualized for all experiments in Figure 4 as a
box plot. Summary statistics can be found in Table 1 with
accompanying standard deviations in Supplementary Table
S2, and Euclidean distances from the native ligand in Sup-
plementary Figure S5. We also assessed the statistical signif-
icance of the difference of the means in a pairwise Wilcoxon
rank test which is shown in Table 2.

Performance. In the RNA ligands setting, our full model
achieves a rank of 0.68 and an mean-squared error (MSE)
of 0.150 to the native fingerprint. The random, swap and ma-
Jjority experiments respectively yield ranks of 0.542, 0.603
and 0.603 and mean squared errors (MSEs) of 0.5, 0.18 and
0.18. This confirms that this model retrieves signal for the
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Figure 4. Distribution of rank achieved on ligand screening. All points are
from test set data on a 10-fold cross validation. The median is denoted
with a dashed line and the mean with a green triangle. Each point is the
normalized rank of one binding site’s native ligand when searching for it
using our network’s predicted fingerprint.

data and outperforms baselines. This conclusion is statis-
tically significant based on a Wilcoxon P-value of at most
7e—18 between the model and the randomized results. As
expected, the majority scheme is statistically equivalent to
the swapped one and superior to the random one. These
results are similar in the DecoyFinder (See Supplementary
Figure S4) setting where the mean rank of the model is 0.69
compared to 0.62 in the majority setting. This shows that
the full model successfully retrieves some signal and outper-
forms the baselines (Wilcoxon test results for DecoyFinder
are shown in Supplementary Table S3).

Augmented base pairing networks encode ligand binding in-
formation

Next, we test the hypothesis that robust descriptors in the
form of ABPNs from RNA domain knowledge are key to
retrieve this signal. The question is whether the non canon-
ical interactions encode information that lower levels of
structure (secondary, primary) do not. We answer this ques-
tion by performing three ablation experiments on our train-
ing set:

e primary encodes the binding sites as graphs that only con-
tain node sequence and backbone interactions.

e secondary uses only information from the secondary
structure which includes canonical pairs and backbones.

e no-label preserves all the interactions (and thus graph
structure) in the graph (including non canonical) but do
not distinguish between different edge types (i.e. edges
only have one label).

In all these conditions, we find that performance is no
better than the randomized baselines, indicating that non
canonical interactions are essential for encoding specificity
in ligand binding.

Indeed, the best performing model is no-label which has
a Wilcoxon P-value of 0.55 with the majority experiment
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Table 1. Mean ligand screen ranks and L2 (Euclidean) distance achieved on held-out binding sites for each experiment and decoy set

Experiment Ranks L2
DecoyFinder RNA DecoyFinder RNA

Random 0.611 0.542 0.502 0.502
Majority 0.621 0.603 0.175 0.179
Swap 0.617 0.603 0.177 0.179
No-label 0.628 0.606 0.176 0.180
Primary 0.624 0.592 0.181 0.186
Secondary 0.631 0.605 0.178 0.182
ABPN 0.695 0.681 0.155 0.160
ABPN + unsup. 0.735 0.715 0.145318 0.150189

Table 2. Wilcoxon rank test for all pairs of training conditions. Each entry in the table is the P-value for testing the hypothesis that the ranks resulting
from a pair of experiments come from the same distribution. These are performed on the RNA decoy set. We provide the test results for the DecoyFinder

decoy set in Supplementary Table S3 material and show consistent results.

Experiment 2 aBPN Secondary Primary No-label Majority Swap Random
Experiment |

ABPN + unsup. 2.9¢-06 5.1e-26 1.4e-22 2.1e-21 9.3e-25 7.2e-26 2.3e-18

ABPN - 1.7e-11 5.6e-11 1.5e-08 4.3e-10 6.4e-12 2.0e-08

Secondary - 3.2e-01 7.7e-01 1.3e-01 2.8e-02 1.7e-01

Primary - 4.3e-01 2.7e-01 2.4e-02 3.2e-01

No-label - 5.5¢-01 1.5e-02 1.8e-01

Majority - 3.7e-01 3.3e-01

Swap - 5.5e-01

and of 1.7e—18 with the ABPN. This finding is in agree-
ment with biological literature on RNA binding sites and
the importance of complex structural motifs for determin-
ing functional specificity (7,16). This is a major validation
of the hypothesis that these are the correct representation
for RNA structure for this task.

Unsupervised pre-training boosts performance

As explained in ‘Unsupervised Pre-Training: ABPN Node
Embeddings’, one major limitation for this supervised task
is the paucity of data. We investigated the possibility of us-
ing unsupervised learning by pre-training on an unsuper-
vised task, and denote this experiment as A BPN unsup. The
use of unsupervised pre-training of the node embedding
network provides a significant performance boost over a
network trained only on fingerprint reconstruction (MSE
=0.68 versus MSE = 0.715), with a P-value of 2.9¢e—6 This
is a methodological insight that can have applications for
various other RNA-related tasks for which labeled data is
typically scarce.

Our model can predict diverse ligand classes

Next, we ask whether the positive results can be explained
by a small set of ligands, or whether it is able to achieve high
scores on a diverse set of ligands. To get a better view of per-
formance, we plot the same prediction scores but averaged
over ligand types (270 unique ligands) against a hierarchical
clustering dendrogram of each ligand (shown in Figure 5).

Colored-in subtrees indicate groups of ligands that are
similar, (i.e. within 0.25 Jaccard distance of each other)
which would indicate strong clustering. In this manner, we
are able to assess the performance across ‘classes’ of similar
ligands. We first observe that successful classifications are
not restricted to a single class of ligands and instead show
good predictions for diverse ligands. Interestingly, the class
that is most consistently predicted accurately corresponds
to the aminoglycosides (highlighted in the green cluster in

the middle). Aminoglycosides are a class of antibiotics bind-
ing to bacterial RNA with well-defined binding sites (57),
and are quite abundant in the dataset. Nucleic acid-like
compounds, many of which bind riboswitches, also form a
large family of binders (green) however results were less con-
sistent than for aminoglycosides. A possible explanation for
strong performance on aminoglycosides, apart for the larger
number of examples obtained, is that these are typically
large polysaccharide-like structures with a large number of
interactions with the RNA. On the other hand, riboswitches
bind much smaller molecules with a limited number of in-
teractions. As a result, binding site requirements are much
more complex and specific with aminoglycosides and the
large number of interactions can only be fulfilled by a lim-
ited number of molecules. We leave this question for fu-
ture work, as with the current dataset size, we are unable to
provide quantitative evidence of such phenomena. Finally,
ligands clustered on the left of the dendrogram show the
weakest performance. Since these groups show little branch-
ing in the dendrogram, we can conclude that they represent
sparsely populated ligand classes for which we have few ex-
amples and thus, obtaining more data in these regions could
improve performance.

Comparison with a secondary structure-based tool

Finally, we compare the performance of RNAmigos with
the closest related tool we could find, Inforna (32). Inforna
accepts as input a RNA sequence with a secondary struc-
ture and returns a list of candidate ligands, based on se-
quence and structural similarities with motifs stored in a
database. Although the input is not strictly identical, it
is quite close to the one of RNAmigos. Similarly for the
output, Inforna provides direct ligand information. In this
benchmark, we provide to Inforna secondary structures
computed with Forgi (58) directly from the PDB files, which
is the most accurate input available.

For each chain in each RNA PDB associated with a lig-
and in the PDB databank set, we query the Inforna web
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Figure 5. RNAmigos performance by ligand class. Hierarchical clustering dendrogram of the ligands, classifying ligand families by similarity. Each cell in
the horizontal grid is the average score for binding sites containing a given ligand. Ligands belonging to the same tree are grouped together by the clustering
procedure. Colored-in sub-trees denote tight clusters which contain ligands within 0.25 Jaccard distance.
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Figure 6. Distribution of native ligand rank achieved on ligand screening
in RNAmigos and Inforna.

server and obtain a list of candidate ligands that we use
to search for the native ligand (see Supplementary Table
S4). Importantly, in contrast to RNAmigos for which we
directly provide the binding site, Inforna scans the whole
input structure for candidate sites. To address this discrep-
ancy, we only take the maximum score returned by Inforna
for each structure.

We show the results of our benchmark in Figure 6 (sce
Supplementary Figure S6 for corresponding distance com-
parisons). We were able to obtain predictions for 176 unique
RNA chains corresponding to 82 unique ligands. The re-

duction from the RNAmigos set is maily due to excluding
PDBs which contain protein and some secondary structure
extraction failures. In this context, Inforna achieves an av-
erage enrichment at the level of our random model (mean
rank 0.43, and distance 0.48), and to some extent also con-
sistent with the performance of RNAmigos using only sec-
ondary structure information.

We analyzed the performance across ligand classes (see
Supplementary Figure S7) and observed that the accuracy
of the predictions appears to be stronger in well-known
classes such as aminoglycosides and riboswitch ligands, but
the performance decreases sharply outside these classes.
This phenomenon could highlight a shortcoming of non-
generalizable models, and thus a benefit of our approach.
Looking at ligand classes where both tools made predic-
tions (Supplementary Table S4), we observe that RNAmi -
gos outperforms Inforna in nearly all classes (Inforna out-
performed RNAmigos on 10 of 66 ligands tested on Inforna
by a margin larger than 0.1.). It suggests that the richer
structural representation leveraged by RNAmigos is an im-
portant source of specificity. Since both tools work with dif-
fering levels of representation (2D versus augmented 2D)
and at different scales (binding site versus full sequence),
we stress that this benchmark do not intend to be a direct
comparison but rather a demonstration that higher-level in-
teractions are a crucial source of information.

DISCUSSION

We have developed a unique computational platform,
RNAmigos, to show that augmented RNA base pairing net-
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works contain useful ligand binding information. The sig-
nificance of our results is 2-fold.

We show for the first time that ABPNs encode sufficient
information for a classification task, and establish an ini-
tial methodological primitive for such a task. To date, the
majority of computational methods which leverage ABPNs
have focused on sequence to structure (21,59) prediction
and motif identification (14,20). While these tasks involve
some degree of learning, the relevance of higher-order inter-
actions lies ultimately in their potential to specify function,
which until now has been left unexplored. Interestingly,
these findings come at a time when information of the type
our model uses is becoming more widely available. Com-
putational prediction tools such as (21,59) promise to yield
large amounts of higher-order RNA pairwise interaction
data without need for costly crystallography experiments.
This opens the door to applying such data in other impor-
tant biological problems such as RNA binding protein pre-
diction (60) and ion binding (40). Furthermore, the promis-
ing results obtained from the unsupervised pre-training pro-
vide a methodological building block for assisting in super-
vised learning on complex RNA structures.

Second, our findings take a first step towards learning-
based methods for systematically identifying drugs binding
to RNA, and pinpoint ABPNs as essential tools for this
task. The finding that only ABPN representations of bind-
ing sites was able to produce a significant signal in the task
indicates that richer representations are necessary for suc-
cessful classification when complex interactions are at play.
Since our prediction is a fingerprint vector (chemical de-
scriptor) and not a simple classification of ligands (i.e di-
rectly selecting a single ligand as output, or predicting an
affinity), the fingerprint itself can be used to search large
ligand databases, and can eventually be applied to direct
molecule generation (25). While performance was strong
across different ligand classes, it is apparent that classes
for which data is more abundant received more consistently
positive predictions. Therefore, as more examples of RNA-
ligand complexes are characterized by experimental and
computational techniques, we believe that the performance
of our platform will improve. Additional data will also allow
us to account for properties desired in medical applications
such as synthesizability, and drug-likeness (61). Our choice
of graphs for binding site representation reflects this consid-
eration, as graphs can natively hold additional information
such as evolutionary or chemical properties without requir-
ing changes to the pipeline. Furthermore, recent advances in
graph neural networks would provide the ability to model
binding site flexibility (62). Eventually, computational pre-
dictions of ABPNs from sequence (21) combined with
our methods will enable large-scale searches for binding
sites.

We hope that this work will motivate further investi-
gation of the links between ABPNs and RNA function,
and eventually facilitate efforts in RNA targeted drug
discovery.
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