
Citation: Zhao, D.; Wang, Y.; Shao, J.;

Chen, Y.; Guo, Z.; Pan, C.; Dong, G.;

Zhou, M.; Wu, F.; Wang, W.; et al.

Compute-in-Memory for Numerical

Computations. Micromachines 2022,

13, 731. https://doi.org/10.3390/

mi13050731

Academic Editors: Andrey Sokolov

and Haider Abbas

Received: 25 February 2022

Accepted: 18 April 2022

Published: 2 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Review

Compute-in-Memory for Numerical Computations
Dongyan Zhao 1, Yubo Wang 1, Jin Shao 1, Yanning Chen 1,2, Zhiwang Guo 3,*, Cheng Pan 1, Guangzhi Dong 2,
Min Zhou 1, Fengxia Wu 2, Wenhe Wang 1, Keji Zhou 3,* and Xiaoyong Xue 3

1 State Grid Key Laboratory of Power Industrial Chip Design and Analysis Technology, Beijing Smart-Chip
Microelectronics Technology Co., Ltd., Beijing 100192, China; dongyan-zhao@sgitg.sgcc.com.cn (D.Z.);
wangyubo@sgitg.sgcc.com.cn (Y.W.); shaojin@sgitg.sgcc.com.cn (J.S.); chenyanning@sgitg.sgcc.com.cn (Y.C.);
pancheng@sgitg.sgcc.com.cn (C.P.); zhoumin3@sgitg.sgcc.com.cn (M.Z.);
wangwenhe@sgitg.sgcc.com.cn (W.W.)

2 Beijing Chip Identification Technology Co., Ltd., Beijing 100192, China;
dongguangzhi@sgitg.sgcc.com.cn (G.D.); wufengxia@sgitg.sgcc.com.cn (F.W.)

3 State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University,
Shanghai 201203, China; xuexiaoyong@fudan.edu.cn

* Correspondence: zwguo20@fudan.edu.cn (Z.G.); kjzhou@fudan.edu.cn (K.Z.)

Abstract: In recent years, compute-in-memory (CIM) has been extensively studied to improve the
energy efficiency of computing by reducing data movement. At present, CIM is frequently used in
data-intensive computing. Data-intensive computing applications, such as all kinds of neural net-
works (NNs) in machine learning (ML), are regarded as ‘soft’ computing tasks. The ‘soft’ computing
tasks are computations that can tolerate low computing precision with little accuracy degradation.
However, ‘hard’ tasks aimed at numerical computations require high-precision computing and are
also accompanied by energy efficiency problems. Numerical computations exist in lots of applica-
tions, including partial differential equations (PDEs) and large-scale matrix multiplication. Therefore,
it is necessary to study CIM for numerical computations. This article reviews the recent develop-
ments of CIM for numerical computations. The different kinds of numerical methods solving partial
differential equations and the transformation of matrixes are deduced in detail. This paper also
discusses the iterative computation of a large-scale matrix, which tremendously affects the efficiency
of numerical computations. The working procedure of the ReRAM-based partial differential equation
solver is emphatically introduced. Moreover, other PDEs solvers, and other research about CIM for
numerical computations, are also summarized. Finally, prospects and the future of CIM for numerical
computations with high accuracy are discussed.

Keywords: compute-in-memory (CIM); numerical computations; resistive random-access memory
(ReRAM); partial differential equations (PDEs); crossbar

1. Introduction

Different from data-intensive computing (typically all kinds of neural networks), high-
precision computing is aimed at accurate numerical computations like large-scale matrix
multiplication and partial differential equations (PDEs). At present, neural networks (NNs)
have a lot of applications and are widely used in daily life. However, applications of
high-precision computing could not be solved by NNs, whether in scientific research or in
the actual scene. The requirements of throughput and energy efficiency for computing are
constantly improving; therefore, CIM (computing-in-memory) is proposed as the solution
of the Von Neumann bottleneck. The progress of CIM for numerical computations has
great value in finance, engineering, computer science and other disciplines. It is ubiquitous
in the field of scientific research and engineering. For example, improving the physical
authenticity of virtual reality (VR), analyzing SIS infectious diseases with age structure,
studying the BSM equations of derivative pricing theory, preprocessing and extracting
image information and many other practical problems involve partial differential equations.

Micromachines 2022, 13, 731. https://doi.org/10.3390/mi13050731 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13050731
https://doi.org/10.3390/mi13050731
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-9001-4569
https://doi.org/10.3390/mi13050731
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13050731?type=check_update&version=1

Micromachines 2022, 13, 731 2 of 16

In recent years, all kinds of PDEs solvers based on different CIMs, including ReRAM, SRAM,
flash memory and PCM, have emerged in numerical computing research. ReRAM-based
CIM, as a relatively mature CIM technology, is still used for most of the high-precision
CIM research. So, this article reviews the ReRAM technology, the principle of the ReRAM
crossbar and the working process of ReRAM in CIM, firstly. Then, it summarizes the
numerical methods of PDEs, matrix iterative methods, rearrangement methods and split
methods. After that, the working procedure and current developments of all kinds of
CIM-based partial differential equation solvers are discussed. Moreover, their performance
and characteristics are also compared. Aimed at defects in PDEs solvers, the solutions
to get high-precision in large-scale matrix multiplication under environmental effects are
proposed. In the future, the developments of CIM-based numerical computations will be
improved in the manufacturing process, the write-verify method, the algorithm of sparse
matrixes and the software/hardware collaboration.

2. ReRAM
2.1. The Appearance of ReRAM

In the early 1960s, various research about ReRAM devices with all kinds of oxide
materials, including Al2O3, NiO, SiO2, Ta2O5, ZrO2, TiO2 and Nb2O5, emerged in an
endless stream [1–5]. Compared with metal-oxide-semiconductor field-effect transistors
(MOSFET), which appeared in 1960 [6,7] for the first time, ReRAM devices are the products
of the same period. In the 40 years that followed, the technology of resistive switching has
not made significant progress in storage applications.

2.2. The Development of ReRAM as NVM

With the explosive growth of portable electronic devices, the requirement and storage
capacity of memory devices have increased rapidly. Higher density, faster speed and
lower cost have become the goal of new memory devices. ReRAM, as a kind of non-
volatile memory (NVM) [8], was regarded as one of the continuations of NAND flash
memory [9], though there were many emerging nonvolatile memory (eNVM) devices, such
as phase-change memory (PCM) [10], magnetic random-access memory (MRAM) [11] and
ferroelectric random-access memory (FeRAM) [12], over the same period. Table 1 lists the
types of NVMs and the category of ReRAM.

Table 1. The types of the NVM and the category of ReRAM.

ReRAM MRAM FeRAM PCM Flash Memory

OxRAM
STT-MRAM
SOT-MRAM

VCMA
FTJ

NAND Flash
Nor Flash

AG-AND FlashCBRAM

ReRAM is a two-terminal device with a variable resistance based on a physical mech-
anism of conducting filament formation and rupture [13]. According to the types of
filamentary, ReRAM can be divided into oxide ReRAM (OxRAM) and conductive bridge
ReRAM (CBRAM) [14]. ReRAM changes between high-resistance states (HRS) and low-
resistance states (LRS) under different operating conditions, representing logic 0 and 1,
separately. The formation of the conducting filament corresponds to the LRS, and the HRS
is the opposite.

Figure 1a is the structure of the OxRAM, and there is a metal oxide material between
the two electrodes in the OxRAM. When a positive voltage is applied between the top
electrode (TE) and the bottom electrode (BE), a conductive filament is formed between the
two electrodes. While in Figure 1b, the electrode of the CBRAM is injected with copper or
silver metal (Cu or Ag). Moreover, the CBRAM forms the conductive bridge by diffusing Cu
or Ag into the oxide or chalcogenide (like GeS2). When the voltage is sufficiently positive,
there will be the oxidation of Cu or Ag at TE, and they will be reduced and deposited at
BE. When the voltage transfers to the negative, there will be the reduction of Cu or Ag at

Micromachines 2022, 13, 731 3 of 16

TE, and then the conductive filament connecting the two electrodes, and the state of the
CBRAM, changes from HRS to LRS [15].

Micromachines 2022, 13, x FOR PEER REVIEW 3 of 16

positive, there will be the oxidation of Cu or Ag at TE, and they will be reduced and de-
posited at BE. When the voltage transfers to the negative, there will be the reduction of
Cu or Ag at TE, and then the conductive filament connecting the two electrodes, and the
state of the CBRAM, changes from HRS to LRS [15].

(a) (b)

Figure 1. (a) Structure of OxRAM; (b) Structure of CBRAM.

Since 2000, the research on ReRAM have explosively increased. The first NiOx-based
ReRAM with promising device characteristics and reliability was proposed by I. Baek in
2005 [16]; the HfO2/Ti device was made with fully conventional fab materials [17]; the 3D
vertical ReRAM emerged in 2009 [18]; the 10 × 10 nm2 Hf/HfOx crossbar resistive RAM
was produced in 2011 [19]; the first 16-Gb ReRAM integrated chip with copper oxide ma-
terial [20], etc. However, because of the 15 nm critical dimension (CD) and the develop-
ment of 3D NAND flash memory, using the ReRAM in high-density applications became
more and more difficult.

2.3. ReRAM in CIM
In recent years, compute-in-memory widely emerged in machine learning (ML) and

data-intensive computing. CIM is an effective method to break the Von Neumann bottle-
neck when computing large-scale data [21], which can achieve high speed and low-power
computing by reducing data handling. Edge AI applications based on deep neural net-
works (DNNs) are designed to find the solution to achieving portable, fast, accurate and
convenient computing. Computing efficiency (defined as terra-operations-per-second-
per-millimeter-squared, TOPS/mm2) and energy efficiency (defined as terra-operations-
per-second-per-watt, TOPS/W) are the two most significant parameters to measure the
performance of computing. For digital neural network accelerators, multiplication and
addition are calculated in the processing element (PE). However, the global buffer or
cache is urgently needed to store the weights and the inputs/outputs, which increases the
data storage and handling. There is quite a lot of research on optimizing data flow at the
chip, micro and SOC (system on chip) levels, but computation and memory are all sepa-
rated, which leads to efficiency degradation. The memory not only stores the weights and
the inputs but also achieves analog computation. That is what computing-in-memory
means. Compared with traditional digital signal accelerators, CIM as a mix-signal

Figure 1. (a) Structure of OxRAM; (b) Structure of CBRAM.

Since 2000, the research on ReRAM have explosively increased. The first NiOx-based
ReRAM with promising device characteristics and reliability was proposed by I. Baek in
2005 [16]; the HfO2/Ti device was made with fully conventional fab materials [17]; the
3D vertical ReRAM emerged in 2009 [18]; the 10 × 10 nm2 Hf/HfOx crossbar resistive
RAM was produced in 2011 [19]; the first 16-Gb ReRAM integrated chip with copper
oxide material [20], etc. However, because of the 15 nm critical dimension (CD) and the
development of 3D NAND flash memory, using the ReRAM in high-density applications
became more and more difficult.

2.3. ReRAM in CIM

In recent years, compute-in-memory widely emerged in machine learning (ML) and
data-intensive computing. CIM is an effective method to break the Von Neumann bottle-
neck when computing large-scale data [21], which can achieve high speed and low-power
computing by reducing data handling. Edge AI applications based on deep neural net-
works (DNNs) are designed to find the solution to achieving portable, fast, accurate and
convenient computing. Computing efficiency (defined as terra-operations-per-second-
per-millimeter-squared, TOPS/mm2) and energy efficiency (defined as terra-operations-
per-second-per-watt, TOPS/W) are the two most significant parameters to measure the
performance of computing. For digital neural network accelerators, multiplication and
addition are calculated in the processing element (PE). However, the global buffer or cache
is urgently needed to store the weights and the inputs/outputs, which increases the data
storage and handling. There is quite a lot of research on optimizing data flow at the chip,
micro and SOC (system on chip) levels, but computation and memory are all separated,
which leads to efficiency degradation. The memory not only stores the weights and the
inputs but also achieves analog computation. That is what computing-in-memory means.
Compared with traditional digital signal accelerators, CIM as a mix-signal processing
tremendously increases throughput, area efficiency and energy efficiency, but with the
decline of accuracy. Though the requirement of analog-to-digital converters (ADCs) is
inevitable, CIM still has enormous appeal in power consumption, no matter whether now
or in the future.

Micromachines 2022, 13, 731 4 of 16

Because of the resistive properties of ReRAM, ReRAM could be a natural electrical
multiplier, with the function of storage following Ohm’s laws and Kirchhoff’s current laws
(KCL). Utilizing I = V·G and the sum of the current, multiplication and accumulation
are calculated by the ReRAM array in the analog domain, respectively. Obviously, eNVM,
including resistive random-access memory, is an excellent memory device for CIM, and
other eNVM devices such as PCM, MRAM and FeRAM are also of interest for CIM [22].
ReRAM is a better choice for compute-in-memory because of the 22 nm high reliability and
the compatibility with the complementary metal-oxide-semiconductor (CMOS) process at
present. In addition, ReRAM could potentially offer multi-bit per cell capability [22].

2.4. ReRAM Crossbar

Figure 2a,b shows the principle of calculation in the ReRAM crossbar array. One
terminal of each RRAM is connected to the bit line (BL) collecting the current, and the
other is connected to the word line (WL) as the input of the voltage. Additionally, the
currents through the BLs are added as the outputs of the ReRAM array to achieve the
accumulation. One of the outputs could be given by Ij = ∑ Vi·Gi,j (where Ij is the current
of the jth column, Vi is the input voltage of the ith row, and Gi,j is the conductance of the
ith row and jth column in ReRAM array). Due to the fact that the outputs are the analog
currents, ADC is an indispensable part of the ReRAM crossbar peripheral circuit.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 16

processing tremendously increases throughput, area efficiency and energy efficiency, but
with the decline of accuracy. Though the requirement of analog-to-digital converters
(ADCs) is inevitable, CIM still has enormous appeal in power consumption, no matter
whether now or in the future.

Because of the resistive properties of ReRAM, ReRAM could be a natural electrical
multiplier, with the function of storage following Ohm’s laws and Kirchhoff’s current
laws (KCL). Utilizing 𝐼 = 𝑉 ∙ 𝐺 and the sum of the current, multiplication and accumula-
tion are calculated by the ReRAM array in the analog domain, respectively. Obviously,
eNVM, including resistive random-access memory, is an excellent memory device for
CIM, and other eNVM devices such as PCM, MRAM and FeRAM are also of interest for
CIM [22]. ReRAM is a better choice for compute-in-memory because of the 22 nm high
reliability and the compatibility with the complementary metal-oxide-semiconductor
(CMOS) process at present. In addition, ReRAM could potentially offer multi-bit per cell
capability [22].

2.4. ReRAM Crossbar
Figure 2a,b shows the principle of calculation in the ReRAM crossbar array. One ter-

minal of each RRAM is connected to the bit line (BL) collecting the current, and the other
is connected to the word line (WL) as the input of the voltage. Additionally, the currents
through the BLs are added as the outputs of the ReRAM array to achieve the accumula-
tion. One of the outputs could be given by 𝐼 = ∑ 𝑉 ∙ 𝐺 , (where 𝐼 is the current of the 𝑗 th column, 𝑉 is the input voltage of the 𝑖 th row, and 𝐺 , is the conductance of the 𝑖 th
row and 𝑗 th column in ReRAM array). Due to the fact that the outputs are the analog
currents, ADC is an indispensable part of the ReRAM crossbar peripheral circuit.

(a) (b)

Figure 2. (a) Schematic diagram of ReRAM crossbar; (b) Structure of ReRAM crossbar.

3. Partial Differential Equation
A partial differential equation is any equation with a function of multiple variables

and their partial derivatives [23]. The function 𝑢: 𝑢 = 𝑢 (𝑡 , 𝑥 , ⋯ , 𝑥) (1)

and the Partial differential equation can be defined as: 𝑔 𝑡 , 𝑥 , ⋯ , 𝑥 , 𝑢 , 𝜕𝑢𝜕𝑡 , 𝜕𝑢𝜕𝑥 , ⋯ , 𝜕𝑢𝜕𝑥 , 𝜕 𝑢𝜕𝑡 , ⋯ = 0 (2)

Typical results of partial differential equations have two forms: the analytical solu-
tion and the numerical solution. The analytical solution that can be expressed by an ana-
lytical expression is an exact combination of finite common operations. Given any

Figure 2. (a) Schematic diagram of ReRAM crossbar; (b) Structure of ReRAM crossbar.

3. Partial Differential Equation

A partial differential equation is any equation with a function of multiple variables
and their partial derivatives [23]. The function u:

u = u (t , x1 , · · · , xn) (1)

and the Partial differential equation can be defined as:

g
(

t , x1 , · · · , xn , u ,
∂u
∂t

,
∂u
∂x1

, · · · ,
∂u
∂xn

,
∂2u
∂t2 , · · ·

)
= 0 (2)

Typical results of partial differential equations have two forms: the analytical solution
and the numerical solution. The analytical solution that can be expressed by an analytical
expression is an exact combination of finite common operations. Given any independent
variable, its dependent variable could be solved, so the analytical solution is also known as
the closed-form solution. The numerical solution needs to be calculated iteratively from
the boundary condition step-by-step [24], and it is the emphasis of the method in PDEs
solver research. With the decrease of the step size, the numerical solution will be more

Micromachines 2022, 13, 731 5 of 16

accurate. There are multiple numerical methods, including the Euler method, Runge-Kutta,
finite-difference [25], finite-element method [26] and finite-volume method [23].

3.1. Numerical Methods
3.1.1. Finite-Difference Method

The principle of the finite-difference method (FDM) is understandable: converting
the continuous problem to its corresponding discrete form and getting results within a
finite number of calculations. The core mechanism of FDM is to approximate the partial
derivatives at each point using its nearby values based on Taylor’s theorem. There are
three basic steps in the finite-difference method:

(1) Regional discretization. According to the appropriate step size, the domain that needs
to be calculated is divided into finite grids and using the function values on discrete
grid points to approximate the continuous function values.

(2) Transformation of partial differential equations. Using the difference coefficient to
approximate the exact derivatives.

(3) Solution of partial differential equations. Bringing the boundary conditions into the
equation and repeating calculations to solve a large number of equations.

The first-order finite-difference of g(x) of variable x can be defined as:

∆g(x) = g(x + ∆x)− g(x) (3)

where ∆x is step size, or the so-called spacing between two grid points, and the first-order
difference coefficient of g(x) of variable x can be defined as:

dg(x)
dx

≈ ∆g(x)
∆x

=
g(x + ∆x)− g(x)

∆x
(4)

So that the forward difference coefficient, backward difference coefficient and central
difference coefficient can be expressed as:

g(x + ∆x)− g(x)
∆x

,
g(x)− g(x− ∆x)

∆x
,

g(x + ∆x)− g(x− ∆x)
2∆x

(5)

The finite-difference method uses the difference coefficient to approximate the exact
derivative. Similarly, the second-order difference coefficient can be expressed as:

d2g(x)
dx2 ≈ g(x + ∆x) + g(x− ∆x)− 2g(x)

∆x2 (6)

Taking a simple one-dimensional heat diffusion equation without a heat source as an
example, the equation and boundary conditions are as follows:

∂u
∂t (x, t) = ∂2u

∂t2 (x, t) + f (x, t)
u(x, 0) = ϕ(x) , f (x, t) = 0

u(a, t) = v1 , u(b, t) = v2
a ≤ x ≤ b , 0 ≤ t ≤ T

(7)

where u(x, t) is the temperature at grid point x at time t, a2 is the thermal diffusivity, f (x, t)
is the heat source and v1 and v2 are the constant boundary conditions at grid point a and
b, respectively.

Then, the solution domain is divided into finite grids in Figure 3. The step size in
the t-axis direction is taken as ∆t, and the step size in the x-axis direction is taken as
∆x. Therefore,

xi = a + (i + 1)∆x , ∆x =
b− a

N
(8)

Micromachines 2022, 13, 731 6 of 16

ti = 0 + (j + 1)∆t , ∆x =
T
M

(9)

Micromachines 2022, 13, x FOR PEER REVIEW 6 of 16

𝑥 = 𝑎 + (𝑖 + 1)∆𝑥 , ∆𝑥 = 𝑏 − 𝑎𝑁 (8)

𝑡 = 0 + (𝑗 + 1)∆𝑡 , ∆𝑥 = 𝑇𝑀 (9)

Figure 3. Lattice graph of a one-dimensional heat diffusion equation.

According to (4) and (6), the continuous function (7) will change to the function of
values on discrete grid points: 𝑢(𝑥 , 𝑡 + ∆𝑡) − 𝑢(𝑥 , 𝑡)∆𝑥 = 𝑎 𝑢(𝑥 + ∆𝑥, 𝑡) + 𝑢(𝑥 − ∆𝑥, 𝑡) − 2𝑢(𝑥 , 𝑡)∆𝑥 (10)

𝑢(𝑥 , 𝑡 + ∆𝑡) = 𝑢(𝑥 , 𝑡) + ∆𝑡 ∙ 𝑎∆𝑥 [𝑢(𝑥 + ∆𝑥, 𝑡) + 𝑢(𝑥 − ∆𝑥, 𝑡) − 2𝑢(𝑥 , 𝑡)] (11)

Excluding the boundary values, when 𝑡 = ∆𝑡, the actual temperature of each point is 𝑢(𝑥 , ∆𝑡) = 𝜑(𝑎) + ∆𝑡 ∙ 𝑎∆𝑥 [𝑢(𝑥 , ∆𝑡) + 𝑢(𝑥 , 0) − 2𝑢(𝑥 , 0)]𝑢(𝑥 , ∆𝑡) = 𝜑(𝑎 + ∆𝑥) + ∆𝑡 ∙ 𝑎∆𝑥 [𝑢(𝑥 , ∆𝑡) + 𝑢(𝑥 , 0) − 2𝑢(𝑥 , 0)]⋮𝑢(𝑥 , ∆𝑡) = 𝜑(𝑏) + ∆𝑡 ∙ 𝑎∆𝑥 [𝑢(𝑥 , ∆𝑡) + 𝑢(𝑥 , 0) − 2𝑢(𝑥 , 0)]
(12)

The above system of linear equations contains 𝑁 − 1 equations, and we can rewrite
them into a matrix equation:

⎣⎢⎢
⎡ 𝑢∆𝑢∆⋮𝑢 ∆ ⎦⎥⎥

⎤ = ⎣⎢⎢
⎡ 𝑢𝑢⋮𝑢 ⎦⎥⎥

⎤ + ∆𝑡 ∙ 𝑎∆𝑥 ∙ 2 −1 ⋯ 0−1 2 −1 ⋮⋮ −1 2 −10 ⋯ −1 2 ⎣⎢⎢
⎡ 𝑢𝑢⋮𝑢 ⎦⎥⎥

⎤
 (13)

(13) can also be expressed as: 𝑈 ∆ = 𝑈 + 𝐴𝑈 (14)

where 𝐴 is the coefficient matrix, 𝑈 is the matrix at time 𝑡 and 𝑈 ∆ is the matrix at
time 𝑡 + ∆𝑡.

The one-dimensional equation is the most ideal and simplest physical scenario. How-
ever, researchers and engineers need to solve the problems of two-dimensional or even
multidimensional space aimed at the actual requirements. At this time, the two-point dif-
ference method is not suitable. As an example, there is a two-dimensional equation, a La-
place equation:

Figure 3. Lattice graph of a one-dimensional heat diffusion equation.

According to (4) and (6), the continuous function (7) will change to the function of
values on discrete grid points:

u(xi, t + ∆t)− u(xi, t)
∆x

= a2 u(xi + ∆x, t) + u(xi − ∆x, t)− 2u(xi, t)
∆x2 (10)

u(xi, t + ∆t) = u(xi, t) +
∆t·a2

∆x2 [u(xi + ∆x, t) + u(xi − ∆x, t)− 2u(xi, t)] (11)

Excluding the boundary values, when t = ∆t, the actual temperature of each point is

u(x1, ∆t) = ϕ(a) + ∆t·a2

∆x2 [u(x2, ∆t) + u(x0, 0)− 2u(x1, 0)]
u(x2, ∆t) = ϕ(a + ∆x) + ∆t·a2

∆x2 [u(x3, ∆t) + u(x1, 0)− 2u(x2, 0)]
...

u(xN−1, ∆t) = ϕ(b) + ∆t·a2

∆x2 [u(xN , ∆t) + u(xN−2, 0)− 2u(xN−1, 0)]

(12)

The above system of linear equations contains N − 1 equations, and we can rewrite
them into a matrix equation:

u∆t

1
u∆t

2
...

u ∆t
N−1

 =

u0

1
u0

2
...

u 0
N−1

+
∆t·a2

∆x2 ·

2 −1 · · · 0

−1 2 −1
...

... −1 2 −1
0 · · · −1 2

u0
1

u0
2
...

u 0
N−1

 (13)

(13) can also be expressed as:

Ut+∆t = Ut + AUt (14)

where A is the coefficient matrix, Ut is the matrix at time t and Ut+∆t is the matrix at time
t + ∆t.

The one-dimensional equation is the most ideal and simplest physical scenario. How-
ever, researchers and engineers need to solve the problems of two-dimensional or even
multidimensional space aimed at the actual requirements. At this time, the two-point
difference method is not suitable. As an example, there is a two-dimensional equation, a
Laplace equation:

Micromachines 2022, 13, 731 7 of 16

∂2u
∂x2 (x, y) + ∂2u

∂y2 (x, y) = 0
u(a, y) = φ1(y) , u(b, y) = φ2(y)
u(x, c) = φ3(y) , u(x, d) = φ4(y)

a ≤ x ≤ b , c ≤ y ≤ d

(15)

According to (6), the Laplace equation can be written as:

u(x + ∆x, y) + u(x− ∆x, y) + u(x, y + ∆y) + u(x, y− ∆y)− 4u(x, y) = 0 (16)

where the step size in the x-axis direction is taken as ∆x, and the step size in the y-axis
direction is taken as ∆y. In Figure 4, the function value of each point can be calculated by
the function values of its four neighboring points, and the whole domain is divided into
N × N grid points.

Micromachines 2022, 13, x FOR PEER REVIEW 7 of 16

⎩⎪⎨
⎪⎧ 𝜕 𝑢𝜕𝑥 (𝑥, 𝑦) + 𝜕 𝑢𝜕𝑦 (𝑥, 𝑦) = 0𝑢(𝑎, 𝑦) = 𝜙 (𝑦) , 𝑢(𝑏, 𝑦) = 𝜙 (𝑦)𝑢(𝑥, 𝑐) = 𝜙 (𝑦) , 𝑢(𝑥, 𝑑) = 𝜙 (𝑦)𝑎 ≤ 𝑥 ≤ 𝑏 , 𝑐 ≤ 𝑦 ≤ 𝑑 (15)

According to (6), the Laplace equation can be written as: 𝑢(𝑥 + ∆𝑥, 𝑦) + 𝑢(𝑥 − ∆𝑥, 𝑦) + 𝑢(𝑥, 𝑦 + ∆𝑦) + 𝑢(𝑥, 𝑦 − ∆𝑦) − 4𝑢(𝑥, 𝑦) = 0 (16)

where the step size in the x-axis direction is taken as ∆𝑥, and the step size in the y-axis
direction is taken as ∆𝑦. In Figure 4, the function value of each point can be calculated by
the function values of its four neighboring points, and the whole domain is divided into 𝑁 × 𝑁 grid points.

Figure 4. Lattice graph of a Laplace equation.

The equation in the grid point of (𝑖, 𝑗) can be expressed as: 𝑢 , + 𝑢 , − 4𝑢 , + 𝑢 , + 𝑢 , = 0 (17)

Thus, (15) can be transformed into a matrix form as:

⎣⎢⎢
⎢⎡ 𝑢 , + 𝑢 ,𝑢 ,𝑢 , + 𝑢 ,⋮𝑢 , + 𝑢 , ⎦⎥⎥

⎥⎤
×

= 𝐵 −𝐼 ⋯ 0−𝐼 𝐵 −𝐼 ⋮⋮ −𝐼 𝐵 −𝐼0 ⋯ −𝐼 𝐵 × ⎣⎢⎢
⎢⎡ 𝑢 ,𝑢 ,𝑢 ,⋮𝑢 , ⎦⎥⎥

⎥⎤
×

 (18)

where

𝐵 = 4 −1 ⋯ 0−1 4 −1 ⋮⋮ −1 4 −10 ⋯ −1 4 ×
 , 𝐼 = 1 0 ⋯ 00 1 0 ⋮⋮ 0 1 00 ⋯ 0 1 ×

 (19)

Consequently, (18) can also be expressed as: 𝑈 = 𝐴𝑈 (20)

where 𝐴 is the coefficient matrix, 𝑈 is the matrix in grid point of (𝑖, 𝑗) and 𝑈 is the
matrix composed of the boundary conditions.

3.1.2. Runge-Kutta Method
The Runge-Kutta method includes two kinds of methods: second-order Runge-Kutta

and fourth-order Runge-Kutta.

Figure 4. Lattice graph of a Laplace equation.

The equation in the grid point of (i, j) can be expressed as:

ui+1,j + ui,j+1 − 4ui,j + ui−1,j + ui,j−1 = 0 (17)

Thus, (15) can be transformed into a matrix form as:
u−1,0 + u0,−1

u−1,1
u−1,2 + u0,3

...
uN−1,N + uN,N−1

N2×1

=

B −I · · · 0

−I B −I
...

... −I B −I
0 · · · −I B

N2×N2

u0,0
u0,1
u0,2

...
uN−1,N−1

N2×1

(18)

where

B =

4 −1 · · · 0

−1 4 −1
...

... −1 4 −1
0 · · · −1 4

N×N

, I =

1 0 · · · 0

0 1 0
...

... 0 1 0
0 · · · 0 1

N×N

(19)

Consequently, (18) can also be expressed as:

Ub = AU (20)

where A is the coefficient matrix, U is the matrix in grid point of (i, j) and Ub is the matrix
composed of the boundary conditions.

Micromachines 2022, 13, 731 8 of 16

3.1.2. Runge-Kutta Method

The Runge-Kutta method includes two kinds of methods: second-order Runge-Kutta
and fourth-order Runge-Kutta.

Second-Order Runge-Kutta: k1 and k2 can be calculated by the following equations,

k1 = h× f (xn, yn) (21)

k2 = h× f (xn + h, yn + k1) (22)

The solution of the PDE can be expressed as:

yn+1 = yn +
1
2
(k1 + k2) (23)

Fourth-Order Runge-Kutta: k1, k2, k3 and k4 can be calculated by the following equations,

k1 = h× f (xn, yn) (24)

k2 = h× f
(

xn +
h
2

, yn +
k1

2

)
(25)

k3 = h× f
(

xn +
h
2

, yn +
k2

2

)
(26)

k4 = h× f (xn + h, yn + k3) (27)

The solution of the PDE can be expressed as:

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4) (28)

3.2. Matrix Iterative Methods

After getting the matrix equations, the next main task is the iterative computation of a
large-scale matrix, and common iterative methods include the Jacobi method, the Guass
Seidel method and the SOR method.

3.2.1. Jacobi Method

The principle of the Jacobi method is to disassemble the coefficient matrix A into a
diagonal matrix D, a negative upper triangular matrix U and a negative lower triangular
matrix L. Consequently, A can be written as:

A = D− L−U (29)

D =

a1,1 0 · · · 0

0 a2,2 0
...

... 0
. . . 0

0 · · · 0 an,n

 , L =

0 0 · · · 0

−a2,1 0 0
...

...
. 0

−an,1 · · · −an,n−1 0

 , U =

0 −a1,2 · · · −a1,n

0 0 0
...

... 0
. . . −an−1,n

0 · · · 0 0

 (30)

For an equation of a matrix like B = A·X, replacing the coefficient matrix A, it will
change to:

B = (D− L−U)·X (31)

X = D−1(L + U)X + D−1B (32)

After the iterative calculation, the calculation result of the (K + 1)th iteration is

X(k+1) = D−1(L + U)X(k) + D−1B (33)

Micromachines 2022, 13, 731 9 of 16

3.2.2. Guass Seidel Method

The principle of the Guass Seidel method is similar to the Jacobi method, where the
difference is the derivation process, the Guass Seidel method rewrites B = A·X into:

X = (D− L)−1UX + (D− L)−1B (34)

After the iterative calculation, the calculation result of the (K + 1)th iteration is

X(k+1) = (D− L)−1UX(k) + (D− L)−1B (35)

In most cases, the Guass Seidel method converges faster than the Jacobi method, and
only one set of storage units is needed to store (D− L)−1, but D−1(L + U) and D−1 are
required to store in the Jacobi method.

3.2.3. SOR Method

Based on the Guass Seidel method, a convergence factor ω is added to the SOR
method in order to improve the convergence speed. The calculation result of the (K + 1)th
iteration is

X(k+1) = (D−ωL)−1[(1−ω)D + ωU]X(k) + ω(D−ωL)−1B (36)

3.2.4. Krylov Subspace Method

For an equation of a matrix like B = A·X, the result X can be expressed as A−1·B
directly. However, if the matrix A has a large size or is a sparse matrix, A−1 will be very
hard to solve. The principle of the Krylov subspace method is to approximate A−1·B.

A−1·B ≈
m−1

∑
i=0

βi AiB = β0B + β1 AB + β2 A2B+, · · · ,+βm−1 Am−1B (37)

where β0 , β1 , β2 , · · · , βm−1 are unknown coefficients, the step size m is related to the
accuracy of the approximation and is less than the dimension of matrix A.

After the discussion above, the number of iterations used by the Jacobi method, the
Guass Seidel method and the SOR method is decreasing, which also means the improving of
the calculation accuracy. Additionally, in terms of the hardware consumption and hardware
implementation, the Guass Seidel method is better than the others. Moreover, the Krylov
subspace method sacrifices accuracy to improve speed and is generally used large-scale
matrixes. Relatively speaking, the SOR method is the most accurate and efficient method.
However, the matrixes could not be inputted into the ReRAM arrays iteratively as weights.
Calculating the matrixes directly will waste computing power in the multiplication of
zero elements, because the matrixes used in numerical computations are generally sparse
matrixes which include more than 60% of zero elements.

3.3. Rearrangement and Split

Rearrangement and split are proposed to solve the multiplication of sparse matrixes
whose majority of elements are zero elements. There are a number of studies focusing on
cutting or splitting matrixes to improve computational efficiency, while many matrixes
cannot be cut or split directly all the time. Therefore, rearrangement of sparse matrixes is
needed to change the layout of matrix elements. In sparse matrix-vector multiplication
(SpMV), the rearrangement matrix and the splitting matrix can replace sparse matrixes with
dense matrix operations in many cases, which can greatly save memory and reduce compu-
tational overhead [27]. Moreover, the methods reducing the bandwidth of sparse matrixes
in SpMV are quite useful for matrixes got from the PDEs. Taking a 1024× 1024 sparse
matrix as an example in Figure 5, the gray part of the matrix is composed of zero elements,
and the blue part is composed of nonzero elements. Firstly, the 1024× 1024 sparse matrix
is rearranged to a diagonal aggregation matrix (not a diagonal matrix). In addition, it is

Micromachines 2022, 13, 731 10 of 16

rewritten as a combination of B and I. At last, the matrix is divided into four types of
16× 16 slices (a, b, c, d).

Micromachines 2022, 13, x FOR PEER REVIEW 10 of 16

addition, it is rewritten as a combination of 𝐵 and 𝐼. At last, the matrix is divided into
four types of 16 × 16 slices (a, b, c, d).

Figure 5. The process that a 1024 × 1024 sparse matrix is divided into slices.

According to the discussion of the matrix iterative methods in Section 3.2, the number
of iterations used by the Jacobi method, the Guass Seidel method and the SOR method is
decreasing. Though the Guass Seidel method has a lower hardware consumption and the
SOR method has the highest computational efficiency, utilizing the Jacobi method with
the splitting matrix can not only improve the accuracy but also cut down the number of
iterations efficiently. Because the principal concern is which method has fewer zero ele-
ments, the Jacobi method is still the best choice for the CIM-based PDEs solver at present.

4. CIM-Based Partial Differential Equation Solver
With the discussion of matrix iterative methods, the problem of the PDEs will be

changed to the multiplication of the large-scale matrix. Therefore, the essence of the PDEs
Solver is to achieve the high-performance multiplication. The CIM-based PDEs Solver
could be composed with input drivers, shifters, adders, a computing array and
DAC/ADCs. Matrix 𝐴 will be stored in the array as weight, and matrix 𝑋 will be entered
into the array as input. Because of the limited size and precision of the array, the array
maps a single column of the matrix to serval columns of an array. After the shifters and
adders, the results of the serval columns will be collected and then be quantified in ADCs.
The ADCs in the CIM PDEs solvers are usually SAR ADCs to balance the area, power and
speed. Recently, CIM-based partial differential equation solvers can be based on different
CIMs, including ReRAM, SRAM, flash memory and PCM. Each of them has advantages
and their own suitable calculating methods and circuits.

4.1. ReRAM-Based Partial Differential Equation Solver
The coefficient matrix has been divided into several slices, and next they will be writ-

ten as resistance values into the ReRAM array. Matrix 𝑋 will be entered into the ReRAM
array as input, and the slices can be used several times without replacement. That means
the ReRAM array rarely needs to be written. The larger the size of the slices, the smaller
the number of slices with the decrease of write times. On the contrary, the times of the
iterative calculation will increase, and the computational efficiency will be lower. After
the multiplication in the simulation domain, ADCs are required to convert the analog

Figure 5. The process that a 1024× 1024 sparse matrix is divided into slices.

According to the discussion of the matrix iterative methods in Section 3.2, the number
of iterations used by the Jacobi method, the Guass Seidel method and the SOR method is
decreasing. Though the Guass Seidel method has a lower hardware consumption and the
SOR method has the highest computational efficiency, utilizing the Jacobi method with
the splitting matrix can not only improve the accuracy but also cut down the number
of iterations efficiently. Because the principal concern is which method has fewer zero
elements, the Jacobi method is still the best choice for the CIM-based PDEs solver at present.

4. CIM-Based Partial Differential Equation Solver

With the discussion of matrix iterative methods, the problem of the PDEs will be
changed to the multiplication of the large-scale matrix. Therefore, the essence of the PDEs
Solver is to achieve the high-performance multiplication. The CIM-based PDEs Solver
could be composed with input drivers, shifters, adders, a computing array and DAC/ADCs.
Matrix A will be stored in the array as weight, and matrix X will be entered into the array
as input. Because of the limited size and precision of the array, the array maps a single
column of the matrix to serval columns of an array. After the shifters and adders, the results
of the serval columns will be collected and then be quantified in ADCs. The ADCs in the
CIM PDEs solvers are usually SAR ADCs to balance the area, power and speed. Recently,
CIM-based partial differential equation solvers can be based on different CIMs, including
ReRAM, SRAM, flash memory and PCM. Each of them has advantages and their own
suitable calculating methods and circuits.

4.1. ReRAM-Based Partial Differential Equation Solver

The coefficient matrix has been divided into several slices, and next they will be written
as resistance values into the ReRAM array. Matrix X will be entered into the ReRAM array
as input, and the slices can be used several times without replacement. That means the
ReRAM array rarely needs to be written. The larger the size of the slices, the smaller
the number of slices with the decrease of write times. On the contrary, the times of the
iterative calculation will increase, and the computational efficiency will be lower. After the
multiplication in the simulation domain, ADCs are required to convert the analog signals
into digital signals. Then, after the digital signal processing, the result will be iterative, as

Micromachines 2022, 13, 731 11 of 16

will the input of the ReRAM array, and the final result can be got from the ReRAM-based
partial differential equation solver.

In the work of Mohammed A. Zidan, a general memristor-based partial differential
equation solver is proposed with the finite-difference method. To solve the general matrix
Equation (20), they use the Jacobi method to decrease the calculation of zero elements. Their
memristor is composed of a Ta top electrode, a Pd bottom electrode and a thin Ta2O5−x
metal oxide. Additionally, the memristor crossbar has extremely high energy efficiency
and area utilization, but a lower accuracy because of the variation. With the write-verify
approach, they decrease the conductance variation from 5.3% to 0.85%, which overcomes
the accuracy defects of the ReRAM immensely. They divide the matrix into equally sized
slices, and practical crossbar sizes can be mapped onto the active slices exactly. Cutting the
matrix not only minimizes the effects of the series resistance, sneak currents and virtual
grounds, but also reduces the operation of zero elements [23]. With the memristor-based
hardware and matching software system, they get high-precision computing results.

Shichao Li and Wenchao Chen simulated fully coupled multiphysics based on bipolar
resistive random-access memory in 2017 [28]. They utilized the finite-difference method
and the Scharfetter-Gummel method to solve the PDEs, solving three fully coupled partial
differential equations by the crossbar of the HfOx–based ReRAM [29]. Like the work of
Mohammed A. Zidan, the accuracy has not been effectively improved, while more PDEs
are discussed in this work.

In recent work by S. S. Ensan and S. Ghosh, a ReRAM-based linear first-order PDE
solver (ReLOPE) is proposed to solve PDEs of the following form:

f (x, y) = y′ = ay + bx + c (38)

Unlike the general memristor-based partial differential equation solver [23], ReLOPE
is the first PDEs solver purely based on hardware and used only for linear first-order
PDEs [20]. Moreover, the principle of the ReLOPE is based on the second-order Runge-
Kutta method. Though theoretically fourth-order Runge-Kutta offers higher accuracy, the
value of the resistance tremendously interferes with the iteration under the limitation of the
accurate programming of the ReRAM. Substituting (3) and (4) into (37), (37) will change to:

yn+2 − yn+1 =
2 + 2h·a + h2·a

2
(yn+1 − yn) +

2h·b + h2·a·b
2

(xn+1 − xn) (39)

Similarly, substituting Equations (3)–(6) into (37), (37) will change to:

yn+2 − yn+1 =
(

1 + 2
3 h·a + 1

3 h2·a2 + h3·a3+2h3·a2+h4·a4

24

)
(yn+1 − yn)

+
(

1
6 b + 1

4 h·b + 1
8 h2·a·b + h3·a2·b+2h3·a2·b+h4·a3·b

24

)
(xn+1 − xn)

(40)

Figure 6 is the overview of ReLOPE. ReLOPE includes a fully ReRAM crossbar-based
CIM, shifters, adders and DAC/ADCs. It expands the operating range of the solution
by exploiting shifters to shift input data and output data. ReLOPE improves its power
consumption, solving a PDE by 31.4×. The above methods with ReLOPE used have
two limitations: (1) it is unachievable to program RRAMs with this accuracy (six decimal
points for fourth-order Runge-Kutta in the paper of ReLOPE) at the current technical level;
(2) the accuracy has loss due to the nonlinear variation of resistance with voltage and the
iterative use of ADC. Therefore, ReLOPE cannot further improve its accuracy with the
method of Runge-Kutta.

Micromachines 2022, 13, 731 12 of 16Micromachines 2022, 13, x FOR PEER REVIEW 12 of 16

Figure 6. Overview of ReLOPE.

4.2. SRAM-Based Partial Differential Equation Solver
Yannis Tsividis et al. proposed a programmable, clockless, continuous-time 8-bit hy-

brid (mixed analog/digital) architecture (ADC + SRAM + DAC) for solving ordinary and
partial differential equations. The architecture, shown in Figure 7, is used to achieve non-
linear functions. The system consisted of an analog multiplier and analog adder/subtrac-
tor. The hybrid nonlinear function generator achieves 16× lower power dissipation and
the computational accuracy of about 0.5% to 5%.

Figure 7. The continuous–time programmable nonlinear function generator.

In 2019, Thomas Chen and Jacob Botimer proposed a SRAM-based accelerator for
solving PDEs [30]. They reformulated the multigrid Jacobi method in a residual form. By
interleaving coarse-grid iterations with fine-grid iterations, their system reduced low-fre-
quency errors to accelerate convergence. Their system contains 4 MAC–SRAMs, and each
is a 320 × 64 8T SRAM array. The architecture is shown in Figure 8a,b. A year later, they
updated the mapping of the MAC-SRAM [31] on the basis of their previous research. Fi-
nally, the SRAM-based accelerator achieved 56.9–GOPS, consuming 16.6 mW at 200–

Figure 6. Overview of ReLOPE.

4.2. SRAM-Based Partial Differential Equation Solver

Yannis Tsividis et al. proposed a programmable, clockless, continuous-time 8-bit
hybrid (mixed analog/digital) architecture (ADC + SRAM + DAC) for solving ordinary and
partial differential equations. The architecture, shown in Figure 7, is used to achieve nonlin-
ear functions. The system consisted of an analog multiplier and analog adder/subtractor.
The hybrid nonlinear function generator achieves 16× lower power dissipation and the
computational accuracy of about 0.5% to 5%.

Micromachines 2022, 13, x FOR PEER REVIEW 12 of 16

Figure 6. Overview of ReLOPE.

4.2. SRAM-Based Partial Differential Equation Solver
Yannis Tsividis et al. proposed a programmable, clockless, continuous-time 8-bit hy-

brid (mixed analog/digital) architecture (ADC + SRAM + DAC) for solving ordinary and
partial differential equations. The architecture, shown in Figure 7, is used to achieve non-
linear functions. The system consisted of an analog multiplier and analog adder/subtrac-
tor. The hybrid nonlinear function generator achieves 16× lower power dissipation and
the computational accuracy of about 0.5% to 5%.

Figure 7. The continuous–time programmable nonlinear function generator.

In 2019, Thomas Chen and Jacob Botimer proposed a SRAM-based accelerator for
solving PDEs [30]. They reformulated the multigrid Jacobi method in a residual form. By
interleaving coarse-grid iterations with fine-grid iterations, their system reduced low-fre-
quency errors to accelerate convergence. Their system contains 4 MAC–SRAMs, and each
is a 320 × 64 8T SRAM array. The architecture is shown in Figure 8a,b. A year later, they
updated the mapping of the MAC-SRAM [31] on the basis of their previous research. Fi-
nally, the SRAM-based accelerator achieved 56.9–GOPS, consuming 16.6 mW at 200–

Figure 7. The continuous–time programmable nonlinear function generator.

In 2019, Thomas Chen and Jacob Botimer proposed a SRAM-based accelerator for
solving PDEs [30]. They reformulated the multigrid Jacobi method in a residual form.
By interleaving coarse-grid iterations with fine-grid iterations, their system reduced low-
frequency errors to accelerate convergence. Their system contains 4 MAC–SRAMs, and
each is a 320 × 64 8T SRAM array. The architecture is shown in Figure 8a,b. A year
later, they updated the mapping of the MAC-SRAM [31] on the basis of their previous
research. Finally, the SRAM-based accelerator achieved 56.9–GOPS, consuming 16.6 mW at
200–MHz. However, the SRAM-based CIM has the same accuracy problems due to limited
multiplicand precision and limited ADC resolution.

Micromachines 2022, 13, 731 13 of 16

Micromachines 2022, 13, x FOR PEER REVIEW 13 of 16

MHz. However, the SRAM-based CIM has the same accuracy problems due to limited
multiplicand precision and limited ADC resolution.

(a) (b)

Figure 8. (a) Architectural sketch of PDE iteration module; (b) Block diagram of MAC SRAM.

4.3. Flash Memory-Based Partial Differential Equation Solver
Jiezhi Chen et al. proposed a flash memory-based CIM hardware system to improve

the computation efficiency of the time-dependent partial differential equations [32]. Based
on the FDM and Jacobi algorithm, they got the matrix equation, then the coefficient matrix
was mapped into the flash memory array as threshold voltages. Matrix 𝑋 is transformed
into pulse time as input. Compared with ReRAM, flash memory enables the realization of
vector-matrix multiplication with high accuracy and a good tolerance for device error.
Moreover, it also has the advantages of ultra-high density and low cost.

4.4. PCM-Based Partial Differential Equation Solver
In 2018, Manuel Le Gallo and Abu Sebastian et al. used mixed-precision in-memory

computing which combined a von Neumann machine with a computational memory unit
to solve PDEs [33]. The mixed-precision CIM PDEs solver uses a low-precision computa-
tional memory unit to obtain the approximate solution of the first part and high-precision
processing iteratively to improve accuracy in the second part. It achieves the low-preci-
sion matrix-vector multiplication by using a PCM crossbar array based on the iterative
Krylov-subspace method. The PCM-based PDEs solver could offer up to 80 times lower
energy consumption than the FPGA solution because of the architecture of PCM-based
CIM and the mixed-precision system.

4.5. Discussion of Partial Differential Equation Solver
The memristive crossbar CIM PDEs solver based on the PCM chip could already offer

up to 80 times lower energy consumption than the FPGA solution. The energy efficiency
and speed of the memristive crossbar CIM PDEs solver is several hundred times than the
PDEs solvers based on IBM POWER8 central processing unit (CPU) and NVIDIA Titan
RTX graphics processing unit (GPU) [26,34]. However, the CIM-based PDEs usually
solves the 4-bit to 8-bit PDEs computation in satisfaction of accuracy requirements.

Table 2 summaries the representative CIM-based PDEs solvers recently and their per-
formance are compared.

Figure 8. (a) Architectural sketch of PDE iteration module; (b) Block diagram of MAC SRAM.

4.3. Flash Memory-Based Partial Differential Equation Solver

Jiezhi Chen et al. proposed a flash memory-based CIM hardware system to improve
the computation efficiency of the time-dependent partial differential equations [32]. Based
on the FDM and Jacobi algorithm, they got the matrix equation, then the coefficient matrix
was mapped into the flash memory array as threshold voltages. Matrix X is transformed
into pulse time as input. Compared with ReRAM, flash memory enables the realization
of vector-matrix multiplication with high accuracy and a good tolerance for device error.
Moreover, it also has the advantages of ultra-high density and low cost.

4.4. PCM-Based Partial Differential Equation Solver

In 2018, Manuel Le Gallo and Abu Sebastian et al. used mixed-precision in-memory
computing which combined a von Neumann machine with a computational memory
unit to solve PDEs [33]. The mixed-precision CIM PDEs solver uses a low-precision
computational memory unit to obtain the approximate solution of the first part and high-
precision processing iteratively to improve accuracy in the second part. It achieves the
low-precision matrix-vector multiplication by using a PCM crossbar array based on the
iterative Krylov-subspace method. The PCM-based PDEs solver could offer up to 80 times
lower energy consumption than the FPGA solution because of the architecture of PCM-
based CIM and the mixed-precision system.

4.5. Discussion of Partial Differential Equation Solver

The memristive crossbar CIM PDEs solver based on the PCM chip could already offer
up to 80 times lower energy consumption than the FPGA solution. The energy efficiency
and speed of the memristive crossbar CIM PDEs solver is several hundred times than the
PDEs solvers based on IBM POWER8 central processing unit (CPU) and NVIDIA Titan
RTX graphics processing unit (GPU) [26,34]. However, the CIM-based PDEs usually solves
the 4-bit to 8-bit PDEs computation in satisfaction of accuracy requirements.

Table 2 summaries the representative CIM-based PDEs solvers recently and their
performance are compared.

Micromachines 2022, 13, 731 14 of 16

Table 2. Comparation of several representative CIM-based PDEs solvers and GPU.

Type of CIM Reference Technology Node Energy Efficiency Accuracy Latency

ReRAM

Sina Sayyah Ensan
2021 VLSI 65 nm 31.4× 11-bit (97%) 25 ns

Mohammed A.
Zdan 2018 NE NA NA 64-bit 1 us

SRAM

Thomas Chen
2020 JSSC 180 nm 0.875 TOPS/W 32-bit 90 ns

Ning Guo
2016 JSSC 65 nm 16× 18-bit (95%)

8-bit (99.5%) NA

NOR Flash
Memory

Yang Feng
2020 SNW 65 nm NA 64-bit NA

PCM Manuel Le Gallo
2018 NE 90 nm 24× mixed-precision <100 ns

GPU NVidia Titan RTX 12 nm FFN 0.06 TOPS/W 64-bit NA

The deficiencies of ReRAM, including low inherent accuracy, nonlinearity and suscep-
tibility to environmental changes, directly determine the use of ReRAM for high-precision
computing. With the constant development of process levels, ReRAM devices will be
manufactured accurately and get close to high-precision computing to a certain extent. At
the same time, the write-verify method or multiread/write method can also solve accuracy
problems, but with an increase in latency. Both of them have a lot of worth in research
in ReRAM-based PDEs solvers in the future. To reduce the memristor device variability
and nonlinearity, in the work of Mohammed A. Zidan, a general memristor-based partial
differential equation solver used a write–verify method to write and update the coefficient
values in the crossbar. The write-verify operation is based on a sequence of write-read
pulse pairs, each pair including a programming (set or reset) pulse and a subsequent read
pulse. When the conductance reaches within a predetermined range of the target value, the
write operation is considered complete. The write-verify feedback method could decrease
the cell-to-cell variation of <1% from 5.3%.

Though flash memory and SRAM have higher accuracy and density compared with
ReRAM for CIM in numerical computations, ReRAM with nonvolatile and multivalued
characteristics is still the most extensively studied for CIM-based PDEs solvers.

The sparse coefficient matrix, with only a small number of nonzero elements, usually
has a large matrix size. The coefficient matrix must be divided into a certain number of
slices, whose sizes are typically 16× 16 or 32× 32. When the ReRAM array, having a huge
size and multiple rows or columns, are unopened, the result of the ReRAM array may have
a large error because of the unopened leakage currents. Hence, the size of the ReRAM array,
and the size of the slices above-discussed, not only depends on the system working, but
also is determined by the hardware operation of the ReRAM array. Moreover, the collected
currents need ADC for the next computation, and there are losses of accuracy in the process.
Other CIM-based PDEs solvers also have similar problems.

How to cut apart the matrix into slices, how small the size of crossbar arrays is and
how the single array is to work are urgent problems to be solved at the system level. At the
same time, rearrangement of sparse matrixes and SpMV will play an important role in the
future of CIMs for high-precision computing tasks.

5. Summary and Outlook

Different from neural network computations, numerical computations are used in early,
basic disciplines, receiving general attention from researchers all the time. In the past few
years, the research has become more and more popular to solve numerical computations
using CIM. CIM for numerical computations improves energy efficiency and computational
efficiency. All kinds of CIM PDEs based ReRAM, SRAM, flash memory and PCM have

Micromachines 2022, 13, 731 15 of 16

been proposed with various characteristics. The recent developments of CIM for numerical
computations were compared. This article described the ReRAM-based CIM technology
in detail. Then, it reviewed the numerical methods of PDEs and matrix iterative methods.
Finally, the future of CIM for numerical computations can be summarized as follows:

1. Regardless of which array of CIM, the accuracy is still the biggest challenge;
2. More research of CIM-based numerical computations should focus on the computa-

tional methods of sparse matrixes;
3. As for matrix iterative methods, the principal concern is which method has fewer zero

elements, so the Jacobi method is still the best choice for CIM-based PDEs solvers
at present. In addition, the Krylov subspace method is better when solving very
large-scale matrixes;

4. The future of CIM for high-precision computing tasks really needs a software/hardware
codesign to collaborate the algorithm and the CIM array.

Author Contributions: Conceptualization, C.P. and X.X.; investigation, D.Z., Y.W., J.S., Y.C., Z.G.,
G.D., M.Z., F.W. and W.W.; writing—original draft preparation, Z.G.; writing—review and editing,
K.Z.; supervision, K.Z.; project administration, C.P. and X.X. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is supported in part by National Key R&D Program of China under grant
2018YFB0407500. At the same time, this work is also supported by The Laboratory Open Fund of Beijing
Smart-chip Microelectronics Technology Co., Ltd., (Beijing, China) under grant SGITZX00XSJS2108594.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hickmott, T.W. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 1962, 33, 2669–2682. [CrossRef]
2. Gibbons, J.; Beadle, W. Switching properties of thin Nio films. Solid-State Electr. 1964, 7, 785–790. [CrossRef]
3. Nielsen, P.; Bashara, N. The reversible voltage-induced initial resistance in the negative resistance sandwich structure. IEEE Trans.

Electron. Devices 1964, 11, 243–244. [CrossRef]
4. Hiatt, W.R.; Hickmott, T.W. Bistable switching in niobium oxide diodes. Appl. Phys. Lett. 1965, 6, 106–108. [CrossRef]
5. Chen, Y. ReRAM: History, Status, and Future. IEEE Trans. Electron. Devices 2020, 67, 1420–1433. [CrossRef]
6. Atalla, M.M.; Kahng, D. 1960—Metal Oxide Semiconductor (MOS) Transistor Demonstrated Silicon Engine; Tech. Rep.; Computer

History Museum: Mountain View, CA, USA, 1960.
7. Kahng, D. Electric Field Controlled Semiconductor Device. U.S. Patent 3 102 230 A, 27 August 1963.
8. Xue, X.; Jian, W.; Yang, J.; Xiao, F.; Chen, G.; Xu, S.; Xie, Y.; Lin, Y.; Huang, R.; Zou, Q.; et al. A 0.13 µm 8 Mb Logic-Based

CuxOy ReRAM With Self-Adaptive Operation for Yield Enhancement and Power Reduction. IEEE J. Solid-State Circuits 2013, 48,
1315–1322. [CrossRef]

9. Ishii, T.; Johguchi, K.; Takeuchi, K. Vertical and horizontal location design of program voltage generator for 3D-integrated
ReRAM/NAND flash hybrid SSD. In Proceedings of the 2014 International Conference on Electronics Packaging (ICEP), Toyama,
Japan, 23–25 April 2014.

10. Joshi, V.; le Gallo, M.; Haefeli, S.; Boybat, I.; Nandakumar, S.R.; Piveteau, C.; Dazzi, M.; Rajendran, B.; Sebastian, A.; Elefthe-
riou, E. Accurate deep neural network inference using computational phase-change memory. Nat. Commun. 2020, 11, 2473.
[CrossRef] [PubMed]

11. Jain, S.; Ranjan, A.; Roy, K.; Raghunathan, A. Computing in memory with spin-transfer torque magnetic RAM. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2018, 26, 470–483. [CrossRef]

12. Takashima, D. Overview of FeRAMs: Trends and perspectives. In Proceedings of the 2011 11th Annual Non-Volatile Memory
Technology Symposium Proceeding, Shanghai, China, 7–9 November 2011; pp. 1–6.

13. Wong, H.-S.P.; Lee, H.; Yu, S.; Chen, Y.-S.; Wu, Y.; Chen, P.-S.; Lee, B.; Chen, F.T.; Tsai, M.J. Metal-oxide RRAM. Proc. IEEE 2012,
100, 1951–1970. [CrossRef]

14. Jameson, J.R.; Blanchard, P.; Cheng, C.; Dinh, J.; Gallo, A.; Gopalakrishnan, V.; Gopalan, C.; Guichet, B.; Hsu, S.; Kamalanathan,
D.; et al. Conductive-bridge memory (CBRAM) with excellent high-temperature retention. In Proceedings of the 2013 IEEE
International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; pp. 738–741.

http://doi.org/10.1063/1.1702530
http://doi.org/10.1016/0038-1101(64)90131-5
http://doi.org/10.1109/T-ED.1964.15319
http://doi.org/10.1063/1.1754187
http://doi.org/10.1109/TED.2019.2961505
http://doi.org/10.1109/JSSC.2013.2247678
http://doi.org/10.1038/s41467-020-16108-9
http://www.ncbi.nlm.nih.gov/pubmed/32424184
http://doi.org/10.1109/TVLSI.2017.2776954
http://doi.org/10.1109/JPROC.2012.2190369

Micromachines 2022, 13, 731 16 of 16

15. Yu, S.; Wong, H.-P. Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM). IEEE Trans. Electron. Devices
2011, 58, 1352–1360.

16. Baek, I.G.; Lee, M.S.; Seo, S.; Lee, M.J.; Seo, D.H.; Suh, D.-S.; Park, J.C.; Park, S.O.; Kim, H.S.; Yoo, I.K.; et al. Highly scalable
non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In Proceedings of the
IEEE International Electron Devices Meeting, San Francisco, CA, USA, 13–15 December 2004; pp. 587–590.

17. Lee, H.Y.; Chen, P.S.; Wu, T.Y.; Chen, Y.S.; Wang, C.C.; Tzeng, P.J.; Lin, C.H.; Chen, F.; Lien, C.H.; Tsai, M.-J. Low power and
high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. In Proceedings of the 2008 IEEE
International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; pp. 297–300.

18. Yoon, H.S.; Baek, I.-G.; Zhao, J.; Sim, H.; Park, M.Y.; Lee, H.; Oh, G.-H.; Shin, J.C.; Yeo, I.-S.; Chung, U.-I. Vertical cross-point
resistance change memory for ultra-high density non-volatile memory applications. In Proceedings of the 2009 Symposium on
VLSI Technology, Kyoto, Japan, 15–17 June 2009; pp. 26–27.

19. Govoreanu, B.; Kar, G.; Chen, Y.-Y.; Paraschiv, V.; Kubicek, S.; Fantini, A.; Radu, I.; Goux, L.; Clima, S.; Degraeve, R.; et al.
10×10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. In Proceedings of
the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 729–732.

20. Sills, S.; Yasuda, S.; Strand, J.; Calderoni, A.; Aratani, K.; Johnson, A.; Ramaswamy, N. A copper ReRAM cell for storage class
memory applications. In Proceedings of the 2014 Symposium on VLSI Technology (VLSI-Technology), Honolulu, HI, USA,
9–12 June 2014; pp. 80–81.

21. Hayakawa, Y.; Himeno, A.; Yasuhara, R.; Boullart, W.; Vecchio, E.; Vandeweyer, T.; Witters, T.; Crotti, D.; Jurczak, M.; Fujii, S.; et al.
Highly reliable TaOx ReRAM with centralized filament for 28-nm embedded application. In Proceedings of the 2015 Symposium
on VLSI Technology (VLSI Technology), Kyoto, Japan, 17–19 June 2015; pp. 14–15.

22. Yu, S. Compute-in-Memory for AI: From Inference to Training. In Proceedings of the 2020 International Symposium on VLSI
Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 10–13 August 2020.

23. Ensan, S.S.; Ghosh, S. ReLOPE: Resistive RAM-Based Linear First-Order Partial Differential Equation Solver. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2021, 29, 237–241. [CrossRef]

24. Ames, W.F. Numerical Methods for Partial Differential Equations; Academic: New York, NY, USA, 2014.
25. Eymard, R.; Gallouët, T.; Herbin, R. Handbook of Numerical Analysis; Ciarlet, G.P., Lions, L.J., Eds.; Elsevier: Amsterdam,

The Netherlands, 2000; pp. 713–1018.
26. Zidan, M.A.; Jeong, Y.; Lee, J.; Chen, B.; Huang, S.; Kushner, M.J.; Lu, W.D. A general memristor-based partial differential

equation solver. Nat. Electron. 2018, 1, 411–420. [CrossRef]
27. Kabir, H.; Booth, J.D.; Raghavan, P. A multilevel compressed sparse row format for efficient sparse computations on multicore

processors. In Proceedings of the 2014 21st International Conference on High Performance Computing (HiPC), Goa, India,
17–20 December 2014; pp. 1–10.

28. Li, S.; Chen, W.; Luo, Y.; Hu, J.; Gao, P.; Ye, J.; Kang, K.; Chen, H.; Li, E.; Yin, W.-Y. Fully Coupled Multiphysics Simulation of
Crosstalk Effect in Bipolar Resistive Random Access Memory. IEEE Trans. Electron. Devices 2017, 64, 3647–3653. [CrossRef]

29. Yu, S. Resistive Random Access Memory (RRAM): From Devices to Array Architectures; Iniewski, K., Ed.; Morgan & Claypool:
Saanichton, BC, Canada, 2016.

30. Chen, T.; Botimer, J.; Chou, T.; Zhang, Z. An Sram-Based Accelerator for Solving Partial Differential Equations. In Proceedings of
the 2019 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 14–17 April 2019; pp. 1–4.

31. Chen, T.; Botimer, J.; Chou, T.; Zhang, Z. A 1.87-mm2 56.9-GOPS Accelerator for Solving Partial Differential Equations. IEEE J.
Solid-State Circuits 2020, 55, 1709–1718. [CrossRef]

32. Feng, Y.; Zhan, X.; Chen, J. Flash Memory based Computing-In-Memory to Solve Time-dependent Partial Differential Equations.
In Proceedings of the 2020 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 13–14 June 2020; pp. 27–28.

33. Le Gallo, M.; Sebastian, A.; Mathis, R.; Manica, M.; Giefers, H.; Tuma, T.; Bekas, C.; Curioni, A.; Eleftheriou, E. Mixed-precision
in-memory computing. Nat. Electron. 2018, 1, 246–253. [CrossRef]

34. Jiang, H.; Huang, S.; Peng, X.; Yu, S. MINT: Mixed-Precision RRAM-Based IN-Memory Training Architecture. In Proceedings of
the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [CrossRef]

http://doi.org/10.1109/TVLSI.2020.3035769
http://doi.org/10.1038/s41928-018-0100-6
http://doi.org/10.1109/TED.2017.2730857
http://doi.org/10.1109/JSSC.2019.2963591
http://doi.org/10.1038/s41928-018-0054-8
http://doi.org/10.1109/ISCAS45731.2020.9181020

	Introduction
	ReRAM
	The Appearance of ReRAM
	The Development of ReRAM as NVM
	ReRAM in CIM
	ReRAM Crossbar

	Partial Differential Equation
	Numerical Methods
	Finite-Difference Method
	Runge-Kutta Method

	Matrix Iterative Methods
	Jacobi Method
	Guass Seidel Method
	SOR Method
	Krylov Subspace Method

	Rearrangement and Split

	CIM-Based Partial Differential Equation Solver
	ReRAM-Based Partial Differential Equation Solver
	SRAM-Based Partial Differential Equation Solver
	Flash Memory-Based Partial Differential Equation Solver
	PCM-Based Partial Differential Equation Solver
	Discussion of Partial Differential Equation Solver

	Summary and Outlook
	References

