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Automatic Posture and Movement 
Tracking of Infants with Wearable 
Movement Sensors
Manu Airaksinen1,2*, Okko Räsänen1,3, Elina Ilén4, Taru Häyrinen2, Anna Kivi2, 
Viviana Marchi5,6, Anastasia Gallen2, Sonja Blom2, Anni Varhe2, Nico Kaartinen7, 
Leena Haataja2 & Sampsa Vanhatalo2,8,9*

Infants’ spontaneous and voluntary movements mirror developmental integrity of brain networks since 
they require coordinated activation of multiple sites in the central nervous system. Accordingly, early 
detection of infants with atypical motor development holds promise for recognizing those infants who 
are at risk for a wide range of neurodevelopmental disorders (e.g., cerebral palsy, autism spectrum 
disorders). Previously, novel wearable technology has shown promise for offering efficient, scalable 
and automated methods for movement assessment in adults. Here, we describe the development of an 
infant wearable, a multi-sensor smart jumpsuit that allows mobile accelerometer and gyroscope data 
collection during movements. Using this suit, we first recorded play sessions of 22 typically developing 
infants of approximately 7 months of age. These data were manually annotated for infant posture and 
movement based on video recordings of the sessions, and using a novel annotation scheme specifically 
designed to assess the overall movement pattern of infants in the given age group. A machine learning 
algorithm, based on deep convolutional neural networks (CNNs) was then trained for automatic 
detection of posture and movement classes using the data and annotations. Our experiments show that 
the setup can be used for quantitative tracking of infant movement activities with a human equivalent 
accuracy, i.e., it meets the human inter-rater agreement levels in infant posture and movement 
classification. We also quantify the ambiguity of human observers in analyzing infant movements, 
and propose a method for utilizing this uncertainty for performance improvements in training of the 
automated classifier. Comparison of different sensor configurations also shows that four-limb recording 
leads to the best performance in posture and movement classification.

A key global healthcare challenge is the early recognition of infants that eventually develop lifelong neurocogni-
tive disabilities. More than every tenth infant is considered to be at neurodevelopmental risk1 due to their neo-
natal medical adversities, such as prematurity, birth asphyxia, stroke, metabolic derangements and intrauterine 
substance exposures. An early therapeutic intervention would be optimal for reducing the ensuing lifelong toll 
to individuals and societies, although it has been challenging to efficiently target early intervention to those who 
actually would benefit from it2. A thorough screening of all risk infants with extensive test batteries and/or brain 
imaging techniques is not plausible in most parts of the world, and it is not justifiable even in the most developed 
and wealthy nations.

There is hence a rising need to develop generalizable, scalable, objective, and effective solutions for early neu-
rodevelopmental screening. Such methods would need to be robust to random variability that may arise from 
all parties involved: the infant him/herself, skills of the health care professional, testing environment, as well as 
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recording methods. Furthermore, a wide biological variation which is inherent to typical neurodevelopment has 
to be considered. Indeed, requirement for adequate robustness has been a key challenge in the recent work3.

Phenomenologically, assessment of infants’ spontaneous behavior has recently gained a lot of interest for three 
reasons: First, the lab or hospital environments are artificial from a child’s perspective, and hence challenging for 
assessing their true neurodevelopmental performance4. Second, the novel recording and analysis methodologies 
have made it possible to study participants’ spontaneous activities in both lab and other environments5,6. Third, 
both fundamental and applied research has shown that infant’s spontaneous movements may provide an impor-
tant global window to the infant brain function7,8. Besides bodily movements per se, development of control of 
posture and intentional voluntary movements can be seen as parallel processes forming one perceptual-motor 
system which also involves higher cognitive functions9. Characterization of infants’ typical pattern of variation 
in different postures and movement activity over longer time could be used as a tool for early screening of infants 
at neurodevelopmental risks. Ideally, such a system would consist of an easy-to-use recording setup applicable 
to home environments, followed by an automated analysis pipeline for objective and quantitative assessment. 
Widely used observation protocols have been developed for assessment of spontaneous movements in neonatal 
period and early infancy2,10. However, they are neither genuinely quantitative nor allow longitudinal tracking 
beyond four months of age.

One option for monitoring infant movements at their homes could consist of intelligent wearables with inte-
grated sensors. There has been significant recent progress in the development of intelligent wearables for sports 
and leisure clothing in adults11. However, we are not aware of standards or open solutions for multi-sensor-based 
movement analysis for infants. Our present work aims to fill this gap by describing a relatively inexpensive 
comfortable-to-wear, and easy-to-use intelligent wearable, a smart jumpsuit that can be used for monitoring and 
quantifying key postures and movement patterns of independently moving infants. In addition to the design of 
the jumpsuit itself, we have developed a new protocol to visually classify and annotate independent movements 
of infants yet to acquire upright posture. We also developed a machine learning -based classifier to automatically 
recognize the set of postures and movements covered by the annotation scheme by using the sensory data availa-
ble from the jumpsuit sensors, including a novel way to deal with inter-annotator inconsistencies inherently pres-
ent in the human annotations used to train the classifier. Performance of the resulting system was assessed against 
multiple human raters on data from infants previously unseen by the classifier. The results show that the system 
achieves posture and movement recognition accuracy comparable to human raters on the same data, indicating 
the feasibility of automatic assessment of spontaneous infant movements using the proposed smart jumpsuit.

Data Collection Methods
The overall workflow in our study included (i) the development of a wearable garment and mobile data collection 
system for infant recordings (Fig. 1), (ii) the development and implementation of the visual analysis scheme to 
obtain a human benchmark, and iii) the development, training, and performance testing of the machine learning 
methods for an automated quantitative analysis of infants’ movement activity (see Fig. 2).

Design of the smart jumpsuit.  For tracking the posture and movement of infants, we developed a meas-
urement suit, named the “smart jumpsuit” (see Fig. 1a), which is a full body garment that allows spontaneous 
unrestricted movements. The garment features a total of four battery operated wireless Suunto Movesense sensors 
(www.movesense.com) that are mounted proximally in the upper arms and legs. For the first prototype, we used 
a commercially available infant swimming suit as the base garment. Movesense Smart Connector mounts were 
set onto fabric and attached by heat bonding the piece of fabric and thermoplastic polyurethane (TPU) adhesive 
film-layer structure on top of the mounts. The created electronic garment is laundry washable at 40 °C.

Each of the Movesense sensors features a built-in inertial measurement unit (IMU) that is used for six degrees 
of freedom (DOF) measurement at a sampling rate of 52 Hz. These signals consists of a triaxial accelerometer 
measuring linear acceleration in m/s2 (range ±8g) and a gyroscope measuring angular velocity in °/s (range 
±500°/s). The Movesense sensors are 36.6 mm in diameter and 10.6 mm in thickness, weigh 30 grams, and are 
waterproof and removable from programmable mounts, making them suitable for limb placements in infant 
wearables. Symmetric sensor placement was used to capture a comprehensive picture of infant motor repertoire. 
In addition, the setup enables later more detailed study of limb movement synchrony and symmetry that can be 
used to further characterize clinically abnormal neurological development10.

Communication of Movesense sensors uses an open source application programming interface (API; bit-
bucket.org/suunto/movesense-docs/wiki/Home), which allows streaming the raw sensor data at desired frequen-
cies wirelessly via a Bluetooth 4.0 connection to an external data logging device. This project used Apple iPhone 
SE with an iOS-based multi-sensor data logging software (www.kaasa.com). The tasks of the data logger software 
include (1) centrally controlling the recording process, (2) receiving and writing raw signals from each sensor 
through the Bluetooth connection, and (3) synchronizing sensor timestamps. In addition, the software allows 
concurrent video recordings with the device camera.

As presented, the smart jumpsuit is a technical proof-of-concept, and it is not meant to showcase a ready 
commercial product. The price for the present smart jumpsuit construct from retail components is approximately 
200 USD, and the iOS-based mobile phone could be replaced with any of the now ubiquitous smartphones able 
to run a multisensor datalogger software. A larger scale production price of the smart jumpsuit garment could 
readily go down to 30–50 USD, making it financially feasible for a wide range of use-contexts, including devel-
oping countries.

Data collection.  The main goal of our data collection process was to obtain a representative set of independ-
ent movements in approximately 7-month old infants for automatic classifier training. For this purpose, a total 
of 24 infants were recorded (mean age 6.7 months, ±0.84 (SD), range 4.5–7.7; 9 male). The infants were known 

https://doi.org/10.1038/s41598-019-56862-5
http://www.movesense.com
http://www.kaasa.com


3Scientific Reports |          (2020) 10:169  | https://doi.org/10.1038/s41598-019-56862-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

as typically developing without prior history of significant medical issues, and they were initially recruited for 
a larger ongoing research project. The measurements used in this particular study were carried in clinic-like 
settings in approximately 30–60 minute long sessions. Notably, the length of recording was limited by situational 
factors arising in the laboratory context, such as lab availability, or infant care routines and cooperation. The 
recording technology (i.e., smart jumpsuit with data logger) would have allowed considerably longer recordings.

During each session, an infant wearing the smart jumpsuit was placed on a foam mattress. Without making 
physical contact with the infant, a pediatric physiotherapist actively engaged the infant in different postures and 
movements common in structured neurological examinations12 with a set of age-appropriate toys. The toys were 
also freely available for the infant to play with. The caregiver of the infant was allowed to be in close proximity (if 
they so desired) in order to keep the infant more content. In order to ensure maximum amount of independent 
movement, physical contact with the infant was limited to situations that required soothing or lifting the infant in 
prone/supine posture if the ability to turn around was not yet acquired.

All sessions were also video recorded to allow detailed temporal annotation of movement activities (see 
Movement annotations Section). The first 14 infants were video-recorded using a separate video camera (GoPro 
Hero 8 Black, www.gopro.com), while the rest were recorded with an in-built synchronized video feature of 
the data-logger software on the iPhone that automatically synchronized with the recorded sensor data. For the 
first 14 recordings with the GoPro camera, synchronization between the sensor signals and video was done by 
tapping one of the sensors visibly in the video to allow manual adjusting between movement signals and video 
when importing into Anvil annotation software. Two infants were excluded as outliers from further analysis 
due to their substantially more advanced motor skills (e.g., standing), yielding a final number of 22 recordings. 
Each recording consists of 24-channels of sensory data (4 sensors, 3 accelerometer and 3 gyroscope channels per 
sensor) sampled at the 52 Hz sampling frequency. The total length of the recordings was 12.1 hours, out of which 
10.6 hours (88%) were utilized for the classifier training and testing described in the automatic detection of infant 
posture and movement section (excluding carrying, out-of-camera events, and dropped sensor connections). The 
resulting mean length of the utilized recordings per infant was 29 minutes (range 9–40 minutes).

The study complies with the Declaration of Helsinki and the research was approved by the Ethics Committee 
of Children’s Hospital, Helsinki University Hospital. A written informed consent was obtained from the parents.

Movement annotation protocol.  The primary goal of the present jumpsuit setup and analysis was to 
obtain a temporally rich description of the infant movement activities over periods of time. This information 
could be used later to support a variety of clinical goals and decision making. In addition, an automated classifier 

Figure 1.  Experimental design. (a) Photograph of the smart jumpsuit with four proximally placed movement 
sensors. (b) The annotation setup displaying annotations with synchronized video and movement data.
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for such movements could be then fine-tuned or adapted for more specialized clinical diagnostics or evaluation 
of intervention efficacy — tasks for which less training data are typically available compared to the overall infant 
population available for data collection.

Notably, infant movement patterns differ substantially from the prototypical adult categories (e.g., walking or 
running), and there are no standard classification systems for the recognition of infant movements in a compa-
rable manner. The existing schemes for infants are aimed to visually recognize more complex entities via Gestalt 
perception, typically handled in the framework of “movement behavior” or “kinematics”13. Therefore, we first 
developed a novel classification and annotation scheme that describes the expected typical postures and move-
ments of three to seven months old infants before they reach upright posture14. The scheme was developed using 
an iterative approach within a multidisciplinary team of clinical and machine learning experts, as well as by com-
paring consensus and blinded annotations carried out on a set of pilot recordings. The overall aim was to reach 
an annotation scheme where each category would have an unequivocal verbal description, minimal overlap with 
other categories, maximum pervasiveness, as well as minimal disagreement in ratings from multiple annotators. 
The distal fine motor movements were omitted from the annotation scheme because their identification was not 
consistent at the desired temporal resolution. The final annotation scheme consisted of two annotation tracks, one 
to represent posture, and the other to represent gross body movements. This annotation design allows tracking of 
movements in the context of posture, as well as their further quantification (such as amplitudes, synchronies or 
temporal correlations) in a context-dependent manner (see, e.g.9).

The posture track consists of five discrete categories: prone, supine, side left (L), side 
right (R), and crawl posture. The eight categories for the movement track are: macro still, 
turn left (L), turn right (R), pivot left (L), pivot right (R), crawl proto, 
crawl commando and crawl 4 limbs. The exact verbal descriptions of these event types as presented 
to human annotators are shown in the Supplementary Information. However, because only one of the utilized 
recordings contained the movement category crawl 4 limbs, it was omitted from further analysis in this 
study, reducing the number of considered movement categories to seven. The overall rationale of this particular 
annotation template was to identify posture/movement patterns that are elementary enough for serving as a basis 
for further (posture) context-sensitive, quantitative (movement) summaries; also, they should be reliable to detect 
with proximal movement sensors. Therefore, we deliberately chose not to aim at direct classification of complex 
motility patterns/kinematics that are commonly observed in the established observational assessment scales2.

Figure 2.  Design of the automatic classification pipeline. (a) The convolutional neural network (CNN) 
architecture used in the study as the main classifier. The role of the sensor module is to perform sensor-specific 
feature extraction, the sensor fusion module fuses sensor-level features into frame-level features, and the time 
series modeling module captures the temporal dependencies across frame-level features. (b) Block diagram 
for the iterative annotation refinement (IAR) procedure used to improve CNN performance through classifier-
assisted resolution of inter-annotator inconsistencies on the training data.
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Each recording was independently annotated for posture and movement by three of the authors (M.A., A.K., 
A.G., S.B, A.V. took part in the annotations), as well as for a meta-data track for additional information, such as 
epochs when the infant was out of video or carried by an adult. The use of three parallel annotators was chosen as 
a compromise between the need to validate the consistency of the proposed annotation scheme and the laborious 
effort required in the rigorous and detailed annotation task15. The annotators had varying amounts of experience 
with infant clinical research with backgrounds in biomedical disciplines, psychology or engineering. The annota-
tors were trained to carry out the movement annotation task, and they performed the actual annotation task only 
after they felt confident enough to do so. Their annotations were also evaluated after a few infants to ensure their 
consistency w.r.t. the proposed annotation protocol.

The recordings were annotated using freely available Anvil annotation software (www.anvilsoftware.com), in 
which the annotators had a simultaneous view of the playback video and visualization of raw multi-channel signals 
while carrying out multi-track annotation of the data (see Fig. 1b). Visually presenting the video-synchronized wave-
forms was found to be useful by markedly improving the temporal accuracy of annotations. The annotation templates 
as well as an example annotation file are provided in the Supplementary Material. Consistency of the annotators, and 
therefore of the entire annotation protocol, was quantified in terms of inter-rater agreement rates, as described below.

Annotation Consistency Analysis
In order to evaluate the coherence of the annotations, we measured inter-rater agreement using Fleiss’ κ score 
(with κ = 1 for full and κ = 0 for chance-level agreement), which is a multi-rater generalization of the Cohen’s 
κ metric16. The overall agreement across all categories was very high for posture (κ = 0.923) and moderate for 
movement (κ = 0.580). However, breakdown of the comparisons in the confusion matrix (Fig. 3a) shows sub-
stantial variability between the classes. For the posture track, prone was sometimes confused with crawl or 
side L/R postures, and supine was as well confused with side L/R postures. For the movement track, 
there were several confusions with macro still, which could be confused with all other classes; likewise, the 
movement crawl proto was frequently confused with other movement patterns. While some incidences may 

Figure 3.  (a) Total cumulative confusion matrices across all possible annotator pairs for the Posture (top) and 
Movement (bottom) track. The percentages of each column sum up to one and the absolute values denote the 
number of frames corresponding each cell. (b) t-SNE visualization of the entire dataset based on SVM input 
features. Color coding is based on the annotations of Posture (top left) and Movement categories (the rest). The 
visualization of the Movement track has been broken down into 3/3 (top right), 2/3 (bottom right), and 1/3 
(bottom left) annotator agreement levels. The ambiguity differences in the annotation accuracies between the 
tracks can be clearly seen.
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be explained by human error, such as confusing left and right pivoting or turning, these disagreements between 
human annotators as a whole suggest substantial inherent ambiguity in movement classification, indicating the 
difficulty of interpreting infant movements in terms of unequivocal discrete categories.

In order to better understand the source of ambiguities in the human annotations, we plotted the entire dataset 
(Fig. 3b) using t-distributed stochastic neighbor embedding (t-SNE)17 with signal features described in the SVM 
classifier Section below. In the figure, posture information has clearly separable boundaries between categories 
(the “islands” in Fig. 3b). In contrast, category boundaries between the movement classes are markedly ambiguous 
with a continuum of movement category (mini-)clusters inside the islands. This further illustrates how the pos-
ture classification is a relatively easy task whereas accurate movement categorization is much more challenging.

The inherent ambiguity of certain movement categories and their temporal extent was also reported by the 
human annotators during feedback discussions. According to the subjective experiences of the annotators, the 
most typical cases of ambiguity were concerned with (1) the determination of the exact temporal boundaries 
between two subsequent movements, and (2) deciding when rapid transient movements reached the criteria 
for belonging to a movement category (see Fig. 3a for the confusion matrices). The annotators also reported the 
possibility of a “recent observation effect”18 in their annotations, i.e., the subjective criteria for a category (e.g., 
proto-crawling) could have been more loose for a generally less active infant as compared to an active infant. 
Overall, the analysis shows that despite the structured annotation protocol, annotation of infant movements 
based on visual inspection is not fully unambiguous due to the temporal contiguity of movements and postures, 
and due to the continuous nature of the motor development that infants are undergoing.

Automatic Detection of Infant Posture and Movement
Training of automatic classifiers for posture and movement.  We explored the capabilities of the smart 
jumpsuit in measuring the proposed posture and movement categories in conjunction with two different classifier 
architectures: First, a support vector machine (SVM) classifier based on established signal-level features from the 
human activity detection literature19,20, and second, a new end-to-end convolutional neural network (CNN) archi-
tecture designed for the task at hand. While the SVM provides a baseline performance level for the given task, the 
feature-agnostic CNN is potentially more powerful, as it can learn task-relevant signal representations directly from 
the training data instead of using a prescribed set of signal features. However, the gain from an end-to-end system 
is known to become significant with datasets that are orders of magnitude larger than our present dataset21, so we 
wanted to assess whether the CNN is able to provide any improvement over the well-established SVM baseline.

SVM classifier.  For both SVM and CNN classifiers, the signal was first windowed into 120-sample frames (2.3 s 
at 52 Hz) with 50% overlap between subsequent windows. For the SVM classifier, 14 basic features per chan-
nel assembled from prior literature19,20 were then calculated, yielding a feature vector with a total dimensional-
ity of 14 × 24 = 336 features per frame. The utilized features were: signal mean, variance, max amplitude, min 
amplitude, signal magnitude area, energy, interquartile range, skewness, kurtosis, largest frequency component, 
weighted average frequency, frequency skewness, and frequency kurtosis of each channel. The multi-class SVM 
was trained as an ensemble system with the error-correcting output codes (ECOC) model22 utilizing linear kernel 
functions. The input vectors to the model were standardized with global mean and variance normalization.

CNN classifier.  The CNN architecture is presented in Fig. 2a. The system consists of three key stages: the first 
“sensor module” is responsible for low-level feature extraction of individual sensors, and is inspired by the 
multi-IMU sensor CNN architecture23 by having independent 2D convolution kernel paths for the accelerometer 
and gyroscope signals and one shared kernel that spans both. The “sensor fusion module” is responsible for fusing 
individual sensor-level features to common high-level features. Finally, the “time series modeling module” per-
forms temporal modeling of the learned high-level features in order to utilize temporal contextual information in 
the classification decisions. Time series module was implemented with a residual network architecture24 utilizing 
stacks of dilated convolutions over the frame-level features25. Detailed description of the CNN classifier and the 
training procedure can be found from the Supplementary Material.

The CNN classifiers for the posture and movement tracks were otherwise identical, but the movement track 
uses an additional one-hot conditioning vector of the posture classification output (arg max) at the input of the time 
series modeling module. This addition is justified by the fact that the movement categories are heavily conditional 
to the postural context (e.g., commando crawling does not happen during the supine posture), and hence infor-
mation from the posture classification helps to disambiguate sensory signals in the movement classification task.

Iterative annotation refinement for automatic classifier training.  Performance of supervised machine learning 
classifiers is highly dependent on the consistency of the labels used in the training. In our present dataset, there 
was an incomplete agreement among the three experts in about one third of the frames in the movement track, 
which is a typical situation in annotation tasks of this kind26,27. In order to utilize all available information, includ-
ing the observed lack of full agreement in specific frames, we developed a novel iterative annotation refinement 
(IAR) method. It aims to resolve ambiguities in the training data by combining human- and machine-generated 
labels in a probabilistic fashion (Fig. 2b).

In IAR, the data from N = 22 infants were first split into a training set of N − 1 infants and a held-out test infant. 
For each infant in the training set, the labels from the three parallel annotators were treated as probabilistic priors 
for class identity for each signal frame at time t, i.e., each class c received a prior probability p0(c|t) of 0, 0.33, 0.67, 
or 1 based on 0/3, 1/3, 2/3, or 3/3 human ratings for the given class. During the first iteration i, an automatic clas-
sifier with parameters θi was trained on N − 2 of the infants in the training set using the prior probabilities as soft 
labels. The resulting classifier was then used to estimate new class likelihoods p(c|t,θi) for the N − 1:th infant in the 
training set, repeating the process N − 1 times to get the likelihoods for each infant in the training set. The 
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resulting machine “annotations” were then combined with the original human annotations through multiplica-
tion, i.e., θ Σ| = | ∗ |p c t p c t p c t( ) ( ) ( , )/i i c0 , where ∑c is a normalization constant making each frame’s probabilities 
sum up to 1. The resulting pi were then treated as soft labels for training a full classifier from all N − 1 infants in 
the training set to be used for performance evaluation on held-out data, and as new priors (soft labels) for label 
refinement on the next iteration round. On each iteration, classifier-based likelihoods were combined with the 
original human labels p0(c|t) (instead of the priors from the previous iteration) in order to ensure that the IAR did 
not diverge from the original set of classes proposed by the humans.

As a result, the unambiguous frames with 3/3 and 0/3 human category decisions remained unchanged, 
whereas the ambiguous cases between the two or three competing classes of ambiguous segments were allowed 
to change based on the classifier decisions. Since the classifier relies on systematic global structure available in 
the training data, this process leads to unification of the labels in terms of class identities and their corresponding 
temporal boundaries. In other words, IAR reduces the label noise in the training data, thereby boosting the per-
formance of the resulting final classifier.

Experimental setup and evaluation.  Performance of both classifiers was evaluated using leave-one- 
subject-out (LOSO) cross-validation, and where IAR with five iterations was used to preprocess the annotations 
of the subjects in the training set. Notably, system performance was always and only evaluated against the original 
human annotations, and the IAR was never applied to the test set samples of held-out infants. The SVM classifier 
was also used to test the effect of various sensor configurations on classification performance, including cases with 
movement recording from single arm, single leg, two arms, two legs, and all limbs, respectively.

We report the classification performance across all infants (LOSO-folds) and using two sets of test frames: the 
“full agreement” set, which contains the frames from each recording with full 3/3 annotation agreement, and the 
“all frames” set, which contains all of the dataset frames with ground truth based on class majority vote. The “full 
agreement” set is used to showcase classifier performance on unambiguous cases (as judged by humans), and the 
“all frames” set to showcase the overall performance. The differentiation of the two test cases aims to bring better 
insight on the classification performance between the cases where the ground truth is well defined (the “full 
agreement” set), and the cases that include noisy ground truth labels (the “all frames” set). The “full agreement” 
set is used as the primary benchmark in Figs. 4, 5 and 6.

Four primary performance metrics were used: the accuracy, unweighted average recall (UAR), precision 
(UAP), and F-score (UAF). For each class, recall is defined as R = tp/(tp + fn) and precision as P = tp/(tp + fp), 
where tp is the number of true positives, fp the number of false positives, and fn the number of false negatives. 
The F-score is the harmonic mean of precision and recall, F = 2PR/(P + R). The unweighted average score means 
that the class-specific scores are first calculated and the averaged across the classes, thereby ignoring the highly 
skewed class distribution of the present data. Thus, the chance-level performance for all of the unweighted average 
scores is 1/C, where C is the total number of posture/movement classes. Any statistically significant differences in 
the results are reported using the Mann-Whitney U-test28 with p < 0.05 criterion for significance.

In addition to the primary metrics above, pairwise κs between the classifier and each of the human annotators 
were calculated in order to investigate whether the machine can achieve human-like consistency in the posture 
and movement classification tasks.

Results for Automatic Classification
Assessment of classifier performance.  The result comparisons for SVM and CNN classifiers are shown 
in Fig. 4 for all recordings in terms of their category-specific F-scores. The classification accuracies of posture 
are generally comparable between CNN and SVM, however the CNN classifier yields a notably better perfor-
mance with several movement categories. The median F-score for the movement track is approximately 80% for 
the CNN classifier, with the SVM being consistently around 5 to 10 percentage points below in performance. 
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Figure 4.  Performance of classifiers. Class-specific F-score box plots for individual recordings for the Posture 
and Movement tracks using the CNN (blue) and SVM (red) classifiers. Statistically significant recording-level 
differences (p < 0.05; Mann-Whitney U-test, N = 22) between SVM and CNN performance are indicated. Note 
the significantly better performance of CNN in movement patterns that take place in prone position (crawl 
proto, turn, pivot).

https://doi.org/10.1038/s41598-019-56862-5


8Scientific Reports |          (2020) 10:169  | https://doi.org/10.1038/s41598-019-56862-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

With respect to the intended use of the smart jumpsuit in clinical assessment, the greatest shortcomings with the 
SVM classifier are its significantly worse performance in classifying movements that take place in prone posture: 
crawl commando, crawl proto and pivoting.

The confusion matrices in Fig. 7 show class-specific performance metrics for the CNN classifier, and the over-
all performance scores in terms of accuracy, UAR, UAP, and UAF are reported in Table 1 (for more details, see 
Supplementary Material). The results are shown separately for the full annotator agreement frames (the frames 

Figure 5.  The effect of sensor setup on classification performance (UAR) using the SVM classifier. Any 
individual sensor configuration is inferior to the four-sensor setup. However, classification of data from a 
combination of one arm and one leg leads to almost comparable results.
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Figure 6.  Differentiation of high and low motor performance infants with the smart jumpsuit. The plots show 
individual category distributions (as log-probability) of the given posture and movement category, presented for the 
entire dataset. Results from both human annotation (x) and the classifier output (triangle) are shown for comparison, 
and the hairlines connect individuals to assess the individual level reliability. The highlighted recordings correspond 
to a sample of high performing (red; High perf.) and low performing infants (blue; Low perf.). Rest of the infant 
cohort is plotted with light gray lines. No statistically significant differences were found between the movement 
distributions from the human annotations and from classifier outputs (Mann-Whitney U-test, N = 22).
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whose ground truth labels are most likely absolutely correct), and for all frames (contains the 3/3 and the ambig-
uous frames with noisy labeling). As can be observed, the confusion matrices are highly similar to the confusion 
matrices of human annotation presented in Fig. 3a. For posture, overall performance is highly similar between 
the “full agreement” and “all frames” sets, which reflects the high level of inter-rater agreement. The most frequent 
confusions are in the prone-side-supine axis, as well as between crawl posture and prone. Notably, confusion in 
the left-right axis does not exist with automatic classification but they may occur by human errors. The move-
ment track confusion matrix from the classifiers (Fig. 7c,d) is also strikingly comparable to the confusion matrix 
between human experts (Fig. 3a). The most obvious challenge is at the decision boundaries between macro still, 
crawl proto, and the rest of the categories.

Assessment of IAR effectiveness on annotation consistency and classifier perfor-
mance.  Figure 8 shows the value of the IAR procedure with the CNN classifier, as measured in terms of 
Fleiss’ κ between human annotators and the classifier outputs on held-out test data as a function of IAR iterations 
applied to the training data. Classifier performance saturates after the first, notable increase over the first IAR 
iterations, indicating that the classifier has learned more consistent decision boundaries. In addition, the saturat-
ing performance demonstrates that the proposed probabilistic framework with the internal cross-fold procedure 
within the IAR (not to be confused with the LOSO-loop of the main experiment) ensures relative stability of the 
approach.

The results in Fig. 8 also show how the classifier behavior compares with different human annotation tracks. 
Comparison of human-to-human agreement (dashed lines in Fig. 8) with the classifier-to-human agreement 
showed that a human annotator can be replaced by our classifier without loss of agreement, and the finding holds 
for both posture and movement tracks. A high comparability of human and computer assessment is even seen 
in the level of individual participants (see Fig. 6). Taken together, the results show that the classifier performs at 
human equivalent level.

Added value from multi-sensor setup.  In order to investigate the added value of multiple sensors, we 
compared classifier performance (UAR) using different subsets of sensor configurations (Fig. 5). The main finding 
was that the individual sensors show lower performance compared to the full four-sensor setup. A two-sensor 
combination with one arm and one leg may lead to a performance that is comparable to the four-sensor setup in 
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Figure 7.  Total CNN classifier confusion matrices of the posture (a,b) and movement (c,d) tracks obtained 
from LOSO cross-validation of the (a,c) full annotation agreement subset and (b,d) complete data set. The 
percentage values inside the cells indicate the class-specific recall values, and the absolute values denote the 
number of frames. Average metrics are presented in Table 1.

Full agreement frames ACC UAR UAP UAF

Posture track 99.1% 96.2% 95.7% 96.0%

Movement track 90.7% 82.4% 85.9% 83.5%

All frames ACC UAR UAP UAF

Posture track 98.2% 94.1% 93.3% 93.7%

Movement track 81.7% 71.9% 75.4% 72.7%

Table 1.  Overall performance of the CNN classifier in terms of accuracy (ACC), unweighted average recall 
(UAR), unweighted average precision (UAP), and unweighted average F-score (UAF).

https://doi.org/10.1038/s41598-019-56862-5


1 0Scientific Reports |          (2020) 10:169  | https://doi.org/10.1038/s41598-019-56862-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

the given task. However, such two-sensor setup makes the recording more susceptible to problems that may arise 
from sensor placement errors or hardware failures. In addition, recordings with only one leg or arm cannot meas-
ure laterality differences of limb synchronies which may be central in future development of actual automatic 
diagnostic paradigms10 (see also Discussion).

Automatic recognition of infants with different levels of motor performance.  We finally carried 
out a proof-of-concept test to see if the current jumpsuit setup is able to automatically distinguish infants with 
high versus low motor performance. To this end, five infants with high and five with comparatively low motor per-
formance levels were chosen from the video recordings by a professional child physiotherapist (T.H.) and a child 
neurologist (L.H.). The recordings were chosen based on a separate session of retrospective video review with a 
consensus assessment approach. High performance was defined as a generally active motility and rich movement 
repertoire, or relative paucity of both in the low performing infants, respectively. The relative frequency of all 
posture and movement events was then plotted per category to qualitatively assess whether differences in perfor-
mance would be distinguishable in the output of the automatic analysis (Fig. 6). Indeed, this analysis shows that 
the two infant groups are far apart in the incidence of several categories in both posture (prone, supine, 
crawl posture) and movement (macro still, pivot L and R, crawl commando) tracks. In 
addition, the two groups are clearly separable in terms of both human and machine -based labels.

Discussion
This study shows that it is possible to construct a comfortable-to-wear intelligent infant wearable with a signal 
processing pipeline that allows quantitative tracking of independent movement activities of infants with high 
accuracy. We developed a novel annotation scheme to classify infant postures and movements into a number of 
key categories, and demonstrated how an automatic classifier can reach human-like consistency in movement 
and posture recognition. In addition, we described a principled probabilistic approach to exploit the inter-rater 
inconsistencies in the human annotations used to train the classifier. Finally, we demonstrated that a multi-sensor 
setup is required for maximal movement classification performance. Our present work extends the prior work 
from adult studies23 that clinically relevant movement tracking and quantification is possible in infants as well. 
The present work goes beyond the prior literature by constructing and demonstrating the feasibility of the first 
multi-sensor wearable for infants that allows non-intrusive, cheap, and technically achievable measurement of 
infants’ posture and independent movements. The result is a full smart jumpsuit system that could be imple-
mented in out-of-hospital recordings, at least in the clinical research context.

From the technical point of view, our findings show that an SVM classifier based on standard signal-level 
features is sufficient for posture tracking and adequate for detecting some categories of movement. However, the 
SVM struggles in recognizing certain key infant motor patterns, such as crawling posture and pivoting, which are 
crucial milestones for a normal neurological development29. For this reason, an end-to-end CNN classifier was 
designed for the task, as similar CNN architectures have previously demonstrated state-of-the-art performance 
in adult-based human activity recognition23. The resulting CNN classifier yielded statistically significant and 
much needed/required improvements in the movement tracking. Comparison to human annotator agreement 
levels shows that the CNN achieves classification performance comparable to human annotator consistency, and 
it could therefore be used as an independent automatic measure of infant motility.

Practical aspects of jumpsuit analysis.  Literature on movement analysis based on IMU sensors has 
grown rapidly and a wide range of analytic tools have been developed to analyse movement activity at different 
levels30,31. A key challenge has been in search for unified recording settings and/or classification tasks32. It now 
seems clear that solutions need to be tailored specifically, at least for different subject groups and tasks31. For 
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Figure 8.  The effect of IAR-based label refinement on the agreement (κ) between CNN classifier outputs and 
the three original human annotation tracks (gray lines) as a function of IAR iterations on held-out test data. The 
mean pair-wise agreement between classifier and the three human annotations is shown with the blue line and 
Fleiss’ κ agreement across all human annotators is shown with the dotted black line. A clear improvement in 
classifier performance is observed due to label refinement on the training data, reaching the human-to-human 
agreement rate.
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instance, there may be substantial day-to-day variation in motility, which needs to define a balance between the 
added information gain vs practical costs of longer recording periods33. Preliminary studies have shown, however, 
that quantitative movement analysis of infants may be possible with accuracy that even allows clinical outcome 
predictions3,34,35.

Designing an infant medical wearable of this kind is a multidisciplinary challenge3. At the patient level, there 
are practical challenges such as wearing comfort to allow normal motility. Here, we chose an infant swim suit as 
the model for cut design; the sensor placements were such that they would be likely ignored by most infants to 
allow undisturbed motility. We initially also piloted with distal sensor placements, but they were not found to 
bring significant benefits for automated analysis. Instead, distal sensors tended to be mechanically more unstable 
and easily attracted infants’ attention.

At the level of operator, the full recording system including the mobile device for data collection needs to be 
easy enough to use, while the collection of synchronized data must be reliable throughout the session. A fur-
ther improvement of the system could be achieved by development of higher memory capacity into the sensor 
modules, thereby lifting the need for continuous data streaming. An overarching issue is the need to reduce 
complexity of the whole setup. Our smart jumpsuit design was markedly challenged by the chosen multi-sensor 
setup, which required reliable wireless collection of synchronized data at high rates over Bluetooth transmission. 
The choice to use multiple sensors was intuitively reasoned by a potential for better movement discrimination 
in follow-up research. Comparison of classification results between different sensor configurations shows that 
posture detection alone may be relatively reliable from even one sensor. However additional sensors bring sub-
stantially more accuracy to recognition of movement patterns. In the context of prospected out-of-hospital stud-
ies, it is also important to consider technical reliability, including participant’s compliance and hardware-related 
issues. Any additional data, such as redundant sensor information, may prove invaluable in the real life settings of 
infants’ native environment (see also3,36).

Future prospects.  Multisensor recording of the present kind opens many potential ways for further analy-
ses. For instance, one can readily envision quantitative, posture context-dependent assessment, where computa-
tional analyses account for different postures. For instance, recent literature reports computational measures of 
spontaneous hand or leg movements that are highly predictive of later neurodevelopment9,34. Infants’ intentional 
hand or leg movements are heavily modulated by posture, yet no method is available to allow their analysis sepa-
rately for different posture contexts; an approach that becomes readily available with the methodology described 
in out present work. Moreover, posture and movement tracking enables context-specific analysis of heuristic 
features (e.g.35,37,38) such as movement symmetry and limb synchrony, the well established metrics in the analysis 
of adults’ spontaneous motility39.

Recent literature has underscored the need to develop functional growth charts to allow evidence-based track-
ing of individual neurodevelopment3,37. On another note, recent changes in infant care practices have emphasized 
“tummy time”, placing infants on their stomach to play when awake, as an important posture context to support 
early neurodevelopment40. All these trends will benefit from an established, automated methodology that allows 
tracking posture and movement patterns. As an initial proof of concept, we showed how posture and movement 
tracking may differentiate high and low performing infants by simply quantifying mere incidence of movement 
categories. Further efforts with context-dependent quantitation are likely to boost the information value. An 
obvious practical use case of such method would be tracing atypical patterns in motor development. Moreover, 
a reliable quantitative tool for motor activity tracking holds significant promise for a functional biomarker, i.e., 
providing much awaited evidence for the efficacy of early therapeutic interventions2,41.
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