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Abstract

Objective

Pneumococcal conjugate vaccines reduce the prevalence of vaccine serotypes carried in the

nasopharynx. Because this could alter carriage of other potential pathogens, we assessed

the nasopharyngeal microbiome of children who had been vaccinated with 10-valent pneu-

mococcal non-typeableHaemophilus influenzae protein-D conjugate vaccine (PHiD-CV).

Methods

Profiles of the nasopharyngeal microbiota of 60 children aged 12-59 months, who had been

randomized to receive 2 doses of PHiD-CV (n=30) or Hepatitis A vaccine (n=30) 60 days

apart, were constructed by 16S rRNA gene pyrosequencing of swab specimens collected

before vaccination and 180 days after dose 1.

Results

Prior to vaccination,Moraxella catarrhalis (median of 12.3% of sequences/subject), Strepto-
coccus pneumoniae (4.4%) and Corynebacterium spp. (5.6%) were the most abundant na-

sopharyngeal bacterial species. Vaccination with PHiD-CV did not significantly alter the

species composition, abundance, or prevalence of known pathogens. Distinct microbiomes

were identified based on the abundances of Streptococcus,Moraxella, and Haemophilus
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species. These microbiomes shifted in composition over the study period and were inde-

pendent of age, sex, school attendance, antibiotic exposure, and vaccination.

Conclusions

Vaccination of children with two doses of PHiD-CV did not significantly alter the nasopha-

ryngeal microbiome. This suggests limited replacement carriage with pathogens other than

non-vaccine strains of S. pneumoniae.

Trial Registration

clinicaltrials.gov NCT01028326

Introduction
Pneumococcal disease is estimated to cause illness in 13.8 million children under 5 years of
age, with>800,000 deaths annually.[1] In countries where pneumococcal conjugate vaccine
(PCV) has been introduced into the childhood immunization schedule, it has substantially re-
duced the incidence of vaccine-type invasive pneumococcal disease (IPD) among young chil-
dren.[2] In addition to generating a serum antibody response, vaccination with conjugate
PHiD-CV also results in a reduction in the prevalence of nasopharyngeal carriage of vaccine-
type pneumococci.[3] The incidence of vaccine-type IPD among unvaccinated children and
adults have also been reduced through decreased transmission of pneumococcal infection from
younger, vaccinated children. [4]

Vaccine-induced changes in nasopharyngeal pneumococcal carriage may have other effects
on the nasopharyngeal microbiome, including increased carriage of pathogenic species not tar-
geted by vaccination.[5] To examine the effects of pneumococcal vaccination on nasopharyn-
geal microbial communities, we applied culture-independent molecular techniques of bacterial
identification, in parallel with traditional culture techniques, to nasopharyngeal specimens col-
lected from children before and after vaccination with the 10-valent pneumococcal conjugate
vaccine (10-valent pneumococcal non-typeableHaemophilus influenzae protein D conjugate
vaccine [PHiD-CV]; Synflorix).

Methods

Study design and subjects
This study was nested within a double-blind randomized controlled trial involving children
aged 12–59 months residing in Malindi District, Kenya, a rural community on the Kenyan
coast (NCT01028326).[6] Subjects eligible for this sub-study had been randomized to receive
vaccines on days 0, 60 and 180 in either of two vaccination sequences: 1) PHiD-CV, PHiD-CV,
diphtheria/tetanus/acellular pertussis vaccine (DTaP) (n = 200) or 2) Hepatitis A vaccine
(HAV), DTaP, and HAV (n = 200; control group). A random sample of 30 subjects from each
of these two groups was selected for microbiome analysis by assigning a random number to the
samples in each group (RAND() function in Microsoft Excel) and selecting the lowest 30 num-
bers. The Kenya National Ethical Review Committee (SSC 1635), the Oxford Tropical Ethical
Review Committee (OxTREC 54–09), and the Colorado Multiple Institutional Review Board
(protocol 11–0352) approved the study. Parents/guardians of participants provided written in-
formed consent.
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Sample collection
Nasopharyngeal specimens were collected from each subject (one swab from each side of the
nose) on days 0 and 180 using a rayon swab (Medical Wire Co, UK). Specimens were collected
by passing the swab through the nostril, along the floor of the nasal cavity until it touched the
posterior nasopharyngeal wall, where it was left for 2–3 seconds, rotated, and removed. One
swab was placed in a sterile 2mL microcentrifuge tube containing skim milk, tryptone, glucose
and glycerin (STGG) medium and processed at the KEMRI-Wellcome Trust Programme labo-
ratory in Kilifi, Kenya in accordance with WHO recommendations.[7] Isolates of S. pneumo-
niae were identified from gentamicin-blood agar by Optochin susceptibility testing. Isolates of
H. influenzae were identified from bacitracin-chocolate agar by X and V factor dependence.
The second nasopharyngeal swab was placed in a sterile 2 mL microcentrifuge tube containing
ethanol and stored in a freezer at -80°C prior to microbiome analysis.

Microbiome analyses
Microbiome analysis was conducted on nasopharyngeal swab specimens collected at day 0 and
day 180, as well as negative control swabs placed in ethanol at the study site and extracted/ana-
lyzed in the same manner as the specimens. Bacterial profiles were determined by broad-range
PCR of 16S rRNA genes and phylogenetic sequence analysis. DNA was extracted using the Ul-
traClean fecal DNA kit (MoBio, Inc). Amplicons of the 16S rRNA gene (~500 base pairs; prim-
ers 27FYM+3 and 534R)[8, 9] were generated via broad-range PCR (30–36 cycles) using 5’-
barcoded reverse primers.[10] PCR yields were normalized using a SequalPrep kit (Invitrogen,
Carlsbad, CA), pooled, lyophilized, and gel purified, as previously described.[11] Pyrosequen-
cing of pooled amplicons was conducted by the Center for Applied Genomics at the University
of Toronto on a 454/Roche Life Sciences GS-FLX instrument using Titanium chemistry
(Roche Life Sciences, Indianapolis, IN).

Pyrosequences were sorted into libraries by barcode and filtered for quality using bartab
software.[10] Bases at 5’ and 3’ ends with mean quality scores<20 over a 10 nucleotide window
were deleted. Sequences with less than 200 nucleotides or more than one ambiguous nucleotide
were discarded. The mean trimmed sequence length was ~340 base pairs. The Infernal RNA
alignment tool[12] was used to screen all sequences in terms of their fidelity to a Covariance
Model (CM) derived from 16S rRNA secondary structure models provided by the lab of Dr.
Robin Gutell.[13] Sequences that did not match a bacterial CMmodel were removed from all
subsequent analyses. Chimera screening was performed using the software ChimeraSlayer,
which requires that sequences be previously aligned with the software NAST-iEr.[14] Putative
chimeras and other sequences that could not be aligned by NAST-iEr were removed from
subsequent analyses.

Genus-level taxonomic classifications were produced by the RDP Classifier software, which
performs naïve Bayesian taxonomic classification versus the RDP training set.[15] Species-level
taxonomic precision was obtained via BLAST[16] against a database of sequences obtained
from the Silva database (version 104) that were annotated as isolates.[17] Species-level classifi-
cations were assigned when a nasopharyngeal swab sample sequence overlapped the database
sequence by at least 95% with at least 99% sequence identity and the Silva database-derived tax-
onomy matched the RDP classifier genus level classification. Pyrosequences were clustered
into operational taxonomic units (OTUs) on the basis of these taxonomic assignments. The
prevalence of an OTU represented the percentage of subjects in a group in which the OTU was
detected, whereas the relative abundance was calculated as the number of sequences belonging
to a particular OTU divided by the total sequence count for a subject. Pyrosequences were sub-
mitted to the NCBI Short Read Archive under BioProject PRJNA229922. Because 16S rRNA

Pneumococcal Vaccination and the Nasopharyngeal Microbiome

PLOSONE | DOI:10.1371/journal.pone.0128064 June 17, 2015 3 / 11



sequences do not differentiate between S. pneumoniae strains, serotype replacement is not de-
tectable using this methodology.

Ecological indices[18] of richness (Sobs, Schao), diversity (Shannon’s diversity [Ho], evenness
[Ho/Hmax]), and coverage (Good’s index) were computed with the software tool biodiv.[19]
These indices were estimated through bootstrap resampling and rarefaction of the OTU distri-
butions obtained from each specimen. All 16S amplicon libraries were sequenced to
>95% coverage.

Statistical analyses
The R-statistical package (v.2.14.0) was used for all statistical analyses.[20] The vaccine and
control group demographics were compared using Wilcoxon rank sum tests for continuous
variables and Fisher exact tests for categorical outcomes. Exact confidence intervals for odds ra-
tios were constructed based on Fisher’s exact test. The change in abundance of an OTU
through time was assessed by first subtracting the baseline percent abundance from the abun-
dance measured at 180 days following vaccination; these data were then analyzed using a t-test
with significance assessed through 1,000,000 permutations for testing no change within each
treatment arm and for comparing equal change between treatment arms. The heatmap in Fig 2
was constructed in R using the heatmap.2 function, with hierarchical clustering based on Eu-
clidean distances (dist function) and complete linkage (hclust function). Differences in OTU
abundance between the nasopharyngeal types defined by this hierarchical clustering were ana-
lyzed using a two-part statistic,[21] which combines the results of a test of proportions with a
Wilcoxon rank test. All tests of null hypotheses were evaluated at α = 0.05.

Results
Among the 60 specimens selected, PCR amplification of the 16S rRNA gene failed in one or
both swabs in six subjects (five subjects in the PHiD-CV group and one in the control group).
These were excluded from further analysis. None of the negative control swabs yielded a dis-
cernible PCR product. Participant characteristics were similar between vaccine groups
(Table 1). Microbes detected by broad-range PCR amplification and pyrosequencing of bacteri-
al 16S rRNA genes of nasopharyngeal swabs collected on day 0 and 180-days post-vaccination
are presented in Table 2. A median of 3,114 (interquartile range [IQR] = 1,399–8,547) high-
quality pyrosequencing reads were obtained per specimen. The median Good’s coverage score,
a measure of completeness of sequencing, was 99.6% (IQR = 98–100%), indicating that the
depth of sequencing was sufficient to fully describe the biodiversity of specimens. No signifi-
cant differences were observed in either the number of pyrosequences or depth of coverage be-
tween treatment groups, as assessed by t-test (p = 0.35 and 0.96 respectively; Table 2).

The change in relative abundance of OTUs over time did not significantly differ between
vaccinated and control group participants, as assessed by 16S rRNA pyrosequencing (Fig 1,
Table 2). Prior to vaccination, the most abundant bacterial species-level OTUs detected in the
nasopharynx of all study participants (Table 2) were those ofMoraxella catarrhalis (12.3%

Table 1. Characteristics of participants

Characteristics PHiD-CV group N = 25 Control group N = 29 p-value

Age in months, mean (standard deviation) 31 (15) 31 (16) 0.70

Female, n (%) 13 (52) 17 (59) 0.78

Cigarette exposed, n (%) 10 (40) 6 (21) 0.15

Number of children in household, mean 2.9 3.0 0.35

doi:10.1371/journal.pone.0128064.t001
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median relative abundance of pre-vaccination 16S rRNA sequences),M. nonliquefaciens
(2.1%), S. pneumoniae (4.4%), andH. influenzae (1.6%). Corynebacterial species comprised an
additional 5.6% median relative abundance among the pre-vaccination specimens. Staphylo-
cocci, including Staphylococcus aureus, were rare in the dataset, comprising<0.03% of total se-
quences. At baseline, the prevalence, as detected by pyrosequencing and bacterial culture, was
78% (42/54) and 65% (35/54), respectively, for S. pneumoniae and 70% (38/54) and 65% (35/
54) for H. influenzae (Fig 1).M. catarrhalis was detected by pyrosequencing in 96% (52/54) of
subjects at baseline (not assessed by culture). Neither the relative abundances nor the preva-
lences of these three potential pathogens changed significantly following vaccination with ei-
ther PHiD-CV or control HAV (Fig 1, Table 2). Although the control group experienced a
greater increase in S. pneumoniae prevalence than did the PHiD-CV arm, the difference was
not statistically significant (14% vs. 4% increase, p = 0.36; Fig 1).

We observed co-carriage at baseline by S. pneumoniae and H. influenzae in 59% (32/54) of
subjects by pyrosequencing and 50% (27/54) by culture (S1 Table). The odds ratio for detection
of S. pneumoniae given the presence of H. influenzae was 3.2 (95% CI: 0.7–14.8; p = 0.15) by
pyrosequencing and 4.5 (95% CI: 1.2–18.4; p = 0.02) by culture. In contrast, the prevalence of
M. catarrhalis was not associated with that of S. pneumoniae (p = 0.40) or H. influenzae
(p = 0.51).

A median of 22 genera (IQR = 13–33) were detected per child at baseline; however, the ma-
jority of DNA sequences (~80%) belonged to only four genera:Moraxella (36.8% of total 16S
sequences), Streptococcus (21.6%), Haemophilus (12.6%), and Corynebacterium (11.3%). Each
of these four genera also were present in>90% of samples. The biodiversity of the control

Table 2. Relative abundance of common nasopharyngeal bacterial 16S rRNA sequence types

Taxa All Subjects PHiD-CV Group (N = 25)a Control Group (N = 29)a Day 180-Day0

Day 0 Day 0 Day 180 Day 0 Day 180 Comparison (p-
value)b

Proteobacteria 56.9% (33.7–
70.6)

58.6% (31.4–
70.2)

61.7% (46.2–
78.3)

53.8% (36.1–
70.6)

57.1% (43.6–
69.8)

0.74

Haemophilus influenzae 1.6% (0–9.8) 1.6% (0–7.9) 1.0% (0–4.9) 2.0% (0–13.8) 2.5% (0–12.6) 0.85

Moraxella catarrhalis 12.3% (3.7–24.5) 15.7% (3.4–28) 12% (1–24.6) 9.2% (3.7–18.8) 4.2% (1.4–13.1) 0.65

Moraxella nonliquefaciens 2.1% (0.6–10) 2.5% (1.2–9.5) 4.0% (0.8–14) 1.4% (0.3–10.2) 2.4% (0.1–8.9) 0.47

Firmicutes 25.9% (15–46.8) 20.1% (11.8–
44.8)

18.2% (8.6–46.6) 26.6% (19.9–
46.9)

31.6% (15.6–
41.2)

0.66

Streptococcus
pneumoniae

4.4% (0.2–25.4) 4.0% (0.3–32.3) 10.3% (0.4–37.7) 4.9% (0–21.1) 10% (0.9–35.3) 0.67

Actinobacteria 7.8% (1.8–21.6) 8.5% (1.5–15.8) 5.1% (0.9–9.2) 6.9% (2.3–22.1) 2.1% (0.5–15.2) 0.18

Corynebacterium spp. 5.6% (1.7–19.8) 8.5% (0.9–15.4) 3.8% (0.8–7.7) 5.2% (2–21.1) 2.1% (0.4–15.1) 0.45

Bacteroidetes 0.4% (0.1–3.8) 0.7% (0.2–4.1) 1.0% (0–4.2) 0.3% (0.1–2.4) 0.3% (0–3.3) 0.92

Other Phyla 0% (0–0.2) 0% (0–0.3) 0.1% (0–0.2) 0.1% (0–0.2) 0% (0–0.2) 0.15

Sequences per specimen 3730 2104 2605 4939 2678 0.35

(Interquartile range) (1649–9799) (1146–9587) (1610–7393) (2231–10112) (856–7046)

Good’s Coverage 99.58% 99.60% 99.70% 99.60% 99.80% 0.96

Shannon Diversity 2.91 2.71 2.75 2.92 2.46c 0.29

a Median relative abundances of sequences classified for most abundant phyla and selected species.
b PHiD-CV group vs control group; p-values for comparison of the change in relative abundances over time are from the results of the multiple permutation

t-test; p-values for “Sequences per Specimen”, “Good’s Coverage”, and “Shannon Diversity” are from 2-tailed t-test.
c P = 0.02 for Day 180 vs Day 0 comparison of control group. P = 0.85 for PHiD-CV comparison of Day 180 vs Day0.

doi:10.1371/journal.pone.0128064.t002
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group, estimated by Shannon’s Diversity index (H), decreased significantly over the course of
the study (p = 0.02), but was unchanged in the PHiD-CV group (p = 0.85), as shown in
Table 2.

Hierarchical clustering of subjects based on the genus-level compositions of their nasopha-
ryngeal microbiomes revealed two prevalent bacterial communities (“nasopharyngeal-types”)
at baseline, one dominated by Streptococcus spp. (43% mean sequence abundance; Cluster A,
Fig 2) and the other byMoraxella spp. (54% mean sequence abundance; Cluster B, Fig 2). A
third cluster consisting of a mixture of Streptococcus spp. (37% sequence abundance) andHae-
mophilus spp. (55% mean sequence abundance) was evident at the 180-day timepoint (Cluster
C, Fig 2). Membership in a particular cluster was not associated with vaccination group or
other demographic factors measured in this study, including age, sex, second-hand cigarette
smoke exposure, and school attendance (data not shown).

Over the six-month study period, 28/54 (52%) of subjects switched from one nasopharyn-
geal-type to another, while the remaining 26/54 (48%) maintained their profile. Demographic
comparisons showed that older age was significantly associated with profile shifts; (median age
24 months in the stable group vs. 44 months in the shifting group; p = 0.05). Other compari-
sons between stable and shifting communities yielded no significant associations (data not
shown).

Fig 1. Prevalence of nasopharyngeal S. pneumoniae andH. influenzae. Prevalence is expressed as percentage of subjects positive for a bacterial
species as measured by either 16S rRNA gene pyrosequencing or bacterial culture. PHiD-CV: 10-valent pneumococcal non-typeable Haemophilus
influenzae protein-D conjugate vaccine treatment group. Control: Hepatitis A vaccine treatment group. Sp: S. pneumoniae. Hi: H. influenzae.

doi:10.1371/journal.pone.0128064.g001
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Discussion
This study of primary vaccination with PHiD-CV among young Kenyan children found no
changes in the prevalence or relative abundance of S. pneumoniae orH. influenzae following
vaccination with either PHiD-CV or a control hepatitis A vaccine. Moreover, no increase in
the abundance or prevalence of other potential pathogens, such asM. catarrhalis or S. aureus,
was noted. Only the Shannon diversity index differentiated the control and PHiD-CV groups;
whereas diversity decreased significantly in the control group between timepoints, no such
changes were noted among subjects receiving PHiD-CV (Table 2). Overall, these results sug-
gest that replacement of vaccine strains of S. pneumoniae by non-vaccine strains may have sta-
bilized the nasopharyngeal microbiome against vaccine-mediated dysbiosis.[22]

The direct protective benefit of PHiD-CV arises from generation of antibodies that protect
against invasive disease and against acquisition of nasopharyngeal carriage of vaccine sero-
types. Reductions in vaccine-serotype carriage have been observed to occur within one-to-two

Fig 2. Clustering of subjects by abundances of Haemophilus spp., Streptococcus spp., andMoraxella
spp. Subjects were grouped by hierarchical clustering on the basis of species-level percent 16S rRNA
sequence abundances. Percent abundances are proportional to gray scaling. The upper heatmap presents
data for baseline nasopharyngeal microbiomes and the lower heatmap presents data 180 days after
vaccination. Subjects were classified into three basic groups on the basis of this clustering: A. Streptococcus
dominant; B)Moraxella dominant; and C) Mixed Streptococcus/Haemophilus dominant. Solid lines
connecting the two heatmaps indicate individuals that changed from cluster A to cluster B. Dotted lines
indicate subjects that moved from cluster B to either cluster A or C. Black and gray boxes adjacent to
dendogram designate vaccination group (PHiD-CV: 10-valent pneumococcal non-typeable H. influenzae
protein-D conjugate vaccine; HAV: Hepatitis A vaccine).

doi:10.1371/journal.pone.0128064.g002
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months of vaccination with PHiD-CV.[6] Subsequent increases in carriage of non-vaccine se-
rotypes occur over a longer period of time. Therefore, shifts in the overall nasopharyngeal
microbiome may have occurred transiently after initial vaccination, but were undetectable at
day 180, 4 months following the second dose. Biesbroek et al, assessed the nasopharyngeal
microbiome in Dutch children following a 3-dose series of PCV-7 or control vaccine. The
microbiota profiles of PCV-7 and control vaccine recipients differed significantly one month
following completion of a 3-dose series but no differences between the two groups were de-
tected 12 months later.[23]

We observed no change in the abundance or prevalence of S. aureus carriage following 2
doses of PHiD-CV. In contrast, an inverse relationship between carriage of S. pneumoniae and
S. aureus was reported in cross-sectional studies conducted prior to PCV use and was also doc-
umented in one randomized-controlled trial of a 9-valent PCV.[5, 24, 25] Since PCV introduc-
tion, one population-level assessment in the Netherlands reported an increase in S. aureus
carriage associated with PCV7 use; however, a follow-up study in the same population suggests
it was a transient phenomenon.[26, 27] In addition, it’s important to note that S. aureus is best
detected in the anterior nares but was cultured in this study, and the cited studies, from the
posterior nasopharynx. Furthermore, the depth of 16S rRNA sequencing may have been inade-
quate to accurately measure the prevalence and abundance of a species such as S. aureus, which
may be relatively sparse in the nasopharynx.

In this study, we observed co-carriage by S. pneumoniae and H. influenza in the majority of
baseline samples. Moreover, the results of our exploratory statistical analysis (Fig 2, Cluster C)
revealed several subjects in whom S. pneumoniae and H. influenzae co-existed at high abun-
dances, relative to other members of the nasopharyngeal microbiome. The relationship be-
tween S. pneumoniae and H. influenzae in the nasopharynx was recently reviewed by Dunne
et al.[28] The majority of studies suggest a positive association, although some have found the
opposite. Recent microbiome studies have found that the relationship between S. pneumoniae
andH. influenzaemay be serotype dependent.[29] In our analysis, the abundances ofM. catar-
rhalis and S. pneumoniae were negatively correlated (Pearson correlation coefficient = -0.28)
and one or the other organism dominated the nasopharyngeal microbiomes of most subjects.
On an individual level, patterns of microbiome composition were unstable over the course of
this study (i.e., the dominant species often differed within an individual between baseline and
the day 180 samples), indicating that the nasopharyngeal microbiomes among the study partic-
ipants were in a state of flux. The host, environmental, and/or microbiological factors govern-
ing the dynamics in this ecosystem remain to be fully elucidated, but potentially could be
exploited to modify the carriage of opportunistic pathogens that normally reside within muco-
sal reservoirs such as the airways and intestinal tract.

Although this research enhances our understanding of the effect of pneumococcal vaccina-
tion on the nasopharyngeal microbiome, several limitations must be addressed. First, we select-
ed relatively few individuals (N = 60) for microbiome sequencing, thus limiting our ability to
detect small differences in microbiome composition resulting from vaccination. For example,
at the 180-day timepoint, we had 80% power to detect a difference in relative abundance be-
tween treatment groups of 0.1 for Haemophilus influenzae, whereas our observed mean differ-
ence was 0.015. Hence, this analysis was not powered to detect subtle differences between the
two treatment groups. Second, the baseline specimen was collected in the dry season and the
follow-up specimen was collected 180 days later during the rainy season; seasonal variation in
S. pneumoniae andH. influenzae carriage may have confounded comparisons across time with-
in the same group but this would not affect comparisons between groups.[30] Finally, the
coarse phylogenetic resolution of the 16S gene precludes strain-level analysis, so changes in
vaccine strain types were not detectable using this technology.
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In conclusion, the nasopharyngeal microbiomes of Kenyan children are temporally variable
but fall into “nasopharyngotypes” based on Streptococcus,Moraxella andHaemophilus abun-
dance. Administration of two doses of PHiD-CV to children aged 12–59 months did not signif-
icantly alter the species composition or diversity of nasopharyngeal microbiomes in the study
population. This suggests limited opportunity for replacement carriage with pathogens other
than non-vaccine strains of S. pneumoniae or subsequent shifts in the microbiome related to
such changes.
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