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Aim: The hypothalamic–pituitary–adrenal axis is involved in maintaining homeostasis by engaging with
the parasympathetic nervous system. During the process of disease affliction, this relationship is disturbed
and there is an imbalance driven response observed. Materials & methods: By monitoring the two key
components involved in these pathways, cortisol and TNF-α, the manifestations of chronic stress on the
body’s homeostasis can be evaluated in a comprehensive manner. This work highlights the development
of an electrochemical detection system for the two biomarkers through human sweat. Results: Limit of
detection and dynamic ranges are 1 ng/ml, 1–200 ng/ml for cortisol and 1 pg/ml, 1–1000 pg/ml for TNF-
α. Conclusion: This wearable system is designed to be a point of use, chronic disease self-monitoring and
management platform.

Lay abstract: When the body is under stress, a lot of physiological processes work toward bringing the
body back to its normal state. Cortisol, a stress hormone and TNF-α, a protein related to inflammation,
are direct products of these physiological processes. The goal of this work is demonstration of a biosensor
that is capable of tracking these molecules in human sweat. The significance lies in simplifying disease
diagnostics, in other words, to detect and monitor diseases. This system is designed to be a wearable that
will track the levels of cortisol and TNF-α and use it as an indicator of the user’s health status.
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Understanding the relationship between the endocrinal pathway for stress regulation and the inflammation pathway
is key to understanding the physiological effects and the extent of damage inflicted during periods of exposure to
stress. The hypothalamic–pituitary–adrenal (HPA) axis is a prime component of the endocrinal system to prepare
the body to react to a stressful episode. The response to stressful stimuli is nonvoluntary and is aimed at bringing the
body back into homeostasis via a process known as allostasis. A detailed summary of the response to stress is illustrated
in Figure 1. The signal originates in the hypothalamus, specifically in the hypothalamic paraventricular nucleus. The
neurons in response to this produce corticotropin-releasing hormone. Corticotropin-releasing hormone production
signals the pituitary gland to release adrenocorticotropic hormone into the blood stream. Once in the blood stream,
as the name of the hormone suggests, it activates the receptors present in adrenal gland – specifically in the adrenal
cortex. This houses cells that are capable of steroidogenesis and with the adrenocorticotropic hormone-mediated
activation, start producing glucocorticoids, like cortisol. Cortisol is an anti-inflammatory corticosteroid, which
is responsible for performing allostasis by activating various pathways responsible for a decreased inflammatory
response in the target organs. One of the pathways functions by reducing the adaptive immunity effector cells, in
other words, T cells, by apoptosis and the other pathway performs tightening of the tight junctions in endothelial
cells to prevent transport of peripheral immune cells from entering the blood-brain barrier. However, the main
response of cortisol mediated control of inflammation is through the glucocorticoid receptor (GR) controlled
genomic immunosuppression, which reduces the production of pro-inflammatory cytokines like TNF-α [1,2].
There is a presence of a negative feedback mechanism that is controlled by the affinity of corticosteroids to GRs.
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Figure 1. Pathways for circadian-inflammatory relationship.(A) Depicts the relationship between the endocrinal
HPA axis pathway and inflammation pathway (TNF-α), (B) Schematic depicting diurnal cycling of cortisol over the
period of 24 h.
HPA: Hypothalamic–pituitary–adrenal.
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Table 1. Biosensor technologies for detection of TNF-� and cortisol.
Sensor description Biomarker and biofluid Type of detection LOD Ref.

Polypyrrole based gold screen printed electrode
(enzyme labelled)

TNF-�, bovine calf serum Potentiometric 10 pg/ml, compared with
commercial ELISA

[12]

Gold interdigitated electrode capacitor arrays TNF-�, PBS Label-free capacitance
measurements

32 pg/ml [13]

Affinity based gold electrode functionalized using
CMA

TNF-�, artificial saliva, human
saliva

Chronoamperometry 1 pg/ml [14]

Stretchable and disposable 3D micropatterned
elastomer-based electrode

TNF-�, human serum Electrochemical (potentiometric
and impedimetric)

100 fM [15]

Label-free chronobiology tracking system Cortisol, sweat Impedimetric 1 ng/ml [16]

MoS2 nanosheet based flexible electrode Cortisol, sweat Impedimetric 1 ng/ml [17]

CMA: Carboxymethylaniline; ELISA: Enzyme-linked immunosorbent assay; LOD: Limit of detection; MoS2: Molybdenum disulphide; PBS: Phosphate-buffered saline.

After sufficient production, the receptor is saturated and signals the HPA axis components to stop production of
GC activating hormones. With the production of cortisol as a response to stress, the inflammation pathway is
stimulated as demonstrated in Figure 1 (right side). The glucocorticoid receptor has a major role in the processes
responsible for cell homeostasis. There are various modes of action by which the GC receptors operate. In this
research, we focus on capturing the pathway that is responsible for controlling the production of TNF-α. Normally,
GR is present in the cytoplasm; once activated with corticosteroid, the bound proteins dissociate and it enters
the nucleus. Figure 1 depicts a red cylinder, which is the HSP90 chaperone protein and the two circles are the
other accessory proteins involved with activation and transport of the GR from the cytoplasm to the nucleus.
The GR regulates genomic expression by dimerizing to glucocorticoid response elements in the target genes and
affecting the transcription/translation of the mRNA to produce cytokines. Due to this effect, the production of
pro-inflammatory cytokines like TNF-α, IL-6 and IL-1β are decreased and the production of anti-inflammatory
cytokines such as IL-10 and TGFβ is increased [3,4]. The interconnection of these two pathways is of diagnostic
importance to many disorders. An impairment of these regulation pathways is highly associated with mortality.
In case of patients suffering from Crohn’s disease, findings suggest that the inflammation pathway is disturbed
and there is an overexpression of TNF-α. Similarly, in the case of Irritable Bowel Disease there is an imbalance in
the sympathetic control of the adrenal gland activity. The triggers for generating severe symptoms in both these
conditions were observed to affect the HPA axis functioning first, thus resulting in lower cortisol production [5].
A report also suggests that the elevation of pro-inflammatory cytokines and corticosteroid levels has negative
effects on the cognitive functioning and hippocampal structure of older adults [6]. All these examples highlight the
interconnectivity of the two pathways and the need to monitor the direct products from a chronic disease diagnostics
and monitoring aspect. The effective solution for offering a convenient platform for self-monitoring is using sweat
for biomarker quantification. Human sweat based sensing platforms offer significant advantages over traditional
and gold standard methods of detection. Physiologically, cortisol and TNF-α are expressed in sweat in the ranges of
8–141 ng/ml [7] and 9–362 pg/ml [8], respectively. There have been significant advances in the field of developing
sweat-based cortisol sensors for investigation into the effects of stress on the body. TNF-α has been explored as
a key to understanding the regulatory processes in the body upon the onset of inflammation. Table 1 describes
the different biosensors developed for tracking TNF-α and cortisol in various biofluids, which are aimed toward
eventually becoming wearable technology. TNF-α detection in sweat has not yet been extensively researched and is
an upcoming area of interest among the researchers in the field of wearable diagnostics. However, in the past few
years, researchers have looked at understanding the fluctuation of cortisol and TNF-α levels in blood/serum toward
characterization of phenotypes of multiple diseases [9,10]. The levels of cortisol have been known to correlate with
the sweat levels with levels being independent of sweating rate [11]. Similarly for TNF-α, it has been reported that
sweat biomarker levels closely mirror the blood/serum levels and can be easily detected using wearable patches [8].
By tuning the sensor to capture changes in the biomarker levels withing the physiologically relevant levels of cortisol
and TNF-α, this platform offers a novel approach toward understanding the effect of circadian dysregulation on
the inflammatory response of the body. This would also enable early detection of circadian dysregulation and
understanding its connection with the etiology and pathophysiology of disorders.

Multiplexed biomarker detection has gained considerable visibility in point-of-use testing arena in the recent
years, owing to its capability in enhancing the diagnostic detection process of an underlying condition with
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precision and efficiency through rapid on-site analysis of bodily fluids [18]. Multibiomarker detection platforms
provide an in-depth clinical understanding of the processes occurring within the body with a certainty that a
condition is indeed present in an individual; single biomarker analysis may not prove to be effective in providing
accurate diagnosis [19,20]. Multiplexed point-of-care testing, through its capabilities, has paved the way for home-
based, personalized patient-centric systems for the management of chronic and acute diseases in resource limited
settings [21]. Conventional testing methods are tedious, constrained to laboratory and hospital setups, require
trained personnel and require prolonged analysis times [22]. Wearable technology is expected to show a global
growth rate of 38% in the next decade and will continue to evolve with the advent of smart-watches, patches,
clothing and fitness trackers [23]. Real-time, continuous health monitoring is one important feature that is being
explored in the research space of multiplexed biomarker detection to provide an account of an individual’s health
status for the healthcare provider to administer accurate treatment and drug therapy. Herein, we describe a proof-
of-concept multiplexed detection of stress biomarker cortisol and inflammatory cytokine TNF-α on flexible, body
conforming substrate toward integration on a wearable platform. The choice of substrate is a key parameter to
be considered while designing flexible biosensing platforms. The desired features of the selected substrate are
bendability, foldability, stretch ability, portability, skin-conformability, disposability and being lightweight [24]. We
have utilized a nanoporous polyamide membrane that allows for sweat wicking through its intercalations, sensitive
detection due to enhanced charge storage through its nanoconfinement properties and selective detection of target
biomolecules from the biomolecular sieving properties [25].

In this work, we have demonstrated the functionality of biosensing platform in detecting dual biomarkers –
cortisol and TNF-α in human sweat toward the development of a multiplexed point of use device. Additionally,
the long-term temporal stability of the cortisol biosensor in detecting the simulated rise and fall in cortisol levels
through the 6-h sleep cycle has been demonstrated. Furthermore, COMSOL Multiphysics R© simulation highlight
the electrode design features and fluid wicking pattern of membrane for design optimization of the sweat based
platform. The cross-reactivity performance demonstrates that the sensor is highly specific for the target biomarker.
Thus, this novel platform shows the feasibility of tracking the endocrine–inflammation relationship toward chronic
disease diagnostics using sweat.

Materials & methods
Reagents & materials
Cortisol antibodies and cortisol molecules were procured from Abcam (MA, USA). The TNF-α antibody and
antigen, thiol linker used dithiobis(succinimidyl propionate) (DSP) and dimethyl sufloxide were purchased from
Thermo Fisher Scientific Inc. (MA, USA). Milipore de-ionized water (conductivity – 18 M� cm) was used to
prepare the solutions. Nanoporous polyamide membranes were obtained from GE Healthcare Life Sciences (NJ,
USA). Pooled human sweat was procured from Lee Biosolutions (MO, USA). No animal or human subjects were
tested in this work.

Sensor fabrication
The gold sensors were fabricated in-house utilizing the facilities provided by the cleanroom at University of
Texas at Dallas (TX, USA). Cryo e-beam evaporator was used to deposit a thin gold film (150 nm) on the
nanoporous polyamide membrane. Shadow masks were placed on the electrode surface during deposition to create
the interdigitated gold electrode pattern on the sensors. This was then used for functionalization followed by testing.
The sensor is designed to operate with ultra-low volumes of sweat to enable passive sample collection. The volume
of sample needed is 3 μl, which aligns with the passive eccrine sweat rate and sweat production amount at rest [26].

COMSOL Multiphysics software simulations
Finite element analysis was carried out utilizing licensed software version of COMSOL Multiphysics v5.4. The
module used for performing simulations are transport of diluted species in porous media, electrostatics and primary
current distribution. 3D multislice plots for electrolyte potential, 1D plot group for current density and wicking
simulations were exported through the software.

Fourier-transform infrared spectroscopy experimental details
Infrared spectra of functionalized electrode were recorded with a Thermo Scientific Nicole iS50 FT-IR using an
Attenuated Total Reflectance (ATR) stage. The tool was equipped with a deuterated triglycine sulfate detector and
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KBr window. A Harrick VariGATR sampling stage with a 65◦ Germanium ATR crystal was used in this study. ATR-
Fourier-transform infrared spectroscopy specimens were prepared by deposition solutions on polyamide membrane
as substrate. The contact area was about 1 cm2. All spectra were recorded between 4000 and 700 cm-1 with a
resolution of 0.5 cm-1 and 256 scans.

Experimental detail for electrochemical analysis
Fabricated gold electrodes were tested for baseline stability and then employed for functionalization. This was
performed by incubation with DSP/dimethyl sufloxide for 1.5 h followed by incubation of 10 μg/ml of antibody
solution for 30 min. Incubation times were optimized using wicking simulation and baseline studies. Functionalized
electrodes were utilized for testing by building an immunoassay using increments of target dose concentrations.
During measurements of electrochemical impedance spectroscopy (EIS), a 10 mV AC potential bias was applied
to the working electrode against the reference electrode and the response was recorded. These electrochemical
measurements were carried out using Gamry Reference 600 potentiostat (Gamry Instruments, PA, USA). Dose
concentrations of target biomarkers were tested within the physiologically relevant concentrations. These dose
concentrations were prepared by artificially spiking the human sweat and analyzing the data as change from the
baseline. Human sweat already has proteins, steroids and other molecules present in the solution. The process in
which the biofluid was spiked was by adding a known concentration of target biomarker ranging from 1–200 ng/ml
for cortisol and 1–1000 pg/ml for TNF-α. These spiked biofluid doses were then introduced on the functionalized
sensor surface and the change in response from the blank human sweat was recorded as sensor response. The
optimal frequency was 100 Hz, where maximum capacitive behavior was observed.

Experimental detail for long-term studies
For the long-term studies, single frequency EIS was performed over the study time period (60 min and 6 h) and the
sensor was loaded at 5-min intervals. The frequency of operation was set at 100 Hz. For the short study of 60-min
duration, increments of cortisol dose concentrations ranging from 1–100 ng/ml were loaded on the sensor surface.
To capture the rise, concentrations of 1 and 100 ng/ml were loaded consecutively on the sensor surface. And to
capture the fall, concentrations of 100 and 10 ng/ml were loaded on the surface consecutively. The cumulative
impedance response was then recorded using single frequency EIS. Similarly, for the long term 6-h continuous
study, concentrations were ramped up from 20 to 100 ng/ml in increments of 20 ng and fall was captured by
loading concentrations of 80 ng/ml followed by 60 ng/ml.

Statistical analysis
Data is represented as mean ± SEM with an n = 3, where n is the number of biosensor replicates tested. The
interassay and intra-assay variations are less than 10% which is compliant with Clinical and Laboratory Standards
Institute guidelines [27]. Statistical analysis for dose dependent response was performed using analysis of variance
(ANOVA) followed by Tukey’s test to establish significance. Unpaired t-test was employed when the test for
significance was between two groups. The confidence interval was fixed at 95% and α was 0.05. The analyses were
performed using GraphPad Prism version 8.01 (Graph Pad Software Inc., CA, USA).

Results & discussions
Sensor substrate characterization
The focus of this work is to demonstrate the functionality of a novel, flexible sweat based sensing platform for
quantifying the concentrations of biomarkers, cortisol and TNF-α. The substrate employed to make this platform
is a nanoporous polyamide membrane. A two-electrode interdigitated system is chosen as the electrode design and
fabricated using thin film gold deposition. The physical properties of the nanoporous membrane are highlighted
in Supplementary Table 1. Nanoporous platforms offer significant advantages over porous materials. They increase
the overall surface area of interaction between the target molecule and receptor, in other words, capture probe. This
work is based on an affinity sensing mechanism by using electrochemical detection modality. The gold electrode
surface is treated to immobilize the detection probe, in other words, the antibody, using a thiol linker chemistry. The
analyte present in sweat is introduced on the sensor surface and it wicks through the membrane to interact with the
bioactive components and generate a signal response. The advantage of having a nanoporous membrane is that it
provides selective molecular confinement based on size and diffusion kinetics [28]. A schematic of this phenomenon
is presented in Figure 2A. The schematic describes the process of detection of target biomarker in a complex biofluid

future science group 10.2144/fsoa-2020-0097



Research Article Upasham, Bhide, Lin & Prasad

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-
-

-

-

-

-

20.23°, DI H
2
O

18.11°, Human sweat

0.00

0.01

0.02

0.03

Time (s)

Open circuit potential

V
o

lt
a

g
e

 (
V

) 
v

.s
 r

e
fe

re
n

c
e

2000 600 800

0.04

400

Target biomarker

Capture probe

Bulk ions

Interferents and other

proteins/hormones/steroids

Drying

Figure 2. Sensor characterization.(A) Schematic depicting the wicking of sweat with target biomarkers (cortisol and
TNF-α) on the nanoporous membrane, highlighting selective molecular confinement, (B) Contact angle studies using
DI water (top) and human sweat (bottom) on membrane, (C) Sensor pictures to highlight flexibility of platform and
sensor prototype with case and (D) Open circuit potential for electrochemical stability.
DI: De-ionized.

sample matrix, which in this case, is human sweat. Sweat is a complex mixture of proteins, steroids, hormones,
electrolytes and other interferent molecules. The blue droplet of sweat is loaded on to the functionalized sensor
surface, with the antibodies concentrated on the gold surface of the sensor. The sensor surface depicted as a grey
matrix in the figure is a magnified cross-section of the sensing membrane. With the nanopore based filtration, there is
enhancement in the selectivity of the sensor response. Also, this reduces the overall noise of the system and improves
the selectivity and sensitivity. The principle of wicking in this nanoporous membrane is capillary imbibition. Two
main factors contribute to it, one is the transport of biomolecules normally a function of permeability and retention
factor of the membrane and second is biomolecular confinement, which is associated with the pore packing structure
of the membrane. The retention factor describes the affinity of the dye to the solid phase, which is the nanoporous
polyamide membrane. Zone separation of a liquid solute during wicking through the nanoporous membrane
highlights the ability of the membrane to filter the different components in the liquid phase. The red dye solution
has approximately four components, thus the formation of three or more separation zones indicates that the chosen
substrate is able to perform density dependent separation of the mixture. The formation of zones of separation
highlighted in Supplementary Figure 1 and shows the density-dependent filtration performed in the membrane.
The biomolecular transport is a function of pore size, thickness, contact angle and pore diameter, whereas the
confinement is driven by pore packing arrangement and density. Both of these factors are important measures while
choosing a substrate to ensure maximum sweat wicking occurs during sample collection [16]. Permeability of the
membrane drives the fluid transport across the membrane and influences biomolecule interaction. The goal is to
leverage maximum lateral transport toward enhancing of biosensing outcomes of a detection platform, namely,
limit of detection (LOD), sensitivity and range of operation [29]. The permeability calculated for the polyamide
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membrane was approximately 0.04 cm2 per second and the fluid coverage was identified to be 0.16 mm2 per
second. The wicking profiles have been generated using COMSOL Multiphysics simulations, which highlights the
rapid lateral transport of polyamide membrane. These profiles have been used to further calculate the optimal rate
and time for fluid loading. From these calculations, the optimal time for complete sensor area coverage will be
16 s. Rapid wicking facilitates fast sample collection especially using a passive sweat collection method. Herein, no
external stimulation is required by the user to generate a sample. Eccrine sweat volumes between 3 and 5 nl per
gland per minute are produced passively by the sweat glands. Thus by employing this hydrophilic, rapid wicking
membrane, this system can perform detection using ultralow volumes, in other words, 3 μl of human sweat [26]. All
the conditions mentioned above are applicable to sweat based detection systems only if the surface is hydrophilic.
This is because sweat is aqueous in nature. Contact angle studies illustrated in Figure 2B show the contact angles of
de-ionized water and human sweat on the surface of the polyamide membrane. The contact angle was measured to
be 20.23◦ for de-ionized water and 18.11◦ for human sweat, as shown in the figure. These studies were carried out
at room temperature. Evaluation of contact angle, in other words, the angle measured between the tangents of a
liquid–solid interface indicates the degree of wetting of the substrate [30]. A contact angle less than 90◦ indicates that
the surface is hydrophilic. The acute angle results in this case confirm the hydrophilicity of the membrane, which
also corresponds to high wettability. This is advantageous for developing wearable platforms as it facilitates rapid
wicking of sweat throughout the membrane. Therefore, by employing this nanoporous membrane in the platform
development, the dynamic range is extended due to optimal filtration, better signal resolution is promoted, bulk
solution effects are reduced and higher sensitivity is observed. A picture of the sensing system, highlighting the
flexibility aspect has been presented in Figure 2C.

Sensor stability

The electrochemical stability of the sensor is determined using open circuit potential. This is used to evaluate the
inherent baseline potential and the potential fluctuations in the bare, nonfunctionalized electrode system [31]. The
inherent potential can then be used to remove the offset created by the bare system during active measurement
and determine the true binding responses from a normalized system. The potential of this system is averaged at
0.027 V or 2.7 mV, which is stable and has very low susceptibility for corrosion. The sensor system does not show
any sharp peaks or sudden rise and fall in the system. The study is performed by drop-casting phosphate buffered
saline solution on the sensor surface. Following 600 seconds, the membrane starts drying, which is characterized
by the increase in the potential seen in the graph. Overall, the system indicates that it is electrochemically stable,
not prone to corrosion and will not drive the electrochemical response.

Sensor design & substrate simulations using COMSOL Multiphysics
Finite Element Analysis (FEA) helps in visualizing the distribution of simulated electrochemical conditions. It can
also be used to characterize the wicking pattern of the nanoporous substrate used in this work. Figure 3 demonstrates
the various FEA results that were performed on the sensing system. Figure 3A highlights the geometry of the
interdigitated electrode along with the appropriate boundary conditions. The sensor has two electrodes (reference
electrode and working electrode) interdigitated geometry created by thin film deposition of gold. The working area
is simulated by using a layer of phosphate saline buffer as an electrolyte for maintaining controlled conditions. The
equations governing the simulations have been described in the Supplementary section 1. A 10 mV bias is applied
to the working electrode and the distribution of electrolyte potential and current density was simulated. This is
illustrated in Figure 3B & C. The distribution of electrolyte potential has been plotted as a multislice graph showing
the cross-section view of the electrolyte. The maximum potential is concentrated around the working area with the
gradient being created as we move from working to reference electrode area. The interdigitated electrode design is
known to increase the overall capacitance of the system due to the increased surface area. Also, it provides enhanced
sensitivity, lower detection limits, ability to operate with lower sample volumes and ease of fabrication [32]. The
current density was extracted and plotted as a line plot extending from working to reference electrode. There is a
sharp drop in the current density from 5.4 to 1.0 Am−2, highlighted by the current gradient present in Figure 3C.
There are minimal parasitic current peaks indicative of an electrochemically stable sensing system.

Substrate optimization is of prime importance while designing optimal sweat based detection platforms. The
substrate used for this study is a hydrophilic polyamide membrane. The membrane is designed to offer rapid wicking
of sweat which enables instant sample collection and optimal interaction time between analyte and detection probes
in the sensor system. Supplementary Table 1 summarizes the properties of this membrane. The surface capacitance
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Figure 3. COMSOL Multiphysics R© simulations.(A) Electrode schematic depicting conditions for COMSOL simulations.
(B) Multislice 3D graph depicting electrolyte potential distribution. (C) 1D line plot illustrating the current density
distribution from WE to RE. (D) Simulation for wicking of solute over porous membrane at 0, 1 and 20 s.
RE: Reference electrode; WE: Working electrode.

has been presented as Supplementary Figure 2. The uniform distribution and value of inherent capacitance (values
ranging in the Pico farad range) contributed by the membrane indicates that the membrane will not drive the
capacitive behavior of binding. This is ideal, as the response is mapped as capacitive modulations and will be a direct
function of binding between the target and detection probe. Another component related to simulations presented
is performing FEA analysis to determine the wicking pattern and speed according to the given porosity of the
membrane. This helps in optimizing the sample loading time and volume. Figure 3D highlights the lateral flow
wicking profile of the polyamide membrane strip generated using COMSOL Multiphysics. It shows the progression
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of transfer of a dilute medium going from 0 to 1 molm-3 in a period of 20 s. This capillary wicking has been
simulated using principles of Darcy’s law and diffusion kinetics [33]. The equations regarding the transport have
been added to the Supplementary section 1. The assumptions related to the flow in the membrane strip model
are also listed in the Supplementary data. The flow is modeled to be a bulk flow from one end of the strip to the
other. It can be observed that rapid wicking occurs within the first 5 s and then once the membrane nanopores
start saturating by filling up, the transport slows down. Within 20 s , it can be observed that there is transport
of solute halfway through the membrane strip. The driving forces are capillary flow due to the pressure gradient
created by the volume of liquid in the filled spaces versus the empty spaces [34]. This is modelled using the Lucas
Washburn equation [35], which describes the capillary wicking in a channel inside a nanoporous membrane. Due
to these fluid transport properties, the sensing system can successfully perform detection using ultralow sample
volumes such as 3 μl. This is conducive to passive sampling for detection instead of active stimulation of sweat.
Moreover, some of the other advantages of using this nanoporous membrane is that it reduces the biofouling that
occurs at the electrode surface. Also being biocompatible, it nests with the user’s epidermis and does not create any
local irritation at placement site.

Binding chemistry characterization
ATR-IR analysis was performed to characterize the binding interaction of the capture probe antibody with thiol-
bound DSP linker between 1000 and 3500 cm-1. Figure 4A shows the peak observed at 1310 cm-1 of DSP before
antibody incubation indicating the symmetric C-N-C (carbon-nitrogen-carbon) stretch of DSP. The peak observed
at 1738 cm-1 in Figure 4B indicates the presence of free carboxylic acid in DSP. After antibody incubation, antibody
conjugation to DSP occurs by breaking of carbon-oxygen bond within N-hydroxysuccimide (NHS) ester of DSP.
Amine-reactive NHS ester reacts with primary amine of the antibody to form a stable amide bond. This occurrence
is observed by the disappearance of peak at 1738 cm-1 due to breaking of C-O bond of NHS ester in the DSP.
The appearance of 1655 cm-1 representing amide I band associated with C=O indicates the conjugation of cortisol
and TNF-α antibody to DSP functionalized gold surface. The C-N-C stretching mode also shift from 1310 to
1316 cm-1 after antibody incubation suggesting that cortisol and TNF-α were successfully conjugated to the thiol
linker (Figure 4A). Additionally, the broad O-H stretch at 3400 cm-1 confirms the Cortisol and TNF-α were
successfully bound to DSP immobilized linker substrate (Figure 4C).

Dose dependent response of sensing platform
The performance of the affinity biosensor was characterized by building a calibration dose response curve (CDR)
for varying concentrations of cortisol and TNF-α in human sweat. The CDR is represented as percentage change
in impedance obtained for a given analyte concentration from a baseline concentration (without the presence of
the target analyte) at 100 Hz. The analysis frequency is chosen to be 100 Hz due to maximum signal response and
stable noise factor obtained within the frequency regime of interest. The calibration sensor responses of cortisol and
TNF-α in human sweat are shown in Figure 5A & B, respectively. As demonstrated in Figure 5A, the percentage
change in impedance varies from 37.2 ± 0.03% and 82.3 ± 0.5% for 1–200 ng/ml cortisol concentrations with
a specific signal threshold (SST) of 10%. The specific signal threshold is calculated with an signal-noise ratio of 3
with the lowest detectable dose concentration 1 ng/ml lying above the SST and thus can be regarded as the LOD.
We have achieved a linear dynamic range of 1–200 ng/ml which encompasses the physiological relevant range of
cortisol present in human sweat and reliably distinguishes between low and elevated cortisol levels with a p-value of
less than 0.001. The constructed CDR for increasing TNF-α concentrations 1–1000 pg/ml is shown in Figure 5B.
The variation in percentage impedance changes is observed to be 2.5 ± 0.3% and 24.6 ± 2.4% from 1–1000 pg/ml
TNF-α. The SST is computed to be 1.85% with an LOD of 1 pg/ml. The linear dynamic range is found to be
1–1000 pg/ml. The established linear dynamic range comprises of physiological TNF-α ranges found in human
sweat with an ability to distinguish between low (10 pg/ml), normal (100 pg/ml) and elevated (300 pg/ml) levels
of TNF-α (p < 0.001). The mechanism underlying the biosensing of cortisol and TNF-α in a complex medium
such as human sweat is the charge modulations arising within the electrical double layer (EDL) formed at the
electrode–sweat interface as a consequence of antibody-target analyte binding. The charge modulations induce an
impedance change which can be attributed to either the charge-transfer resistance or the double layer capacitance.
Here, the biosensing in capacitance dominated and the enhanced signal response obtained from the antibody-target
analyte binding is due to the high charge storage capability of the double layer [36]. Typically in affinity-based assays,
the double layer capacitance is enhanced due to interlinking of biomolecules of the immunoassay which causes
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Figure 5. Sensor response for target biomarkers. (A) CDR curves for cortisol and (B) CDR curve for TNF-α.
****p < 0.0001.
CDR: Calibrated dose response; SST: Specific signal threshold.

charge modulation within the EDL [37,38]. The capacitance of the EDL increases with increasing target analyte
concentrations and can thus be used to quantify sensor response.

Long term study & temporal response of sensing platform
Continuous monitoring of biomarker levels is of paramount importance in maintaining a healthy lifestyle with
an intent of providing the user with an assessment of their health status from time to time. Herein, we have
demonstrated the temporal response of varying levels of cortisol on polyamide to mimic the rise and fall of cortisol
as represented by the diurnal cortisol curve over a 1-h duration to assess the feasibility of continuous, dynamic
monitoring of cortisol in human sweat. The cortisol biosensor was subjected to three low (1 ng/ml) and three
elevated (100 ng/ml) cortisol doses spiked in human sweat to simulate the cortisol rise level; subsequently the
biosensor was loaded with three intermediate (10 ng/ml) cortisol concentration to simulate the fall of cortisol level.
The input cortisol dose concentration profile presented to the biosensor as accumulated dose concentrations in the
1-hour window with a sampling interval of 5 min is shown in Figure 6A. The percentage change in impedance
from baseline obtained in response to the accumulated dose concentrations in human sweat, as shown in Figure 6B,
indicated a change from 7.5 to 28% for the rise cycle while the percentage change observed for the fall cycle was
28–31%. In temporal accumulative dose response studies, the dynamic differential signal (DDS) change is an
appropriate method to indicate the concentration being detected as affinity binding is designed for association of
analytes to their receptors and sensor surface regeneration is not feasible [39]. As shown in Figure 6C, the DDS
change from 0 ng/ml (baseline) to first 1 ng/ml (low dose) was observed to be 6.55 K�; the DDS change from
last 1 ng/ml dose (low dose) to the first 100 ng/ml dose (high dose) was found to be from 5.8 to 9.7 K�; the DDS
change from the last 100 ng/ml dose (high dose) to the first 10 ng/ml dose (intermediate dose) was found to be
from 3.6 to 5.1 K�. The porous structure of the membrane allows for nanoconfinement of biomolecules leading
to a steep rise in impedance is observed for low to high concentration dosing while the change in impedance begins
to taper with high-to-intermediate dose concentration. The cortisol biosensor’s long-term temporal response to the
ebb and flow of cortisol levels within 12 AM to 12 PM sleep cycle of the day is mimicked on the sensor platform
as a proof-of-concept for utility as a wearable sensor. The cortisol biomarker level cycling is carried in the 6-h time
period to mimic the cortisol rise and fall response with the onset of rise in cortisol at 12 PM, peaking of cortisol
levels during 6 AM to 9 AM time period and fall in cortisol levels toward the late afternoon. Herein, we have
chosen the cortisol levels appearing in sweat during the 6AM–12PM time period to capture the response of the
sensor during the transition from rise to fall of cortisol levels. The accumulative cortisol dosing concentrations
representing the rise and fall of cortisol in the 6-h sleep window of the day is shown in Figure 6D wherein dose levels
increasing from 20–80 ng/ml represent the rise in cortisol, 100 ng/ml represents the peak cortisol level followed
by the fall in cortisol doses from 100 to 60 ng/ml. The percentage change in impedance and the DDS change
registered by the cortisol biosensor in response to the accumulative dosing input at a loading interval of 5 min are
shown in Figure 6E & F. The percentage change in impedance for the 20–100 ng/ml rise cycle increases from 23 to
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64%; the percentage change in impedance for the fall cycle from 100 to 60 ng/ml dose concentrations is found
vary from 64 to 67%. The dynamic percentage signal change computed considering the previous dosing step as the
baseline for the rise cycle decreases from 24 to 7.1%. For the fall cycle, the percentage signal change decreases from
7.1 to 2% for 100 to 80 ng/ml cortisol doses. Beyond 80 ng/ml cortisol dose, the sensor begins to show signs of
saturation as the percentage signal change increases from 2 to 3.8% for 80–60 ng/ml cortisol dose. The cortisol
biosensor can detect the cortisol rise and fall dose levels presented to it over a 5.5-h duration beyond which an
inflection point is reached indicating slow saturation of the immobilized immunoassay. The developed biosensing
platform demonstrated in this work is dynamically responsive to cortisol rise and falls levels over a period of 5.5 h
continuously thus enabling early detection of circadian dysregulation and understanding its connection with the
etiology and pathophysiology of disorders.

Cross-reactivity of sensing platform
As discussed earlier, an antibody system is functionalized on the sensor surface which binds to the target molecule
creating a response signal. However, there are certain instances when the antibody system might show some cross-
reactivity between the signaling molecules due to inaccurate binding between the antigen epitope and antibody
paratope. Sweat has a plethora of interferent molecules like hormones, proteins, urea, lactic acid, creatinine and
lactic acid for example, that may be capable of generating such a false-positive response. Previous studies performed
to characterize the selectivity of the system for similarly structured compounds has confirmed that the capture
probes are specific for the specific molecule, for example, cortisol. In this section, as this is a multibiomarker
detection platform, the cross-reactivity signal between the two molecules of interest was evaluated. This is presented
in Figure 7. This study was performed in pooled human sweat, so that the biological fluid driven variance can
also be accounted for while evaluating the cross-reactivity of the sensing platform. The two graphs illustrated in
Figure 7 represent testing on two separate biosensors, one which is immobilized with cortisol antibody as depicted
in Figure 7A and the second graph is immobilized with TNF-α antibody as shown in Figure 7B. For the sensor
demonstrated in Figure 7A, three high doses (300 pg/ml*3) of TNF-α were consecutively introduced onto the
functionalized sensor surface and the signal impedance response was recorded. This nonspecific signal was compared
with the specific signal response of low (1 ng/ml), medium (10 ng/ml) and high dose of cortisol (200 ng/ml).
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The impedance response from nonspecific TNF-α doses is below the noise threshold and it is significantly lower
than that of the medium and high doses of cortisol. Physiologically we would see a spike in TNF-α levels with
the occurrence of inflammation; however, under normal conditions, we would not expect to see a high biomarker
spike. Since the system is an irreversible binding model, the final response is a cumulative signal. From the results,
it can be observed that after three subsequent high doses of TNF-α, the final cumulative signal is significantly lower
than the cortisol doses with a p-value < 0.05. This indicates that the system can sensitively differentiate between
the two molecules and recognize the target molecule. Similarly, the reverse analysis was carried out to evaluate
the sensitivity and selectivity of TNF-α capture probe functionalized membrane surface. The cross-reactivity for
TNF-α antibody immobilized surface has been illustrated in Figure 7B. This is especially important because out of
the two molecules, the physiological levels are a magnitude lower for TNF-α than cortisol. Thus, it is imperative
that the signal for cortisol, which will physiologically be present in sweat in higher concentration, does not cross
react with the TNF-α response. We can observe that for high concentrations of both cortisol and TNF-α, the signal
response is significantly higher for TNF-α (specific) molecule as compared with cortisol (nonspecific molecule).
The change for TNF-α is approximately 23% from baseline (unspiked pooled human sweat) and the change for
high dose of cortisol is approximately 7% from the baseline. The significance tests were carried out by performing
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a t-test analysis with confidence condition of α = 0.05. Thus, the sensing platform has specificity for the target
biomarker of interest and can differentiate it from the nonspecific target.

Conclusion
This work demonstrates the feasibility of using a sweat-based platform for tracking the intricate relationship between
the endocrine and inflammatory pathway using sweat based biomarkers-cortisol and TNF-α. A detailed analysis for
the optimal electrode design and platform wicking is provided using COMSOL Multiphysics simulations. Binding
characterization studies performed using Fourier-transform infrared spectroscopy validated the immunochemistry
used for performing affinity-based detection. Sensor showed enhanced sensitivity to biomarker concentrations in
sweat with a limit of detection of 1 ng/ml for cortisol and 1 pg/ml for TNF-α. Dynamic range of the sensor
encompassed the physiologically relevant ranges with low noise. Additionally, long term stability of the sensing
platform was demonstrated with continuous measurements to understand the temporal response of the sensor to
rise and fall cortisol concentrations in accordance with the cortisol diurnal cycle over a diagnostically relevant time
period. Finally, cross-reactivity studies confirm the specificity and selectivity of the sensor for the target biomarker.
In conclusion, this work uses a novel, electrochemical wearable platform to offer enhanced sensitivity and improved
sensor stability to map the endocrine-inflammatory relationship toward advancement of chronic disease diagnosis
and management.

Future perspective
The focus of healthcare tools has shifted from bulky, expensive diagnostic equipment to rapid, economical and
miniaturized diagnostic tools. There is a rise in patient-centric treatment approach which leads to increase in the
demand of point-of-use devices. These point-of-use devices assist with performing healthcare related tasks on a
miniaturized platform like a chip. In the next few years, there will be a significant change in the appearance of
healthcare technologies, where lab-on-a chip devices will be taken into consideration as a predominant healthcare
choice. Also, with the growing awareness in people for monitoring their health, for example, smart watches etc.,
self-monitoring devices will simplify the arduous task of pricking for blood to obtain biomarker levels, by employing
noninvasive biofluids instead. However, there are several challenges that need to be tackled toward creating highly
sensitive wearable sensing/detection platforms. These include optimizing for on-body device use, system integration
using hardware, improving analytical reliability of results and improving accuracy and stability.

Summary points

• Sensor uses sweat based electrochemical detection to perform biomarker level quantification of cortisol and
TNF-α to track the endocrine-inflammatory relationship.

• COMSOL Multiphysics R© simulations highlight the optimal electrode design and the wicking capabilities of the
hydrophilic nanoporous membrane. This is key for sweat based detection where passive sweating is used as a
mode of sample collection. The platform uses ultralow volumes of 3 μl.

• The sensing platform is flexible, hydrophilic and electrochemically stable. The limit of detection of the system is
1 ng/ml for cortisol and 1 pg/ml for TNF-α. The dynamic range of operation for the sensor is 1–200 ng/ml for
cortisol and 1–1000 pg/ml for TNF-α. This shows robustness beyond the characteristic diagnostic ranges of
8–141 ng/ml for cortisol and 9–362 pg/ml for TNF-α.

• Long term stability studies highlight the ability of the sensing platform to capture the diurnal or inflammation
related cycling of biomarkers over long time periods without compromised sensitivity.

• Cross-reactivity studies indicate that the platform has the ability to distinguish between the two biomarkers of
interest with good sensitivity.
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