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Abstract

The present article presents a novel idea regarding the implementation of Tiwari and Das

model on Reiner-Philippoff fluid (RPF) model by considering blood as a base fluid. The Cat-

taneo-Christov model and thermal radiative flow have been employed to study heat transfer

analysis. Tiwari and Das model consider nanoparticles volume fraction for heat transfer

enhancement instead of the Buongiorno model which heavily relies on thermophoresis and

Brownian diffusion effects for heat transfer analysis. Maxwell velocity and Temperature slip

boundary conditions have been employed at the surface of the sheet. By utilizing the suit-

able transformations, the modeled PDEs (partial-differential equations) are renewed in

ODEs (ordinary-differential equations) and treated these equations numerically with the aid

of bvp4c technique in MATLAB software. To check the reliability of the proposed scheme a

comparison with available literature has been made. Other than Buongiorno nanofluid

model no attempt has been made in literature to study the impact of nanoparticles on Rei-

ner-Philippoff fluid model past a stretchable surface. This article fills this gap available in the

existing literature by considering novel ideas like the implementation of carbon nanotubes,

CCHF, and thermal radiation effects on Reiner-Philippoff fluid past a slippery expandable

sheet. Momentum, as well as temperature slip boundary conditions, are never studied and

considered before for the case of Reiner-Philippoff fluid past a slippery expandable sheet. In

the light of physical effects used in this model, it is observed that heat transfer rate escalates

as a result of magnification in thermal radiation parameter which is 18.5% and skin friction

coefficient diminishes by the virtue of amplification in the velocity slip parameter and maxi-

mum decrement is 67.9%.
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1. Introduction

Since 1991, this is the subject of the inquiry because of its synthetic and basic existence since

the beginnings of the era of carbon nanotubes. In several technical and industrial applications

such as electrochemical super-capacitors, transistors, sensors and field emitting machines,

engine transmission oil, heat exhaust flue gas recovery, electrical cooling, nuclear cooling,

nanofluid boiling, etc. special properties such as high surface radiation, carbon nanotubes

(CNTs) were studied. These applications got the researcher’s attention to work on CNTs.

Kundu et al. [1] presented a carbon nanotube-based superior convective flow of Maxwell

nanoliquid over an expanding sheet embedded through multiple slip influences. Al-Hanaya

et al. [2] inspected the impact of single and multiwall carbon nanotubes on micropolar fluid

along an extendable surface. Hayat et al. [3] published a computational approach on diffusion-

species of carbon nanotubes. Nagalakshm et al. [4] pondered the magnetohydrodynamic

(MHD) radiative flow of an incompressible steady flow of Carreau nanofluid along with car-

bon nanotubes affecting through a nonlinear elongated plate. Muhammad et al. [5] established

the mathematical scheme concerning a Casson fluid through a stretching surface along in exis-

tence of CNTs, thermal non-linear radiation, and heat sink (source). Khalid et al. [6] pondered

the impression of MHD and CNTs on fluid movement through an expandable plate. Hossein-

zadeh et al. [7, 8] investigated cross-fluid flow past a cylinder and rotate cone with the inclu-

sion of nanoparticles and motile gyrotactic microorganisms. Lu et al. [9] analyzed the

behaviour of nanoliquids containing CNTs along with a CCHF and entropy production. The

impact of carbon nanotubes on mixed convective radiative liquid flowing past a nonlinearly

elongated sheet along with slip constraint is inspected by Mandal et al. [10]. Chaudhary et al.

[11] elaborated the viscous nanofluid flowing with electrical conductivity close to a stagnating

area of CNTs in water via extending surface. Researchers have employed the law of conduction

suggested by Fourier to evaluate the heat transport analysis of liquid. Research investigations

[12–15] probed the impacts of CNTs, MoS2, and Fe3O4 hybrid nanoparticles with the consid-

eration of different base fluids moving over diverse surfaces. Cattaneo [16] modified the Fou-

rier law of conduction by inserting the relaxation time phenomenon for the heat-flux and later

on Christov [17] introduced a derivative prototypical of Cattaneo’s rule and that developed

known as Cattaneo-Christov law having immense applications in the engineering and medical

field like nuclear reactor cooling, pasteurization of milk, electronic devices, hybrid power gen-

erators, etc. Based on these applications Akbar et al. [18] discussed the magnetic field and

CCHF effects on CNTs-water nanofluid moving via an expandable plate. Ali et al. [19] pon-

dered the characteristics of Cattaneo-Christov diffusion model for the flow of stagnancy point

of Carreau nanofluid along an extendable surface embedded with chemical reaction effect.

Ibrahim et al. [20] checked the flux impact of Cattaneo-Christov on free convective incom-

pressible viscous fluid flowing through a vertical plate along with viscous dissipation and ther-

mal radiation. Rasool et al. [21] researched to disclose the features of the inhomogeneous

induced magnetical impact of nanoliquid flowing manifested with CCHF effect via an expo-

nential extendable sheet. Khan et al. [22] scrutinized the impact of three different types of

nanoparticles like Al2O3, TiO2 and copper Cu by considering H2O as a standard liquid through

a nonlinearly expandable plate embedded with the CCHF. Shah et al. [23] investigated the

effect of carbon nanotubes and CCHF on three-dimensional rotating liquid past an extendable

plate. In the thermal radiation incidence model of the Cattaneo-Christov system, Dogonchi

et al. [24] studied the heat transport analyzes of nanofluid flow between two parallel plating

model.

Thermal radiation is one of three processes that permit energy exchange for bodies with dif-

ferent temperatures. The electro-magnetic wave emission from substances is characterized by
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thermal radiation (variation of its interior energy). It transmits radiation from ultraviolet to

far-field infrasound depending on the material’s temperature. Thermal radioactivity is utilized

where the high-temperature variance is essential having immense utilization in the industry

like thermal furnaces, nuclear reactors, polymer production, combustion reactors, rubber pro-

duction, etc. Sreedevi and Reddy [25] pondered the impact of thermal radiation on multi-wall

carbon nanotube with kerosene as a base fluid past an extendable surface and found that the

temperature field escalates owing to an increment in the thermal radiation parameter. The

thin-film stream of a viscous nanofluid is introduced by Shah et al. [26] over a horizontal, spin-

ning disk immersed in thermal radiative effect. Reddy et al. [27] inspected the influence of

thermal radiative flow and viscous dissipative on RPF via a porous medium. Khan et al. [28]

probed the impacts of thermophoretic and thermal radiative flow on second-grade two-

dimensional magneto-liquid in which viscous dissipative is introduced via a stretchable sur-

face. Hosseinzadeh et al. [29] scrutinized the influence of thermal radiation and viscous dissipa-

tion on hybrid nanoparticles over the vertical cylinder with the consideration of different

shapes of nanoparticles. Kumar et al. [30] explored the effect of viscous dissipative and Joule

effect on 3-dimensional nanofluid flow of Jeffrey model past an extending sheet underneath the

influence of thermal exponential radiation. Makinde et al. [31] deliberated the influence of ther-

mal radiative and melting heat transfer on magneto micropolarity liquid through an elongated

sheet. The influence of thermal radiative flow and viscous dissipative on water squeezing among

two Riga surfaces is scrutinized by Ahmed et al. [32]. The impact of nanoparticles, microorgan-

isms, and thermal radiation on bioconvection past a magnetic field has been debated in detail

by Hosseinzadeh et al. [33]. Hybrid nanoparticles fluid flow through an octagonal porous

medium with the inclusion of MHD and thermal radiation are scrutinized by Hosseinzadeh

et al. [34]. Rashed et al. [35] observed the effect of thermal radiative flow and magnetohydrody-

namics over a porous rotating infinite disk together with Soret and Dufour effects.

The slip-free effect happens where the fluid and the wall are equal in velocity. On the other

hand, the state in which the fluid and the wall velocity are different is called the slip velocity. In

the case of temperature slip of the fluid and the sheet surface temperature is different. The liq-

uid impact of boundary slip has distinguished utilizations like improving artificial interior cav-

ities and valves of the heart. Shafiq et al. [36], under the simultaneous influence of thermal slip

and the convective boundary conditions, examined revolving frame fluid flow. In presence of

slip boundary conditions, Mukhopadhyay [37] conducted a thorough analysis of the unstable

convective boundary layer flow and the heat transfer over the vertical stretch field. Thanks to

the increase of the speed slip parameter the rate of heat transfer decreases. For the thermal slip

parameter, the same function is noted also. Raza et al. [38] investigated thermal radiation and

slip velocity effects concurrently with a heated convective stretching plate. Abbas et al. [39]

exhibited the flow of hybrid nanoparticles with slip velocity and MHD. In the presence of ther-

mal and hydrodynamic slip conditions, Rao et al. [40] proposed the laminar free convective

boundary-layer flow of a Casson viscoelastic fluid external to a vertical permeable spherical

cone. The results of the thermal and velocity boundary conditions on thermally radiative ferro-

fluid motions over a flat plate are studied by Sejunit and Khaleque [41]. Li and Keh [42] dis-

cussed analytically the thermophoretic displacement of the spherical particles at the core of a

gaseous material in the specified temperature gradient. Sarabandi and Moghadam [43] ana-

lyzed the steady-state laminar flow of non-Newtonian fluid in a circular microchannel embed-

ded with slip velocity condition.

The reasons behind the organization of this research are given below:

■ The Maxwell velocity and Smoluchowski temperature boundary slip constraints are consid-

ered to study a slip effect on RPF which is not explored yet in available literature. Before
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this investigation, no literature is available to study the effect of Maxwell velocity and Smo-

luchowski temperature jump boundary conditions on the Non-newtonian fluid past a

stretching sheet.

■ Other than Buongiorno nanofluid no literature is available to study the effect of nanoparti-

cles on Reiner-Philippoff fluid past a stretching sheet. Attempt has been made in this article

to implement Tiwari and Das nanofluid model for the case of heat transport analysis of Rei-

ner-Philippoff model with blood as a standard fluid.

■ Before this investigation, no literature on Reiner-Philippoff fluid is available to study heat

flux of Cattaneo-Christov scheme along with thermal radiation is used to investigate the

heat transfer analysis. Thermal radiation present in the fluid amplifies the heat transfer rate.

The main purpose is to investigate the heat transfer rate with the inclusion of CCHF and

thermal radiation.

■ SWCNT/MWCNT are never used before for the case of Riner-Philippoff fluid.

2. Flow model

The expression Reiner-Philippoff [27] of stress deformation is given:

@u
@y
¼

t

m1 þ
m0 � m1

1þ t
tsð Þ

2

: ð1Þ

The symbols τ, τs, μ0 and μ1 indicates shear-stress, reference shear-stress, zero shear viscos-

ity, and limited viscosity. Reiner-Philippoff model responds like shear thinning, Newtonian,

and shear thickening subjected to a variation in fluid viscosity. Mathematical expression

regarding RPF flow function is written as

f sð Þ ¼
s

1þ l� 1

1þs2

; ð2Þ

whereas s ¼ t

ts
and l ¼

m0

m1
. The expression λ in fluid flow function represents Reiner-Philipp-

off fluid parameter. Reiner-Philippoff behaviour is Newtonian for λ = 1, shear thickening λ<0,

and shear thinning λ>1.

Fig 1 is designed to reflect the physical interpretation of RPF impinging on an expanding

surface having an extending velocity uw influential lengthways x−direction. The symbols T0

and T1 depicts the fluid energy and concentration at the surface and ambient temperature

outlying from the surface. The momentum equation has been scrutinized with the inclusion of

carbon nanotubes. Momentum and thermal boundary layers occur when the velocity and tem-

perature of the fluid is 0.99% of the free stream fluid velocity as well as temperature. Under

these boundary conditions, the viscous, as well as velocity effects, hold. Heat transfer analysis

has been carried out with the inclusion of solar thermal thermal and CCHF. Radiation is one

of the best sources of heat and requires no medium for its propagation. Heat transfer rate in

the case of the temperature equation is improved with the inclusion of carbon nanotubes,

CCHF, and thermal radiation. Momentum and temperature slip boundary conditions have

been employed at the boundary surface by the consideration of the assumption that the surface

is rough, wet, and the effect of the adhesive forces is negligible. The fluid is incompressible and

laminar. The density, as well as pressre, is constant. Human blood is considered as a base liquid

flowing through a stretchable surface with the inclusion of SWCNT and MWCNT. The density

ρnf, thermal diffusion αnf, nanofluid specific heat (ρCp)nf, thermal conductance knf are specified

by the mathematical expressions mentioned below [1–3]. Fig 2 demonstrates the flow chart of
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Fig 1. Physical description of flow model.

https://doi.org/10.1371/journal.pone.0258367.g001

Fig 2. Mathematical model’s flow chart structure.

https://doi.org/10.1371/journal.pone.0258367.g002
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a mathematical model.

rnf ¼ ð1 � �Þrf þ �rCNT;

mnf ¼
mf

1 � �2:5

;

anf ¼
knf
ðrCpÞnf

;

ðrCpÞnf ¼ ð1 � �ÞðrCpÞf þ �ðrCpÞCNT;

knf
kf
¼

ð1 � �Þ þ 2�
kCNT

kCNT � kf
ln
kCNT þ kf

2kf

ð1 � �Þ þ 2�
kf

kCNT � kf
ln
kCNT þ kf

2kf

;

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

: ð3Þ

Table 1 displays the thermo-physical features of essential fluid and CNTs below [6].

The models of the continuity, momentum, and energy equations are described below [27]:

@u
@x
þ
@v
@y
¼ 0; ð4Þ

u
@u
@x
þ v

@u
@y
¼ nnf

@t

@y
; ð5Þ

u
@T
@x
þ v

@T
@y
þ lEFE ¼

knf
ðrCpÞnf

@2T
@y2
�

1

ðrCpÞnf

@qr

@y
; ð6Þ

The physical boundary conditions (BCs) are [27]:

y ¼ 0 : u x; yð Þ ¼ ax
1

3 þ
2 � sv

sv
l0x

1

3
@u
@y
; v ¼ 0;T ¼ T0 þ

2 � sT

sT

2r
r þ 1

� �
l0

Pr
x
1

3
@T
@y

y!1 : u! 0;T ! T1;

9
>>=

>>;

ð7Þ

where CCHF [19–22] is given by

FE ¼ u2
@2T
@x2
þ v2

@2T
@y2
þ 2uv

@2T
@x@y

� �

þ u
@u
@x
þ v

@u
@y

� �
@T
@x
þ u

@v
@x
þ v

@v
@y

� �
@T
@y

� �

: ð8Þ

The expression of heat radiation flux [32] is specified as

qr ¼ �
4s�

3k�
@T4

@y
¼ �

16s�

3k�
T3 @T
@y
: ð9Þ

Table 1. Thermo-physical characteristics.

Property Human Blood (38˚C) SWCNT MWCNT

Cp 3594 425 796

ρ 1053 2600 1600

k 0.492 6600 3000

Pr 24 - -

https://doi.org/10.1371/journal.pone.0258367.t001
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The function of a stream is defined as u ¼ @c

@y and v ¼ � @c

@x . By utilizing the appropriate simi-

larity transformation [27] with velocity U xð Þ ¼ ax1
3 given below

c ¼
ffiffiffiffiffi
an
p

x2
3f ðZÞ; Z ¼

ffiffiffi
a
n

r

x� 1
3 y; t ¼ r

ffiffiffiffiffiffiffi
a3n
p

gðZÞ; yðZÞ ¼
T � T1
T0 � T1

;

)

ð10Þ

the Eqs (4)–(6) are transformed into non-dimensionless ODEs

g 0 ¼
A1

3
f 02 �

2

3
ff @; ð11Þ

g ¼ f @
g2 þ lg2

g2 þ g2
; ð12Þ

A2 þ
4

3
Rd

� �

y@þ
2

3 3Prfy
0
� Prd ff0y

0
þ Zf2y@ð Þ ¼ 0; ð13Þ

associated boundary conditions are

Z ¼ 0 : f ðZÞ ¼ 0; f 0ðZÞ ¼ 1þ g1f @; yðZÞ ¼ 1þ g2y
0
;

Z!1 : f 0ðZÞ ! 0; yðZÞ ! 0:

)

ð14Þ

The associated non-dimensionless quantities are defined below

g ¼
ts

r
ffiffiffiffiffiffiffi
a3v
p

� �

; l ¼
m0

m1
; Pr ¼

mCp

k1
;Rd ¼

16sT3
1

3k�k1
; d ¼ alE

g1 ¼
2 � sv

sv
l0

ffiffiffi
a
v

r

; g2 ¼
2 � sT

sT

2r
r þ 1

� �
l0

Pr

ffiffiffi
a
v

r

;

9
>>>>=

>>>>;

ð15Þ

where A1, A2 and A3 are given by

A1 ¼
1

ð1 � �Þ þ �
rCNT

rf

;

A2 ¼
knf
kf
;

A3 ¼ 1 � �ð Þ þ �
ðrCpÞCNT

ðrCpÞf
:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð16Þ

3. Physical quantities

The mathematical expression regarding skin friction coefficient [27] is given by

Cfx ¼
t
U2
w

2

; ð17Þ

after utilizing the similarity transformation the non-dimensionless formula of drag force coef-

ficient is

1

2
CfxRe

1=2

x ¼ g 0ð Þ: ð18Þ
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The expression regarding heat transfer Nusselt number [27] is

Nux ¼
xqw

kf ðT0 � T1Þ
; ð19Þ

whereas qw indicates heat flux having expression mentioned below

qw ¼ � knf
@T
@y

� �

y¼0

þ qr: ð20Þ

The dimensionless Nusselt number after utilization of similarity transformation is mani-

fested by

NuxRe
� 1=2

x ¼ � A2y
0
ð0Þ; ð21Þ

4. Solution methodology

The MATLAB bvp4c which is the finite-difference scheme (collocation scheme) is executed to

evaluate the non-dimensionless system of Eqs (12)–(14) sideways with boundary constraints

(15). After allocating f = w1, f0 = w2, f00 = w3, θ = w4, the system of ODEs are converted into first

order, represented by

w0
1
¼ w2;

w0
2
¼

w3w2
3
þ g2

w2
3
þ lg2

;

w0
3
¼

A1

3
w02

2
�

2

3
A1w1w

0

2
;

w0
4
¼ w5;

w0
5
¼

Prdw1w2w5 �
2

3
A3Prw1w5Þ

A2 þ
4

3
Rd

� �

� Prd1xw2
1

� � ;

9
>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>;

ð22Þ

associated boundary conditions are

Z ¼ 0 : w1ð0Þ ¼ 0;w2ð0Þ ¼ 1þ g1x1;w4ð0Þ ¼ 1þ g2x2;

Z!1 : w2ð1Þ ! 0;w4ð1Þ ! 0:

)

ð23Þ

In the situation of the present problem, the tolerance rate and convergence value were set at 10−6

and η1 = 7. Fig 3 is considered to illustrate the bvp4c numerical scheme’s flow chart mechanism.

5. Verification of code

The comparative analyses of the findings achieved with those stated by Reddy et al. [27] with

the variation in λ and γ by holding other parameters fixed are given in Table 2. To obtain

numerical calculations, the Matlab software bvp4c method is utilized. It is fully known from

Table 2 that the findings obtained are very reliable and accurate.

6. Discussion

This sector is dedicated to studying the effect of sundry parameters that appear during the

numerical simulation of the problem against shear stress field, velocity field, temperature field.

Table 3 is sketched for the analysis of various dimensionless parameters on shear stress fields
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and the rate of heat transport for two kinds of CNTs. In the case of SWCNT, the domain of

shear-stress g(η) increases because of an increment in fluid factor λ but g(η) lessens as a result

of enrichment in Bingham number γ and velocity slip γ1 but no alteration is detected for the

case of radiation Rd, Prandtl number Pr, thermal relaxation time parameter δ, and temperature

slip parameter γ2. The rate of heat transport implies result in an improvement in λ, Rd, δ but

heat transfer depreciates as a result of an improvement in the remaining parameters like γ, γ1,

γ2, Pr. For the case of MWCNT, shear stress field g(η) augments owing to amplification in λ
but decreases in the case of γ and γ1 and no change is obvious in the status of the remaining

Fig 3. The bvp4c scheme’s flow chart method.

https://doi.org/10.1371/journal.pone.0258367.g003

Table 2. Study of the relation of present findings with Ref. [27] without Rd.

NuxRe� 1=2x

γ λ = 0.5 λ = 1.0

Present Ref. [27] Present Ref. [27]

0.1 0.130909 0.109782 0.144535 0.114058

0.2 0.109284 0.102621 0.144535 0.114058

0.3 0.085161 0.097438 0.144535 0.114058

https://doi.org/10.1371/journal.pone.0258367.t002
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parameters. The number of Nusselt amplifies by the virtue of enrichment in the amounts of

Rd, λ and δ. The Nusselt number depreciates as a result of an improvement in the remaining

parameters like γ, γ1, γ2, Pr.
Tables 4 and 5 are designed to study the effect of thermal radiation and velocity slip condi-

tion on Nusselt number and skin friction coefficient. From Table 4, it is quite clear that the

heat transfer rate increases by increasing the thermal radiation parameter and maximum value

at Rd = 2.5 which is 18.5%. From Table 5, it is quite evident the skin friction coefficient depre-

ciates as a result of amplification in the velocity slip parameter and the maximum decrement is

67.9%.

Fig 4 is designed to study the influence of RPF λ parameter on the profile of velocity f0(η). It

is observed at an improvement in λ, the fluid behaves like shear thinning and the fluid flows

more freely on the surface of the sheet which amplifies the velocity of the fluid and velocity

Table 3. Effect of distinct physical factors on the skin frictions and Nusselt number.

Physical parameters SWCNT MWCNT

γ λ γ1 Rd Pr δ γ2 g(η) NuxRe� 1=2x g(η) NuxRe� 1=2x

0.5 0.1 0.1 0.1 24 0.01 0.1 0.3590 3.5454 0.3492 3.4368

0.7 0.2814 3.3449 0.2742 3.2533

0.9 0.2674 3.2413 0.2460 3.1585

1.1 0.2342 3.1713 0.2331 3.1099

0.3 0.4734 3.6694 0.4629 3.5491

0.5 0.5365 3.6983 0.5256 3.5752

0.7 0.5821 3.7115 0.5709 3.5870

0.3 0.3033 3.3963 0.2962 3.2991

0.5 0.2661 3.2796 0.2605 3.1907

0.7 0.2391 3.1843 0.2346 3.1018

0.3 0.3590 3.3751 0.3492 3.2642

0.5 0.3590 3.3931 0.3492 3.2812

0.7 0.3590 3.4364 0.3492 3.3142

25 0.3590 3.6227 0.3492 3.5104

26 0.3590 3.6178 0.3492 3.5020

27 0.3590 3.6009 0.3492 3.4816

0.02 0.3590 3.5506 0.3492 3.4411

0.03 0.3590 3.5557 0.3492 3.4453

0.04 0.3590 3.5606 0.3492 3.4493

0.3 0.3590 2.7954 0.3492 2.6880

0.5 0.3590 2.3072 0.3492 2.2071

0.7 0.3590 1.9642 0.3492 1.8721

https://doi.org/10.1371/journal.pone.0258367.t003

Table 4. Heat transfer analysis in the presence/absence of thermal radiation.

Parameter NuxRe� 1=2x change ¼ j Presence� AbsencePresence j � 100%

Rd Presence of Rd Absence of Rd
1 2.5099 2.2835 9.02%

1.5 2.6119 2.2835 12.6%

2 2.7094 2.2835 15.7%

2.5 2.8038 2.2835 18.5%

https://doi.org/10.1371/journal.pone.0258367.t004
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profile. The Bingham number γ effect on the domain of velocity is represented in Fig 5. The

proportion of yield-stress to viscous-stress is the number of Bingham. It is noted that due to an

increase in the shear-rate, the fluid viscosity increases. Physically, amplification in Bingham

turns liquid into solids due to magnification in the fluid viscosity. The fluid then behaves like

shear-thickening, which often diminishes the velocity of the fluid. Fig 6 revealed the effect of

velocity slip γ1 on f0(η). Slip phenomenon occurs when the velocity of the nanofluid and the

surface is not the same. Physically, the slip phenomenon occurs due to roughness, wetness,

and non-adhesives forces acting on the surface of the stretching sheet. That’s why they wander

wall forces and adhesives forces are not acting on the fluid flow over the stretching sheet. As a

result slip phenomenon occurs. In the presence of slip phenomenon, the nanofluid velocity

flow over the surface declines which lessens the fluid velocity and f0(η). The portrayal of γ on

shear stress field g(η) is shown in Fig 7. It’s noted that the shear stress field diminishes owing

to amplification in γ. Physically for the fewer values of γ and λ, the fluid behaviour is shear

thickening. Both γ and λ are prominent factors of the Reiner-Philippoff fluid parameter and

are somehow related to each other. The behaviour of the fluid is shear-thinning λ<1 which

lessens the fluid velocity and amplifies the stress field. As a result g(η) augments. Fig 8 depicts

the outcome of λ on g(η). Fluid parameter λ is the ratio of zero shear rate to the infinite sheat

rate. Physically a positive variation in the infinite shear rate depreciates the fluid parameter λ.

Table 5. Velocity slip impact on the skin friction coefficient.

Parameter Cf xRe1=2x change ¼ j Presence� AbsencePresence j � 100%

γ1 Presence of γ1 Absence of γ1

0.1 0.6284 0.6938 10.4%

0.3 0.5322 0.6938 30.3%

0.5 0.4642 0.6938 49.5%

0.7 0.4130 0.6938 67.9%

https://doi.org/10.1371/journal.pone.0258367.t005

Fig 4. Effect of λ on f0(η).

https://doi.org/10.1371/journal.pone.0258367.g004
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The viscosity of fluid abates by the virtue of an amplification in λ which lessens the shear-stress

of the nanofluid that furthermore leads to a decrement in the domain of shear-stress. Fig 9 is

designed to reflect the effect of nanoparticles concentration ϕ on the profile of velocity. Physi-

cally concentration is proportional to the diffusivity. Molecules diffuse more quickly by the vir-

tue of an increment in the concentration of nanoparticles. Concentration of the fluid increases

Fig 5. Effect of γ on f0(η).

https://doi.org/10.1371/journal.pone.0258367.g005

Fig 6. Effect of γ1 on f0(η).

https://doi.org/10.1371/journal.pone.0258367.g006
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due to an augmentation in the nanoparticles concentration of nanoparticles which lessens the

fluid flow that eventually diminishes the velocity of nanofluid.

In Fig 10, the Prandtl number Pr impact on the distribution of temperature field θ(η) is

illustrated. The number of Prandtl is the proportion of momentum diffusion and thermal dif-

fusion. Physically Pr is one of the prominent factors of boundary layer analysis. In the case of

Pr<1, the thermal boundary layer dominates the momentum boundary layer but the situation

is quite opposite in the case of Pr>1 where the momentum boundary layer dominates the

Fig 7. Effect of γ on g(η).

https://doi.org/10.1371/journal.pone.0258367.g007

Fig 8. Effect of λ on g(η).

https://doi.org/10.1371/journal.pone.0258367.g008
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thermal boundary layer. It is well established, the thermal diffusion of the fluid diminishes

result in an increase in Pr. The temperature of the fluid depreciates as a result of an abatement

in the thermal diffusivity which furthermore guides to a decrement in θ(η). The characteristics

of radiation parameter Rd on θ(η) are highlighted in Fig 11. Physically thermal radiation is

used to enhance the heat transfer rate of the fluid having immense utilization in an industry

like polymer production, combustion reactors, pasteurization, and remove toxic

Fig 9. Effect of ϕ on g(η).

https://doi.org/10.1371/journal.pone.0258367.g009

Fig 10. Effect of Pr on θ(η).

https://doi.org/10.1371/journal.pone.0258367.g010
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microorganisms from the liquids. Sun is the best source of thermal radiation. Radiations

enhance the nanofluid temperature. In the presence of Rd heat enter more easily into the sys-

tem which improves the fluid temperature and temperature field θ(η). Fig 12 elucidates the

influence of the temperature slip factor γ2 on the temperature profile θ(η). Physically tempera-

ture slip phenomenon occurs when the temperature of the sheet and fluid flow over the sheet

is not in thermal equilibrium. With temperature slip condition, the temperature of the

Fig 11. Effect of Rd on θ(η).

https://doi.org/10.1371/journal.pone.0258367.g011

Fig 12. Effect of γ2 on θ(η).

https://doi.org/10.1371/journal.pone.0258367.g012
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nanofluid declines which lessens the fluid temperature and θ(η). Fig 13 exhibits the parameter

dependencies of thermal relaxation δ on the temperature field θ(η). Physically thermal relaxa-

tion time is the time in which fluid is allowed to relax to retain its original shape. During this

time the fluid behaviour is shear thickening. As a result of a rise in δ, the nanofluid particles

show nonconducting behaviour, which takes a long time to convey heat to their neighboring

nearby particles. The temperature distribution diminishes as a consequence. Fig 14 illustrates

Fig 13. Effect of δ on θ(η).

https://doi.org/10.1371/journal.pone.0258367.g013

Fig 14. Effect of ϕ on θ(η).

https://doi.org/10.1371/journal.pone.0258367.g014
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the influence of nanoparticles concentration ϕ on θ(η). Physically it is quite evident that the

insertion of nanoparticles in the base fluid enhances the thermal conductivity of the fluid and

ultimately amplifies the heat transfer rate. The thermal conductivity of nanoparticles increases

owing to an amplification in ϕ which moreover augments the temperature of fluid and θ(η).

7. Conclusion

In the present research, a computational heat transfer of Reiner-Phillipoff nanofluids over a

flat surface is investigated under the impact of Maxwell velocity slip and Smoluchowski tem-

perature slip on CNTs with modified Fourier theory. The concluding remarks from this study

are given below

■ An improvement in the fluid parameter λ escalates the velocity field but the fluid velocity

depreciates by the virtue of amplification in the Bingham number γ.

■ The shear-stress domain depressed results in enrichment in the fluid factor λ.

■ Velocity of the fluid lessens due to an increment in the concentration of nanoparticles.

■ An amplification in velocity slip γ1 and temperature slip γ2 depreciates velocity and tempera-

ture profiles.

■ A positive variation in a parameter of thermal relaxation δ brings about a decrement in the

temperature distribution.

■ Temperature field escalates by the virtue of amplification in the radiation parameter Rd.

■ Rate of heat transport augments owing to an augmentation in the volume fraction of

nanoparticles.
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