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Abstract 25 

Inferring brain connectivity from inter-individual correlations has been applied to various neuroimaging 26 

modalities, such as glucose metabolic activity measured by positron emission tomography (PET) and 27 

brain structures assessed using MRI. The variability that drives these inter-individual correlations is 28 

generally attributed to individual differences, potentially influenced by factors like genetics, life 29 

experiences, and biological sex. However, it remains unclear whether long-term within-individual effects, 30 

such as aging, and state-like effects also contribute to the correlated structures, and how intra-individual 31 

correlations are compared to inter-individual correlations. In this study, we analyzed longitudinal data 32 

spanning a wide age range, examining regional brain volumes using structural MRI, and regional brain 33 

functions using both regional homogeneity (ReHo) of resting-state functional MRI and glucose metabolic 34 

activity measured with Fludeoxyglucose (18F) FDG-PET. In a first dataset from a single individual 35 

scanned over 15 years, we found that intra-individual correlations in both ReHo and regional volumes 36 

resembled resting-state functional connectivity. In a second dataset, involving multiple longitudinal points 37 

and participants for FDG-PET and MRI, we replicated these findings, showing that both intra- and inter-38 

individual correlations were strongly associated with resting-state functional connectivity. Correlations in 39 

functional measures (i.e., ReHo or FDG-PET) showed greater similarity with resting-state connectivity 40 

than structural measures. Moreover, matrices from the same modality showed higher similarity between 41 

the two datasets, indicating modality specific contributions. These results suggest that multiple factors 42 

may contribute to both inter- and intra-individual correlational measures of connectivity. Understanding 43 

or controlling for these factors could enhance the interpretability of the inter-individual connectivity 44 

measures. 45 

 46 

Keywords: Brain connectivity; Covariance network; Functional Connectivity; Inter-individual; Molecular 47 

connectivity.   48 
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1. Backgrounds 49 

Studies of brain connectivity are essential for advancing our understanding of functional interactions 50 

between brain regions and the organization of the whole brain. The development of neuroimaging 51 

techniques has provided an exciting opportunity to study brain function in humans in vivo. Early research 52 

frequently employed positron emission tomography (PET) to measure glucose metabolic activity (Phelps 53 

et al., 1981) and cerebral blood flow (Fox and Raichle, 1984). These studies primarily used inter-54 

individual correlations of PET measures to quantify brain connectivity based on glucose metabolism 55 

(Horwitz et al., 1984; Metter et al., 1984) or cerebral blood flow (Zeki et al., 1991). However, due to the 56 

nature of PET measurements, which are static, these studies were generally limited to inter-individual 57 

correlations. While they often identified statistically significant connectivity patterns, the similarities 58 

between connectivity derived from PET measures and resting-state networks identified using functional 59 

MRI (fMRI) were relatively modest (Di et al., 2017; Di and Biswal, and Alzheimer’s Disease Neu, 2012; 60 

Lizarraga et al., 2023).  61 

 Functional MRI (fMRI) has become a widely used tool for studying brain connectivity due to its 62 

superior spatial and temporal resolution (Biswal et al., 1995, 2010). Beyond capturing moment-to-63 

moment dynamics, fMRI data can be summarized over brief periods, often during resting-state sessions, 64 

to derive measures such as the amplitude of low-frequency fluctuations (ALFF) (Zang et al., 2007) and 65 

regional homogeneity (ReHo) (Zang et al., 2004). These metrics have also been applied to examine inter-66 

individual correlations of brain (Di et al., 2024a; Taylor et al., 2012; Zhang et al., 2011). Additionally, the 67 

flexibility of task designs in fMRI enables researchers to explore how task performance impacts inter-68 

individual connectivity correlations. Studies indicate that while task conditions can induce slight changes 69 

in connectivity patterns, the overall connectivity structure tends to remain largely consistent across 70 

different tasks (Di et al., 2024a). 71 

 An intriguing extension of inter-individual correlation analysis is its application to brain structural 72 

data, which tends to reflect more trait-like characteristics associated with slow and long-term effects (He 73 

et al., 2007; Mechelli et al., 2005). Mechelli and colleagues were among the first to use a seed-based 74 
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approach to examine inter-individual correlations of regional brain volumes, discovering strong 75 

correlations between regions within the same functional brain systems (Mechelli et al., 2005). Building on 76 

this, He and colleagues constructed whole-brain networks based on inter-individual correlations of 77 

cortical thickness. Their findings demonstrated that these structural networks exhibit small-world 78 

properties, highlighting the efficiency and organization of the brain's structural connectivity (He et al., 79 

2007).  80 

 Despite its growing popularity, questions remain about whether and to what extent inter-81 

individual correlations reflect functional connectivity, which is traditionally assessed intra-individually, 82 

typically through resting-state fMRI. One approach to validate inter-individual correlational measures is 83 

to compare their similarity to other established connectivity measures, such as intra-subject moment-to-84 

moment functional connectivity during rest or anatomical connectivity derived from white matter 85 

tracking. When using white matter tracking from diffusion-weighted imaging (DWI) as a reference, 86 

studies have found that inter-individual correlations of structural measures show limited similarity to 87 

white matter tracts (Gong et al., 2012; Lizarraga et al., 2023). In contrast, inter-individual correlations 88 

based on functional measures of glucose metabolic activity exhibit higher similarity with white matter 89 

connectivity (Lizarraga et al., 2023). A similar pattern emerges when comparing these measures to 90 

resting-state functional connectivity. Inter-individual structural correlations display limited similarity to 91 

resting-state functional connectivity (Alexander-Bloch et al., 2013b; Di et al., 2017). However, inter-92 

individual correlations of functional measures, such as glucose metabolic activity, show greater alignment 93 

with resting-state connectivity patterns (Di et al., 2017).  94 

 A critical question remains regarding the factors driving inter-individual variability that lead to 95 

correlations in functional or structural brain measures. Do these correlations primarily reflect individual 96 

differences shaped by genetic factors or life experiences, or do intra-individual factors also play a role? 97 

For example, inter-individual correlation analyses often include large sample sizes spanning wide age 98 

ranges, prompting the question of whether age-related effects contribute significantly to these correlations 99 
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in brain structure. Exploring intra-individual correlations could provide valuable insights into the 100 

underlying causes of inter-individual variability.   101 

 In the context of functional data, such as glucose metabolism measured by FDG-PET, neural 102 

activity introduces an additional variable. This state-like factor may be influenced by participants' mental 103 

states at the time of measurement (Di et al., 2024a). Long-term brain activity, as reflected by metrics like 104 

FDG-PET or regional homogeneity (ReHo), typically persists over minutes to hours. However, it is 105 

unclear to what extent variability in this sustained activity contributes to the observed inter-individual 106 

correlations. Investigating intra-individual correlations in these slow functional activity patterns could 107 

shed light on the role of intra-individual variability in shaping inter-individual correlations.   108 

 In the current study, we examined correlations in brain structural and functional measures 109 

typically calculated in an inter-individual manner. We analyzed two unique datasets, allowing us to 110 

compute correlations both inter- and intra-individually, and compared the correlation structures derived 111 

from these two approaches. This comparison enabled us to estimate the contribution of intra-individual 112 

factors to the overall correlation structure. Specifically, the first dataset consists of a single individual 113 

scanned over 16 years (Duchesne et al., 2019), providing a unique opportunity to estimate gray matter and 114 

ReHo correlations intra-individually. The second dataset comes from the Alzheimer’s Disease 115 

Neuroimaging Initiative (ADNI), focusing on healthy participants with more than five longitudinal FDG-116 

PET scans. We calculated correlations in two ways: first, by calculating correlation matrices within each 117 

participant and then averaging these matrices across participants, which minimizes individual variability 118 

and focuses on intra-individual variability; and second, by calculating inter-individual correlations at each 119 

age point and averaging these matrices across ages, which focuses exclusively on inter-individual 120 

variability while controlling for factors such as age. Lastly, we compared correlation matrices between the 121 

two datasets and investigate whether different imaging modalities have their unique correlation structures.  122 

 123 

2. Materials and Methods 124 

2.1. Datasets 125 
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2.1.1. Simon dataset 126 

The Simon dataset is available through the International Neuroimaging Data-Sharing Initiative (INDI) 127 

website (http://fcon_1000.projects.nitrc.org/indi/retro/SIMON.html). It includes data from a single heathy 128 

male who was scanned across 73 sessions over a 16-year period, from the age of 30 to 47. Figure 1A 129 

illustrates the distribution of these scanning sessions over time. In total, 73 MRI sessions are available, 130 

conducted using various scanners and parameters. For more details, refer to the original paper by 131 

(Duchesne et al., 2019). Our analysis focused on T1-weighted anatomical images and resting-state fMRI 132 

data, with 71 sessions providing T1-weighted images and 58 sessions containing resting-state fMRI data.  133 

 134 

Figure 1 Illustration of scan sessions for the Simon dataset (A) and fludeoxyglucose-18 (FDG) positron 135 

emission tomography (PET) (B) and structural MRI (C) datasets from Alzheimer’s Disease Neuroimaging 136 

Initiative (ADNI). For the Simon dataset, a single participant was scanned for 73 sessions over 16 years. 137 

Each dot represents one session. For the ADNI dataset, each row in y axis represents one participant, 138 

where each participant was scanned for multiple sessions.  139 

 140 

2.1.2. ADNI dataset 141 

The ADNI dataset was obtained from the project website (adni.loni.usc.edu). The ADNI was launched in 142 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 143 

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 144 

tomography (PET), other biological markers, and clinical and neuropsychological assessment can be 145 
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combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 146 

(AD). For up-to-date information, see www.adni-info.org. 147 

 In this analysis, we only included data from healthy participants. All selected individuals showed 148 

no evidence of depression, mild cognitive impairment (MCI), or dementia, as indicated by Mini-Mental 149 

State Examination (MMSE) scores ranging from 24 to 30 and a Clinical Dementia Rating (CDR) of 0. 150 

We manually curated FDG-PET, MRI, and resting-state fMRI data for this study. For FDG-PET and 151 

MRI, we included participants with at least five sessions to ensure the calculation of reliable intra-152 

individual correlations. For the resting-state fMRI data, we included only one session per individual and 153 

focused on the averaged correlation matrix across participants. 154 

 The data search began with FDG-PET, resulting in the inclusion of 72 participants (25 females) 155 

with a total of 432 PET scan sessions. The number of sessions per participant ranged from 5 to 9 (Figure 156 

1B). The participants' average age at the first session was 75.8 years, with a range of 62 to 86 years. For 157 

each session, either a mean image was calculated, or a single representative image was used. 158 

 From the 72 participants with qualified PET data, we identified those with at least five sessions of 159 

structural MRI scans. A total of 65 participants met this criterion, with the number of MRI sessions 160 

ranging from 5 to 13. Figure 1C provides an overview of the session count and corresponding ages for 161 

these participants. 162 

 Finally, among the 65 participants with structural MRI data, 17 individuals also had resting-state 163 

fMRI scans available. For these participants, one session per individual was included, focusing on a 164 

single resting-state fMRI session per participant. 165 

2.2. Data processing 166 

Neuroimaging data processing and analysis were conducted using SPM12 167 

(https://www.fil.ion.ucl.ac.uk/spm/) within MATLAB environment, following preprocessing and quality 168 

control procedures detailed in a prior study (Di and Biswal, 2023). 169 

 For the FDG-PET data, dynamic images (i.e., multiple images per session) were processed by 170 

realigning all images within a session to the first image, followed by generating a mean image for that 171 
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session. For static PET data, which contained only a single image per session, no realignment was 172 

required. Next, the mean images (or static images) from all sessions for each participant were realigned to 173 

the image from the first session. A cross-sessional mean image was then normalized directly to the PET 174 

template in SPM, aligned to the standard Montreal Neurological Institute (MNI) space. Normalization to 175 

MNI space was performed using consistent parameters across all images. Direct normalization was 176 

chosen over MRI-mediated normalization due to the sufficient spatial resolution of PET images and the 177 

methodological advantages of direct normalization (Calhoun et al., 2017). Finally, the normalized images 178 

were spatially smoothed using an 8 mm full-width at half-maximum (FWHM) Gaussian kernel, and each 179 

image was normalized by dividing its signal by the mean signal within an intracranial volume mask. 180 

 Each anatomical image was treated as independent data, segmented into gray matter, white 181 

matter, cerebrospinal fluid, and other tissues, and normalized to standard MNI space. Spatial 182 

normalization included modulation to ensure that the resulting gray matter images reflected gray matter 183 

volume (GMV). Quality control was performed by manually inspecting the anatomical images before and 184 

after segmentation. In the Simon dataset, one session was excluded due to segmentation failure, resulting 185 

in a total of 70 sessions being included in the final analysis.  186 

 For the fMRI data, the functional images were first realigned to the first image of each session. 187 

The mean functional image was then coregistered to the corresponding anatomical image. Next, the 188 

functional images were normalized to MNI space using the deformation field maps derived from the 189 

segmentation step and spatially smoothed with an 8 mm full-width at half-maximum (FWHM) Gaussian 190 

kernel. A voxel-wise general linear model was then applied to regress out head motion parameters and 191 

white matter/CSF signals. This model included 24 regressors based on Friston’s head motion model, 192 

along with the first five principal components of signals from the white matter and cerebrospinal fluid. 193 

The residual images from this step were saved for further analysis. 194 

 For the Simon dataset, ReHo was calculated for each resting-state fMRI session using the REST 195 

toolbox (Song et al., 2011). 196 

2.3. Brain parcellation 197 
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Cortical regions were defined using Schaefer’s 100-region parcellation (Schaefer et al., 2018), while 198 

subcortical regions were identified based on the Automated Anatomical Labeling (AAL) atlas. The 199 

subcortical regions included the bilateral hippocampus, parahippocampus, amygdala, caudate, putamen, 200 

pallidum, and thalamus (Tzourio-Mazoyer et al., 2002).  201 

For each participant and region, voxel values were averaged to compute measures of gray matter volume 202 

(GMV), FDG-PET, and regional homogeneity (ReHo), producing a 114-dimensional vector per 203 

participant. For resting-state fMRI data, the average time series for each region of interest (ROI) was 204 

extracted, resulting in a 114 × n matrix, where n represents the number of time points, which varied 205 

across sessions and participants. 206 

2.4. Calculation of intra- and inter-individual correlation matrices 207 

In the Simon dataset, mean GMV values across 114 regions of interest (ROIs) for the 70 sessions were 208 

arranged into a 114 × 70 matrix. Pearson’s correlation coefficients were then calculated to construct a 209 

within-individual GMV correlation matrix (114 × 114). Similarly, a ReHo correlation matrix was 210 

generated using ReHo maps from 58 sessions. For each of these 58 resting-state sessions, a resting-state 211 

connectivity matrix was also computed from the fMRI time series data. Finally, the correlation matrices 212 

from all sessions were averaged to produce a mean correlation matrix. 213 

 For the ADNI dataset, correlation matrices for FDG-PET or GMV were calculated across 214 

sessions for each participant. These matrices were then averaged across participants to produce a mean 215 

correlation matrix, referred to as the intra-individual correlation matrix. To calculate inter-individual 216 

correlations, participants’ ages were controlled. Specifically, inter-individual correlations were computed 217 

at each integer age point where data from more than nine participants were available. This process was 218 

applied to participants aged between 70 and 89 years, and the resulting inter-individual correlation 219 

matrices were averaged to generate a mean correlation matrix, referred to as the inter-individual 220 

correlation matrix. Finally, for the fMRI data, resting-state functional connectivity matrices were 221 

calculated for each participant. These matrices were averaged across participants to obtain a mean 222 

connectivity matrix. 223 
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2.5. Statistical analysis 224 

To investigate the associations among the correlation matrices, we extracted the upper diagonal of each 225 

matrix and converted it into a 6,441-dimensional vector (114 x (114 - 1) / 2). Given the potential non-226 

Gaussian distribution of the correlation matrices, Spearman’s rank correlation coefficient (r) was used to 227 

quantify the relationships among the matrices. 228 

 229 

3. Results 230 

3.1. Simon dataset 231 

We first analyzed a multi-session dataset from a single individual spanning over 16 years. The averaged 232 

correlation matrix, shown in Figure 2A, reveals clear modular structures, evident as square-like patterns 233 

along the diagonal and additional squares representing left-right homotopic networks. Subsequently, we 234 

computed intra-individual correlations for regional brain volume (GMV) and ReHo across all available 235 

sessions. Both matrices display square-like patterns, although their spatial configurations differ. Notably, 236 

both intra-individual correlation matrices show moderate but significant correlations with the averaged 237 

resting-state time series correlation matrix (Spearman’s correlation coefficients: ρGMV = 0.29; ρReHo = 238 

0.39). 239 

 240 
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Figure 2 Correlations of regional brain volume (GMV) (A), regional homogeneity (ReHo) (B), and 241 

averaged correlations of resting-state time series (C) across 114 regions of interest (ROIs). D and E show 242 

the Spearman’s correlations (r) between the time-series correlation matrix and GMV or ReHo 243 

correlations, respectively. 244 

 245 

3.2. ADNI dataset 246 

Next, we analyzed the ADNI dataset, where there were multiple participants, but each participant only 247 

have a few sessions. We calculated averaged resting-state time series correlation from the 17 participants 248 

(Figure 3A), which turned out to be very similar to those from the Simon dataset. We then calculated 249 

structural correlations both intra-individually and inter-individually. Both matrices demonstrated 250 

functional network structures along the diagonal and between left and right corresponding regions. 251 

Moreover, both correlation matrices were correlated with resting-state time series correlation (ρintra = 0.41; 252 

ρinter = 0.37), which were slightly higher than that in the Simon dataset (0.29). 253 

 254 

Figure 3 Correlations of regional brain volume (GMV) calculated intra-individually (A) and inter-255 

individually (B), and averaged correlations of resting-state time series (C) across 114 regions o interests 256 

(ROIs). D and E show the Spearman’s correlations (r) between the resting-state time series correlation 257 

matrix and GMV correlation matrices, respectively. 258 
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 259 

 We next calculated correlations of glucose metabolic activity intra-individually and inter-260 

individually, and correlated the correlation matrices with resting-state time series correlation (Figure 4). 261 

The correlations matrices of glucose metabolic activity showed more obvious functional network 262 

structures than those in structural correlations. And most importantly, the both correlation matrices 263 

showed strong correlations with resting-state time series correlation (ρintra = 0.71; ρinter = 0.64).  264 

 265 

Figure 4 Correlations of regional brain glucose metabolism measured using positron emission 266 

tomography (PET) calculated intra-individually (A) and inter-individually (B), and averaged correlations 267 

of resting-state time series (C) across. D and E show the Spearman’s correlations (r) between the resting-268 

state time series correlation matrix with the two PET correlation matrices, respectiveely. 269 

 270 

3.3. Relationships among all the matrices 271 

Finally, we calculated the correlations among the correlation matrices (Figure 5A). Due to the large 272 

number of ROI pairs, all correlations were statistically significant. However, it is more meaningful to 273 

focus on the relative effects of these correlations rather than their statistical significance. Here, we 274 

emphasize the correlations between the matrices of the two datasets, where the highest correlations were 275 

observed between corresponding modalities (highlighted blue rectangle and diamond markers). For 276 
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instance, the strongest correlation with the mean time-series correlations in the Simon dataset was found 277 

with the time-series correlations in the ADNI dataset (ρ = 0.67). Similarly, the highest correlation with 278 

GMV correlations in the Simon dataset occurred with intra-individual GMV correlations in the ADNI 279 

dataset (ρ = 0.46), rather than inter-individual correlations. Notably, the highest correlation with ReHo 280 

correlations in the Simon dataset was observed with inter-individual PET correlations in the ADNI dataset 281 

(ρ = 0.51). 282 

 283 

Figure 5 A. Spearman’s correlation matrix among the correlation matrices. The blue rectangle and 284 

diamond markers highlight the effects of interest. B. The first principal component of the correlation 285 

matrices. C. Loadings of the correlation matrices on the first and second principal components. ADNI, 286 

Alzheimer's Disease Neuroimaging Initiative; GMV, gray matter volume; PET, positron emission 287 

tomography; ROI region of interest.  288 

 289 

 We then conducted a PCA on the eight correlation matrices, with the first principal component 290 

(PC) accounting for 59.0% of the variance (Figure 5B). Next, we visualized the loadings of the eight 291 

matrices on the first two PCs (Figure 5C). The matrices formed distinct clusters in the plot. For instance, 292 

the GMV correlation matrices were located at the bottom, while the time-series and PET correlation 293 

matrices clustered in the top-left corner. 294 

 295 

4. Discussion 296 
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Using two unique datasets encompassing both intra- and inter-individual effects, the current analysis 297 

demonstrated how these effects contribute to correlation structures across brain regions. First, long-term 298 

structural brain changes revealed correlation patterns that were small but significantly associated with 299 

resting-state time-series correlations. Second, long-term functional activity, as measured by ReHo or 300 

glucose metabolism, exhibited stronger correlation structures and greater alignment with resting-state 301 

time-series correlations compared to structural measures. Finally, correlation matrices from the two 302 

datasets showed greater similarity within the same modality than between different modalities, suggesting 303 

that each modality provides distinct insights into interregional relationships. 304 

 This study analyzed a unique dataset from a single individual scanned over 16 years, revealing 305 

that intra-individual structural correlations were modestly associated with resting-state connectivity (𝜌 = 306 

0.29), the lowest correlation observed among the analyses. This finding suggests that structural brain 307 

development and aging within an individual are partially constrained by the brain's functional 308 

organization. These results were further validated using the ADNI dataset, which, despite fewer 309 

longitudinal data points, showed a stronger correlation between intra-individual structural correlations 310 

and resting-state connectivity (𝜌 = 0.41). To our knowledge, this is the first study to demonstrate 311 

structural correlations within an individual, underscoring the influence of age as a single factor shaping 312 

these correlations. 313 

 Notably, inter-individual structural correlations, when controlling for chronological age, showed 314 

a similar association with resting-state connectivity (𝜌 = 0.37), indicating that individual differences 315 

contribute comparably. The variability that give rise to the inter-individual correlation may be related to 316 

genetics, life experience, and plasticity (Alexander-Bloch et al., 2013a; Evans, 2013). In previous studies 317 

of structural “covariance”, these factors could not be distinguished from development and aging effects. 318 

In fact, the current findings suggest that multiple factors could give rise to the correlation structure. This 319 

is also in line with studies showing that the structural “covariance” were modulated by factors such as age 320 
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(Vijayakumar et al., 2021). To enhance interpretability, researchers should consider restricting or 321 

controlling for such factors in their analyses. 322 

 To the best of our knowledge, this study is the first to demonstrate intra-individual correlations in 323 

long-term brain activity using either ReHo or FDG-PET measures. Notably, the correlations of ReHo and 324 

metabolic activity were generally higher than those of regional brain volumes. This suggests that 325 

summary measures of brain function may capture state-dependent activity, such as mood, thoughts, or 326 

other transient mental states during scanning (Di et al., 2024b). The data revealed that even within a 327 

single individual, long-term correlations showed strong similarity with resting-state connectivity (𝜌 = 328 

0.39).   329 

 However, it is important to note that neural activity measured across different temporal scales 330 

may not reflect identical processes. Thus, it remains unclear whether correlation structures derived from 331 

distinct temporal scales are directly comparable. Prior studies on fMRI time series have shown that 332 

connectivity structures within a single scanning session can vary depending on the frequency bands 333 

analyzed (Gohel and Biswal, 2015; Kajimura et al., 2023; Yuen et al., 2019). Future research could 334 

explore the comparison of correlation structures between slow and fast neural activity patterns to better 335 

understand their relationship.  336 

 Compared to earlier studies, the current research reports slightly higher correlations with resting-337 

state connectivity. This improvement may stem from larger sample sizes, averaging data across multiple 338 

sessions, or advancements in the preprocessing pipeline. These findings imply that the smaller 339 

correlations observed in previous studies might partially result from noise, and that improvements in data 340 

acquisition and processing can enhance the observed similarities. Nonetheless, the analysis also highlights 341 

that each modality makes a unique contribution to the correlation structure, indicating an inherent limit to 342 

the similarities that can be achieved between different modalities. 343 

 This analysis validates the use of structural and functional brain measures to investigate 344 

interregional relationships, often referred to as functional connectivity when using functional data. Given 345 

the complex factors influencing these measures, controlling for certain variables can enhance the 346 
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interpretability of correlation results. Our findings demonstrated that intra-individual correlations, which 347 

account for individual differences, tend to exhibit stronger associations with resting-state functional 348 

connectivity compared to inter-individual correlations, supporting the value of such controls. However, it 349 

is important to note that multiple measures from the same individual are not always available, and in 350 

some cases, inter-individual correlations may be the only feasible approach. 351 

 352 

5. Conclusion 353 

The current results to some extent validated the usage of inter-individual correlations as an estimate of 354 

brain connectivity. The results also highlighted that multiple factors could contribute to the correlation 355 

structure. Those factors may need to control or taken care of to boost interpretability of the results.  356 

 357 
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