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ARTICLE INFO ABSTRACT

Am'd_e History: Background: Schizophrenia (SCZ) is a severe psychiatric disorder that affects approximately 0.75% of the
Received 6 May 2021 global population. Both genetic and environmental factors contribute to development of SCZ. SCZ tends to
Revised 5 September 2021 run in family while both genetic and environmental factor contribute to its etiology. Much evidence sug-
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. ) gested that alterations in DNA methylations occurred in SCZ patients.
Available online xxx

Methods: To investigate potential inheritable pattern of DNA methylation in SCZ family, we performed a
genome-wide analysis of DNA methylation of peripheral blood samples from 106 Chinese SCZ family trios.

ls(si:zgfr'ema Genome-wide DNA methylations were quantified by Agilent 1 x 244 k Human Methylation Microarray.

DNA Methylation Findings: In this study, we proposed a loci inheritance frequency model that allows characterization of differ-
Trios ential methylated regions as SCZ biomarkers. Based on this model, 112 hypermethylated and 125 hypome-
Chinese thylated regions were identified. Additionally, 121 hypermethylated and 139 hypomethylated genes were

annotated. The results of functional enrichment analysis indicated that multiple differentially methylated
genes (DMGs) involved in Notch/HH/Wnt signaling, MAPK signaling, GPCR signaling, immune response sig-
naling. Notably, a number of hypomethylated genes were significantly enriched in cerebral cortex and func-

tionally enriched in nervous system development.

Interpretation: Our findings not only validated previously discovered risk genes of SCZ but also identified
novel candidate DMGs in SCZ. These results may further the understanding of altered DNA methylations in

SCZ.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Schizophrenia (SCZ) is a common psychiatric disorder affecting
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approximately 0.75% of the worldwide population and often results
in lifelong mental disability [1]. SCZ frequently ran in families and its
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Research in context

Evidence before this study

Epigenetic dysregulation of the genome can lead to chronic
alterations of neurodevelopment, synaptic architecture, and
cellular signaling. Therefore, epigenetic dysregulation increases
the risk of psychotic disorders. It has been noticed that SCZ fre-
quently ran in families with high heritability. In addition,
abnormal DNA methylations have been detected in SCZ
patients. However, few reports of genome-wide DNA methyla-
tion pattern in SCZ trios have been reported.

Added value of this study

Based on current understanding of DNA methylation, we pro-
posed a novel quantitative method to identify altered DNA
methylation regions that are associated with SCZ in large family
trio samples, which provided new idea for epigenetic analysis
in family-based linkage study. Moreover, this study provided a
series of candidate epigenetic markers of SCZ based on informa-
tion of families of SCZ patients.

Implications of all the available evidence

Our findings demonstrated that familial environment contrib-
uted to global DNA methylation pattern. Some identified hypo-
methylation sites in blood appear to contribute more to SCZ
status. Most of our identified epigenetic variations were not
genetic in origin. Therefore, we provided new evidence of the
important role of DNA methylation in the inheritance and path-
ogenesis of SCZ.

variants (CNVs), rare and de novo mutations [3—9]. However, the
pathogenesis of SCZ could not be well defined based on existing find-
ings yet. Despite multiple genetic variants have been reported, recent
epigenetic analyses of SCZ are providing new insights into our under-
standing of the complex associations between epidemiological heri-
tability and the phenotypic variation [10,11].

Epigenetic dysregulation of the genome has been shown to lead to
chronic alterations of neurodevelopment, synaptic architecture, and
cellular signaling. Therefore, specific epigenetic dysregulation may
increase the risk of psychotic disorders [12—15]. In particular, abnor-
malities in DNA methylation have been detected in the brains of SCZ
and bipolar disorder patients. The involvement of alternations in
DNA methylation in disease pathophysiology may explain the clinical
dynamics observed in these diseases [16,17]. Genome-wide DNA
methylation analysis studies using blood and postmortem brain tis-
sues have revealed multiple differentially methylated regions
(DMRs) in SCZ patients [14,16,18—22]. Though only a small propor-
tion of identified aberrant DNA methylations in SCZ were in common
in these studies, these results still demonstrated that altered DNA
methylation occurred in SCZ patients and may serve as candidate bio-
marker of SCZ.

Omics analysis of SCZ had been widely performed in sporadic
cohorts. Compared with case-control design, trios design has several
advantages. For example, trio design can be used to identify variants
inherited from the parents, detect rare risk variants, avoid population
heterogeneity [23]. In 2018, a family-based study reported that
inheritance of a translocation linked to major mental illness is associ-
ated with differential DNA methylations in a large family [24].
Recently an exome-sequencing study using more than 2000 SCZ trios
has identified protein-coding de novo mutations that carried risk of
SCZ [25]. However, few DNA methylation analysis in large SCZ trios
has been reported.

In this study, we performed a genome wide DNA methylation
analysis in 106 SCZ family trios. Genome-wide DNA methylation was
profiled on peripheral blood using Agilent 1 x 244 K Methylation
microarray with correction for cell type heterogeneity or age-associ-
ated loci. We developed a novel scoring model that was able to esti-
mate the loci inheritance frequencies (LIF) in order to rank the DMRs,
which may serve as SCZ biomarkers. We expect this study to provide
an advance workflow for future family-based analysis of DNA meth-
ylation in SCZ trios as well as novel insights into the role of DNA
methylations in inheritance and etiology of SCZ.

2. Methods
2.1. Samples

In this study, a total of 200 Chinese Han SCZ family trios (600 par-
ticipants) were recruited from Shanghai Mental Health Center. SCZ
was diagnosed according to DSM (Diagnostic and Statistical Manual
of Mental Disorders)-IV criteria by two independent psychiatrists.
This study was approved by the Ethical Committee of Bio-X Institutes
of Shanghai Jiao Tong University. All subjects gave informed consent
for their participation. After quality control of microarray-based
methylation analysis, 106 trios were eventually included in further
analysis.

2.2. DNA methylation detection

Sample genomic DNAs (gDNAs) were extracted from the periph-
eral blood of the subjects using QIAmp DNA Blood Kits (Qiagen, USA).
Then methylated DNA immunoprecipitation and differentially meth-
ylation region (DMR) screening was performed using Agilent
1 x 244 K DNA methylation Microarray (Agilent, USA) according to
the manufacturer’s instructions. Images of the slides were acquired
using Agilent SureScan Microarray Scanner G2505C and transformed
to digital features using Agilent Feature Extraction program (version
10.7.1.1). The feature data were analyzed using Agilent Genomic-
WorkBench (version 7.0) for quality control and DMR calling. Based
on BATMAN algorithm [26], the methylation status of all probes in
each samples was calculated and shown with three categorized
score: “1” (high, DNA methylation > 60%), “0” (moderate, DNA meth-
ylation 40 ~ 60%) and “-1” (low, DNA methylation < 40%) [26]. Probes
associated with cellular specificity or aging [27,28] and probes
located on sex chromosomes were excluded.

2.3. Loci inheritance frequency (LIF) model designing

2.3.1. Exclusion of the probes based on their combinations among family
trios

Among 106 trios enrolled, 86 trios consisted of normal parents, 19
trios consisted of only one affected parent and 1 trio consisted of
both affected parents. First, we defined the status of a probe within a
family as a combination. For example, for a probe within a family, the
status of father, mother and child was high [1], moderate (0), low (-1)
respectively and thus the combination of the probe in this family was
“10-1". The distribution of combinations of all probes within all fami-
lies was summarized (Fig. S1).

As shown in Fig. S1, most combinations were made up of high and
low status (approximately more than 80%), while the combinations
containing moderate status accounted for less than 20% proportion.
The technique we used to scan methylation level was based on meth-
ylated DNA immunoprecipitation coupled with CpG island microar-
ray (MeDIP-CGl-arrays) platform. As Rajendram et al. described,
MeDIP-CGI array were less reliable in predicting intermediate (mod-
erate) levels of DNA methylation [29]. Hence all the combinations
containing moderate status were excluded for further study.
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2.3.2. Calculation of the frequencies of the probes fitting the inheritance
mode

After excluding moderate methylations, our LIF model hypothe-
sized that methylation levels of sites associated with schizophrenia
took place a wide-range alteration (> 20% at least) compared to nor-
mal status. For each probe, we assumed a status (hypermethylation
or hypomethylation) as a phenotype of schizophrenia. Then we calcu-
lated the frequencies of each status of a probe fitting the familial
inheritance mode among all family trios except the only one family
consisting of both SCZ parents (Fig. S2). The reason why we excluded
the family with both SCZ parents were that the combinations of this
model would be confounded with the high distribution of “111” and
“-1-1-1" combinations.

2.3.3. Identifying high-confident loci

The frequencies of two status of each probe fitting the model were
sorted from high to low respectively. And the more one was defined
as major type and another one as minor type. The condition that the
both were zero was excluded. For major type, top 12.5% loci of high
frequencies were extracted as a threshold. And then those of the loci
fitting the equation that“Major/Minor > = 3” were extracted. This
threshold was determined based on the distribution of the most con-
fident epialleles (Top 100) among all the C/I ratio. As Fig. S3 showed
that the distribution of all C/I (conformity/ inconformity) value.

2.3.4. Bioinformatics annotations

We used Venny (https://bioinfogp.cnb.csic.es/tools/venny/, ver-
sion 2.1) to draw gene venn diagram [30]. We used Cytoscape soft-
ware with the package “cytohubba” by Maximal Clique Centrality
(MCC) algorithm for calculating top 10 hub to construct hub gene
network [31]. STRING database was used to conduct gene ontology
(GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis and protein-protein interaction network [32,33].
We used Cis-regulatory Element Annotation System (CEAS) on Cis-
trome platform (http://cistrome.org/) for enrichment on chromo-
some and annotation [34,35]. We used Reactome platform (https://
reactome.org/) for pathway analysis [36]. We used SZDB database
(http://[www.szdb.org/) for result evaluation [37,38]. Human protein
atlas database [39] and TissueEnrich tools [40] were used to make a
tissue-specific gene enrichment of our gene sets (https://tissueen-
rich.gdcb.iastate.edu/). All the analyses mentioned above were using
default parameters. SNPs within identified sites were extracted by
UCSC genome browser based on Hg19 common151SNP database
(https://genome-asia.ucsc.edu/index.html). Bedtools was used to pre-
process datasets for DNA methylation quantitative trait locus (mQTL)
enrichment analysis. For the further study, 25 bps were added to
each side of each loci. Two mQTL datasets from brain tissue [13] and
whole blood [19] respectively was used to estimate their overlapping
with identified loci in this study. R package “hlclust” was used for
hierarchical clustering. Transcription factor motif enrichment analy-
ses were performed using the MEME suite’s AWE software (https://
meme-suite.org/meme/index.html). All probes excluded age-associ-
ated and cell-type specific sites were set as control sequences. The
following command was used: ame —verbose 1 —oc . —scoring avg
—method fisher —hit-lo-fraction 0.25 —evalue-report-threshold 10.0
—control —shuffle— —kmer 2 hyper_site_bed_25bp.fasta db/HUMAN/
HOCOMOCOv11_core_HUMAN_mono_meme_format.meme

2.3.5. Statistics

As shown in Fig. S2, C/I ratio = Max(Hypermethylation(Frequency
(A) + Frequency(B) + Frequency(C)), Hypomethylation(Frequency
(A) + Frequency(B) + Frequency(C))) = Min(Hypermethylation(Fre-
quency(A) + Frequency(B) + Frequency(C)), Hypomethylation(Fre-
quency (A) + Frequency(B) + Frequency(C))). Statistical analysis of
two parameters was performed using either a two-tailed, unpaired t

test, or two-tailed, unpaired Mann-Whitney test based on data distri-
bution.

2.3.6. Role of funding source
The funders of this study had no role in study design, data collec-
tion, data analyses, interpretation, or writing of the report.

3. Results
3.1. Data evaluation of all samples

Quality control was performed by filtering the result of microar-
ray-based DNA methylation analysis according to Agilent microarray
pipeline. After data preprocessing, a dataset of 106 trios was merged
to perform further analyses. Each sample had 252,698 values of
probes. Most of the probes were located on CpG islands of human
genome. Each probe covered 50 bp genome region.

To determine the distributional characteristics of familial DNA
methylation data, hierarchical clustering was performed using all
106 families. In addition, the average arithmetic euclidean distances
between samples were measured. Interestingly, the family members
tended to be clustered together (Part in Fig. 1A, all picture in Fig. S7).
The overall average distance between spouses or parent-offspring
couple was much lower than that across all samples (pvalue < 2.2 e-
16, Fig. 1B). These results suggested that familial factors affected indi-
vidual DNA methylation pattern significantly and it provided rela-
tively similar epigenetic background within a family, which might be
caused by similar life style.

Among all 106 families, 101 of them had detailed epidemiological
data while the rest 5 families with only their family roles and disease
status. The summarized epidemiological information of affected-chil-
dren in the 101 families was presented in Fig. 1C. Among all trios, 86
trios consisted of normal spouses, 19 families consisted of one
affected parent and 1 trio consisted of both affected parents.

3.2. Identification of SCZ-related DMRs

We developed a loci inheritance frequency (LIF) model to identify
the top ranked probes that are related with SCZ (Methods). After
excluding 51,295 probes associated with cellular specificity or with
aging or conserved or located on sex chromosomes, we identified
112 high methylated and 125 low methylated regions using our
model with the following criteria: C/I ratio > 3 (Table S1). The hyper-
methylated regions had no overlap with the hypomethylated regions.
The genomic distributions of DMRs from LIF model were presented in
Fig. 2 based on reference genome Hg19 [41]. Obviously, most differ-
entially methylated regions (DMRs) located at genes nearby, includ-
ing proximal promoter (< = 1000 bp), 5’'UTR, coding exons, introns
and distal intergenic.

In addition, we checked if the regions of identified DMRs contain
single nucleotide polymorphisms (SNPs). As a result, 21 SNPs were
located within the hypermethylated regions and 25 SNPs were
located within the hypomethylated regions (Table S6). The result
demonstrated that a majority of identified DMRs were SNP-free
regions.

3.3. Comprehensive analysis of DMR-related genes

We annotated the DMRs within 5 k bp of the probe based on hg19
reference genome [41]. 121 hypermethylated (High) and 139 hypo-
methylated (Low) genes were derived from the annotation of top
DMRs (Table S2).

In order to obtain a comprehensive annotation of these genes, we
first used Human protein atlas database [39] and TissueEnrich tools
[40] to make a tissue-specific gene enrichment of our gene sets
(Fig. 3). Hypermethylated genes consisted of 12 tissue specific genes
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Fig. 1. Distribution of methylation data among all samples. A. Unsupervised hierarchical cluster of methylation data among 106 family trios (Part). B. Average euclidean distance
between samples. The distance was calculated by R function dist() as default parameters. C. Information of the offsprings among 101 family trios.

(TSG) in cerebral cortex but showed no significant enrichment
(Fig. 3A and B). Hypomethylated genes were significantly enriched in
cerebral cortex (23 TSGs, -log10 p-adjusted = 2.06, Fold change = 2.21),
Fig. 3C and D) and the second top enriched tissue was placenta (6
TSGs, -log10 p-adjusted = 0.15, Fold change = 2.39, Fig. 3C).
Moreover, GO, KEGG and Reactome pathway and protein-protein
interaction (PPI) analyses were conducted [36]. GO annotations

A B
Randomized 100K probes

152%
\

18.0% 195%

- 25%
12%
14 %

= i9%

~87% 5
20.5% ~ 33.9%

N25%

)
151 %

112 High methylated regions

showed significant enrichment within hypomethylated genes
(Table 1, S7), while no significant enrichment within hypermethy-
lated genes. Top 5 enriched pathways of hypermethylated/hypome-
thylated gene sets from Reactome pathway analysis (Entities p
value < 0.05, Tables S3—S4) were summarized in Table 1. Overall,
there was Notch/HH/Wnt, GPCR, immune response signaling-related
enrichments in hypomethylated group and MAPK, GPCR signaling-

C
125 Low methylated regions
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Fig. 2. Genomic distributions of identified DMRs. A. Annotation of randomized 100,000 probes to show the overall distribution of all chromosomes. B. Annotation of identified high
methylated regions. C. Annotation of identified low methylated regions.
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Fig. 3. Tissue-specific gene enrichment analysis. A. Tissue-specific gene enrichment of hypermethylated genes in 35 tissues. B. Hypermethylated tissue specific genes in cerebral
cortex. C. Tissue-specific gene enrichment of hypomethylated genes in 35 tissues. D. Hypomethylated tissue specific genes in cerebral cortex.

related enrichment in hypermethylated group. Moreover, hypome-
thylated genes showed a significant enrichment in nervous system
development. All these pathways such as nervous development, sig-
naling transduction, immune response had been reported to involve
with pathogenesis of schizophrenia.

We constructed protein-protein interaction (PPI) network of
annotated genes within 5 k bp of DMRs in hypermethylated and
hypomethylated group (Figs S4-6). Hub gene networks were
extracted from the PPI networks (Fig. 4A—C). Only hypomethylated
genes showed significant PPl pathway enrichments (p < 0.05). When
Genecards database was used to annotate gene-related diseases, [42]
hub gene network of hypomethylated group has two major catego-
ries: neurogenesis diseases and immune diseases. The result indi-
cated that hypomethylation of specific sites could be a phenotype of
schizophrenia.

3.4. Estimation of genetic influences on DNA methylation

It was clear that differential methylation can occur in a site-spe-
cific way [43]. To investigate potential transcriptional factor (TF)
binding motif among identified regions, transcription factor motif
enrichment analyses were performed using the MEME suite’s AWE
software. All significant enriched results were shown in Fig. 5A and B.
As we expected, some identified motifs in hypermethylated regions
recognized GC-rich sequences. For example, SPI1 binds to a purine-
rich sequence, Sp1, Sp3, and Sp3 binds to GC-rich motifs. However,
the hypomethylated regions lacked this kind of motif.

To investigate the influence of genetics on the identified methyla-
tion loci, we first calculated intersections of the identified loci with
two published mQTL dataset derived from brain tissue and whole
blood, respectively [13,19]. The results showed, that identified hyper-
methylated sites had 3 overlaps with brain mQTLs and 4 with blood
mQTLs and the hypomethylated sites had 10 overlaps with brain

mQTLs and 8 with blood mQTLs (Table S5). Overlapped regions were
annotated and corresponding gene were enriched in ERBB-related
pathway (Fig. 5C). Totally, approximate 10% identified regions over-
lapped with published mQTL regions.

In sum, these results suggested that most of our identified epige-
netic variations were not genetic in origin.

4. Discussion

In this study, we performed methylome-wide analysis of DNA
methylation in SCZ family trios with Han Chinese ethnic origins.
Through methylated DNA immunoprecipitation (MeDIP) method, we
got semi-quantitative methylated status of each regions. Then we
proposed an original scoring model to rank SCZ-related DMRs. Our
results not only found some reported DMRs in SCZ, but also provided
a set of potential SCZ risk genes with altered DNA methylation for
further studying.

As far as we know, tools or algorithms taking account the inheri-
tance of DNA methylation were lacking for family-based DNA meth-
ylation analysis. The most popular genetic analysis of family-based
data is transmission disequilibrium test (TDT) [44]. However, there
was not a considerable TDT-like method for epigenetics data because
inheritance pattern of epigenetic modification was quite different
from that of genetic variations. Considering the binomial and reprog-
ramming pattern of DNA methylation, we established the loci inheri-
tance frequency (LIF) model to rank potential SCZ related DMRs by
their C/I ratio among trios. For this model, we assumed (a) some DNA
methylation status could be inheritable across generations, (b) DNA
methylation could be a biomarker of SCZ, (c) DMRs has a light or
moderate but cumulative effect on disease status. In this study, the
factor of family disease history was excluded from the LIF model.

It has been found that heritability of DNA methylation elevated at
sites which are more variable or with intermediate levels of DNA
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Table 1
Functional enrichment of DMR genes.

Hypermethylated genes

Hypomethylated genes

BP(GO) NA

MF(GO) NA

CC(GO) NA

Local NA
Network Cluster(STRING)

Top 5(Reactome) Constitutive Signaling

by Overexpressed ERBB2

GRB2 events in ERBB2 signaling

TFAP2 (AP-2) family regulates

transcription of growth factors

and their receptors

Signaling by ERBB2 ECD mutants

Transcriptional regulation by
the AP-2 (TFAP2) family
of transcription factors

Homophilic cell adhesion via
plasma membrane adhesion molecules
Cell-cell adhesion via
plasma-membrane adhesion molecules
Cell adhesion
Nervous system development
Cell-cell signaling
Calcium ion binding
Cation binding
Metal ion binding
lon binding
Integral component of plasma membrane
Plasma membrane
Membrane
Calcium/calmodulin-dependent protein kinase II inhibitor
and Cadherin, C-terminal catenin-binding domain
Cadherin-like, and N-terminal region of Chorein or VPS13
mixed, incl. Cadherin cytoplasmic C-terminal,
and SHC-transforming protein 4
mixed, incl. Cadherin-like,
and Transmembrane protein 132
integrator complex
FBXW?7 Mutants and NOTCH1 in Cancer

Loss of Function of FBXW7
in Cancer and NOTCH1 Signaling
RET signaling

Rap1 signaling
Opioid Signaling

methylation [43]. The term ‘variable site’ means those where the
range of DNA methylation values for the middle 80% of individuals
was greater than 5% or with intermediate levels of DNA methylation
(i.e. those where the mean level of DNA methylation was between
20% and 80%). These sites were of great value for their study of associ-
ations between DNA methylation and diseases. However, due to the
different technique platform (MeDIP-CGl-array vs BS-whole_ge-
nome-array), sites with intermediate levels of DNA methylation were
excluded in our analysis. As Rageen Rajendram et al. described,
MeDIP-CGI array were less reliable in predicting intermediate (mod-
erate) levels of DNA methylation [29]. In another word, our study
focused on those ‘non-variable sites’ (i.e. those hyper/hypo-methyl-
ated sites). These regions might be more conserved and most identi-
fied sites in our study seemed to be independent of known tagging
genetic variations. In future studies a comprehensive screening
including all kinds of epigenetic variations would be necessary.

A

Among genes with high C/I scores, we found that many of them
had been reported to be involved with SCZ. For example, previous
studies suggested that NRGI1-ERBB signaling was involved in the
pathogenesis of SCZ [45,46] and inhibition of ERBB2 could block
NRG1-stimulate cell adhesion [47]. ERBB2 also showed peripheral
transcription deregulation in treatment resistant SCZ [48]. ERBB2 was
a hypermethylated SCZ risk gene in our LIF model. Our result sup-
ported deregulation of ERBB2 in SCZ. In additional, FBXW7 was a
hypomethylated hub gene in our LIF model. FBXW7 tags the DISC1
protein for destruction via the ubiquitin-proteosome system. The dis-
ruption of FBXW7-DISC1 interaction could stabilize DISC1 protein
and counteract DISC1 deficiencies observed in neural progenitor cells
derived from induced pluripotent stem cells from SCZ patients with a
DISC1 frameshift mutation [49]. Also the expression of CDC42EP3, a
hypomethylated gene, was reported to be significantly increased in
subjects with SCZ [50]. These lines of evidence supported that

aoncls )

G

Fig. 4. Protein-protein interaction network of annotated genes. A. Hub gene network of all genes. B. Hub gene network of hypermethylated genes. C. Hub gene network of hypome-
thylated genes. Each node indicates a gene and each edge denotes an interaction between a pair of genes.
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Fig. 5. Estimation of genetic influences on DNA methylation. A. Transcription factor motif enrichment analysis of hypermethylated regions (+-25bp). B. Transcription factor motif
enrichment analysis of hypomethylated regions (+-25bp). C. Protein-protein interaction network of overlapped mQTL genes. 6 genes were enriched in ERBB-related pathway

(ADCY9, CXCL12, ERBB2, PGAP3, ITPKB, PPP1CC).

upregulations of FBXW7 and CDC42EP3 were associated with the
pathogenesis of SCZ.

Interestingly, only the hypomethylated genes could be signifi-
cantly enriched into specific pathways or functions, which indicated
an inner connection of these genes. Hub gene-related diseases of
hypomethylated group could be divided into two major categories:
neurogenesis diseases and immune diseases. This result might con-
tribute to the explanation of SCZ pathogenesis or phenotypes of SCZ
patients. Compared with 2 epigenome wide association study of large
SCZ cohort published previously [16,22], we replicated the findings of
several genes including NFATC1, AGAP1, RAP1GAP2, FOXP1. It is neces-
sary to validate our findings in further studies.

In this study, the limitation of sample size was the main
obstacle for statistical analysis. The LIF model was calculated
based the inheritance frequencies in all families and thus its con-
fidence should increase with larger sample size. However, we
currently do not have enough samples to be used as validation
cohort to conduct a validation of the epialleles identified. It is
extremely challenging to recruit more qualified patient family
samples. We have also searched public databases for any methyl-
ation profile data of schizophrenia trios. However, this data type
is so rare that we did not find any cohort data from earlier stud-
ies that can be used to validate our results. We hope more DNA
methylation data of SCZ trios to be published in the future, which
could help to validate our findings. Another limitation was
whether the DMRs we identified could account for the pathogen-
esis or the phenotype of SCZ. Accroding to the results, we
thought the results might represent the mixture of both. To vali-
date this assumption, more functional experiments were needed.
The third limitation is that family-based linkage study for DNA
methylation analysis could not reduce the noise caused by vari-
ous environmental factors such as smoking, drug and many other.
However, an advantage of family-based study for DNA methyla-
tion analysis was that it provided relatively similar epigenetic
background within a family, which could reduce the noise caused
by life style for detecting disease risk loci.

In summary, we performed a genome wide DNA methylation
analysis using 106 SCZ family trios in this study. We successfully
develop a novel method to identify the altered DNA methylation

regions associated with SCZ. We not only validated previously
characterized risk genes of SCZ, but also identified a number of
candidate genes that are involved in the altered methylation in
SCZ. Our findings provided new evidence of the role of DNA
methylation in the inheritance and pathogenesis of SCZ.

Supplementary material

Fig. S1. The distribution of combinations of all probes within fami-
lies. A. The distribution of combinations of all probes within 86 fami-
lies consisted of normal parents. B. The distribution of combinations
of all probes within the families consisted of an affected father. C. The
distribution of combinations of all probes within the families con-
sisted of an affected mother.

Fig. S2. The combination of probes fitting the disease inheritance
mode among all families. C/I ratio = Max(Hypermethylation(Fre-
quency(A) + Frequency(B) + Frequency(C)), Hypomethylation(Fre-
quency(A) + Frequency(B) + Frequency(C))) + Min(Hypermethylation
(Frequency(A) + Frequency(B) + Frequency(C)), Hypomethylation
(Frequency (A) + Frequency(B) + Frequency(C))).

Fig. S3. Distribution of C/I ratio value of all probes among the fit-
ting model A—C. Frequencies of C/I ratio value among trios consisting
of both normal parents (A), affected father (B) and affected mother
(C) were shown, respectively.

Fig. S4. PPI network of all identified genes.

Fig. S5. PPI network of all hypermethylated genes.

Fig. S6. PPI network of all hypomethylated genes.

Fig. S7. Unsupervised hierarchical cluster of methylation data
among 106 family trios

Table S1. Detail information of identified regions associated with
schizophrenia.

Table S2. Genomic annotation of identified regions.

Table S3. Reactome pathway analysis of hypermethylated genes.

Table S4. Reactome pathway analysis of hypomethylated genes.

Table S5. The overlapping between identified regions with
reported mQTLs (+-50 bp).

Table S6. SNPs located in identified regions.

Table S7. STRING enrichment of identified genes.
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