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The secretome of endothelial progenitor cells: 
a potential therapeutic strategy for ischemic stroke  
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Abstract  
Ischemic stroke continues to be a leading cause of mortality and morbidity in the world. 
Despite recent advances in the field of stroke medicine, thrombolysis with recombinant 
tissue plasminogen activator remains as the only pharmacological therapy for stroke 
patients. However, due to short therapeutic window (4.5 hours of stroke onset) and 
increased risk of hemorrhage beyond this point, each year globally less than 1% of stroke 
patients receive this therapy which necessitate the discovery of safe and efficacious 
therapeutics that can be used beyond the acute phase of stroke. Accumulating evidence 
indicates that endothelial progenitor cells (EPCs), equipped with an inherent capacity to 
migrate, proliferate and differentiate, may be one such therapeutics. However, the limited 
availability of EPCs in peripheral blood and early senescence of few isolated cells in culture 
conditions adversely affect their application as effective therapeutics. Given that much 
of the EPC-mediated reparative effects on neurovasculature is realized by a wide range 
of biologically active substances released by these cells, it is possible that EPC-secretome 
may serve as an important therapeutic after an ischemic stroke. In light of this assumption, 
this review paper firstly discusses the main constituents of EPC-secretome that may exert 
the beneficial effects of EPCs on neurovasculature, and then reviews the currently scant 
literature that focuses on its therapeutic capacity.
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Introduction 
According to the World Health Organization, each year 
about 15 million people suffer a first stroke in the world. 
Sadly, while one-third of these patients die, another one-
third live with long-term disabilities inflicted by this condition 
(Ma et al., 2015). Hence, stroke continues to be one of the 
major causes of mortality and morbidity worldwide (Hisham 
and Bayraktutan, 2013; Liao et al., 2017). Ischemic strokes, 
stemming from an interruption of blood flow to the brain, 
make up about 80–85% of all strokes. Despite being the main 
cause of human cerebral damage, systemic thrombolysis with 
recombinant tissue plasminogen activator or endovascular 
treatment remain the only therapeutic options for this disease 
(Allen and Bayraktutan, 2009; Reis et al., 2017). However, 
due to short therapeutic window and stringent eligibility 
criteria, each year less than 1% of stroke patients worldwide 
receive either therapy (Hacke et al., 2008; Bayraktutan, 2019). 
This necessitates the discovery of novel therapeutic agents 
that can be safely and effectively used beyond the acute (or 
hyperacute) phase of ischemic stroke. Although over the 
years many agents targeting various mechanisms associated 
with ischemic stroke, such as excitotoxicity or oxidative 
stress, have generated favorable results in experimental 
settings, subsequent clinical trials have failed to replicate 
these favorable outcomes. As depicted in Figure 1, complexity 
of human neurovascular unit (NVU), a dynamic structure 
formed by direct contact, signaling and interactions amongst 
microglia, astrocytes, neurons and endothelial cells, has been 
proposed to explain this apparent dichotomy (Serlin et al., 

2015). Blood-brain barrier (BBB) makes up a critical part of 
this unit and is composed of brain microvascular endothelial 
cells (BMECs), capillary basement membrane (BM), pericytes 
embedded in the BM and astrocyte end-feet enclosing the 
blood vessels (Ballabh et al., 2004; Zehendner et al., 2009). 
Although its structural and functional integrity are critical in 
maintaining cerebrovascular homeostasis, the BBB is also an 
important obstacle for the delivery of so-called efficacious 
therapeutics. The BMECs cover the entire luminal part of all 
brain capillaries and constitute the main cellular component 
of the BBB. They differ from the endothelial cells of other 
organs in that they are joined together with tight junction 
proteins, lack fenestrae, have low number of intracellular 
mitochondria and possess specific transport systems that 
actively carry the nutrients from blood to the brain (Petty 
and Lo, 2002; Weiss et al., 2009). Tight junctions limit passive 
molecular diffusion through the BBB by forcing molecular 
traffic away from paracellular routes to transcellular routes 
(Wolburg and Lippoldt, 2002; Nag, 2003; Abbott et al., 2006). 
The BM surrounds the BMECs, accommodates pericytes, 
makes connections with astrocyte end-feet and appears to 
play a role in tight junction formation (Carvey et al., 2009). 
The pericytes enclose the blood vessel wall, make direct 
contact with the BMECs, facilitate angiogenesis and play a role 
in preserving microvascular stability (Zhao et al., 2015). The 
astrocyte end-feet enclose the outer side of the blood vessels, 
help maintain the integrity and function of the BBB and block 
the differentiation of pericytes from resting to a contractile 
stage (Yao et al., 2014). 
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Sudden decreases in cerebral blood flow during an ischemic 
stroke may perturb NVU structural integrity and impair 
overall cerebral function through involvement of a series of 
mechanisms including depleted generation of adenosine 
triphosphate, excitotoxicity, oxidative stress and inflammation 
(Lipton and Rosenberg, 1994; del Zoppo and Hallenbeck, 
2000; Allan and Rothwell, 2001; Doyle et al., 2008; Williams-
Karnesky and Stenzel-Poore, 2009; Deb et al., 2010; Martin 
and Wang, 2010; Woodruff et al., 2011; Xing et al., 2012; 
Fann et al., 2013; Brennan-Minnella et al., 2015; Prakash and 
Carmichael, 2015). As illustrated in Figure 2, excitotoxicity 
harms NVU through increases in sodium and calcium influx 
triggered by accumulation of extracellular excitatory amino 
acids, glutamate and aspartate (Lipton and Rosenberg, 
1994; Williams-Karnesky and Stenzel-Poore, 2009; Deb et 
al., 2010; Martin and Wang, 2010; Woodruff et al., 2011; 
Xing et al., 2012; Fann et al., 2013; Brennan-Minnella et al., 
2015). Oxidative stress and post-ischemic inflammation, 
characterized by excessive availabilities of reactive oxygen 
species (ROS) and inflammatory cytokines such as interleukin 
(IL)-1β, IL-18, IL-6 and tumor necrosis factor-α harm NVU by 
disrupting structural integrity of the tight junctions (del Zoppo 
and Hallenbeck, 2000; Allan and Rothwell, 2001; Doyle et al., 
2008; Fann et al., 2013; Prakash and Carmichael, 2015). 

Search Strategy 
For the present review, we searched the literature using 
keywords such as endothelial progenitor cells, outgrowth 
endothelial cells, blood outgrowth endothelial cells, circulating 
endothelial colony forming cells, EPCs, OECs, secretome, 
growth factors, chemokines, cytokines, adhesion molecules, 
proteases, shed receptors, release, secrete, secretion, 
ischemia, infarction, vascular injury, endothelial injuries, 
reperfusion injury, stroke, cerebral damage, cerebrovascular 
disease, cerebral artery disease, and cerebrovascular 
accident on PubMed, Embase, Web of Sciences, Cochrane 
Central Library and Google Scholar. In addition, we also used 
modifications of the above main keywords to thoroughly 
search the literature. The major inclusion criteria preferred the 
literature comprising endothelial progenitor cells, secretome, 
ischemic stroke, and growth factors. 

Endothelial Progenitor Cells 
The inability to replicate favorable results obtained in 
translational studies has spurred stroke research community 
to explore new therapeutics that can simultaneously and 
effectively influence major mechanisms implicated in the 
pathogenesis of ischemic stroke (Deb et al., 2010). In this 
context, cell-based approaches, especially those with 
endothelial progenitor cells (EPCs) have attracted much of 
the attention (Condon et al., 2004; Di et al., 2009). EPCs are 
equipped with an inherent capacity to proliferate, migrate 
and differentiate into few other cells including mature 
endothelial cells. Considering that endothelial cells constitute 
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the main cellular component of the BBB and help maintain 
vascular homeostasis through regulation of vascular tone, 
coagulation and inflammation, replacement of dead or dying 
endothelial cells by EPCs is thought to be of considerable 
therapeutic value for patients with ischemic stroke. However, 
the sparsity of EPCs in circulation necessitates their isolation, 
characterization and expansion before re-administration as 
autologous or allogeneic therapeutics.

EPCs were first isolated as a subtype of peripheral blood 
mononuclear cells (Asahara et al., 1997) and later classified 
into two subtypes, early EPCs which appear after 3–5 days 
in culture, have spindle-shaped morphology and the late 
EPCs (also known as outgrowth endothelial cells (OECs)) 
which appear within 2–4 weeks after seeding and display 
cobblestone morphology (Hur et al., 2004; Bayraktutan, 2019). 
The OECs express angiogenic characteristics and are fully 
committed to the endothelial lineage (Medina et al., 2010). A 
recent study assessing the reparative impact of early EPCs and 
OECs on endothelial layer of a well-established in vitro model 
of human BBB, composed of endothelial cells, astrocytes and 
pericytes, has shown that only OECs can restore integrity and 
function of BBB by physical incorporation into the site of injury 
(Abdulkadir et al., 2020). In this regard, in vivo studies proving 
the safety and efficacy of autologous EPC transplantation 
also exist (Zhu et al., 2008). In addition to repairing damaged 
cerebral barrier, EPCs also contribute to neovascularization by 
modulating the content of their secretome and enhancing cell 
migration, proliferation and angiogenesis as a consequence 
(Kalka et al., 2000; Urbich et al., 2003, 2005a; Yamaguchi et al., 
2003; Di et al., 2009; Gallina et al., 2015; Felice et al., 2018). 
As application of EPC-secretome may eliminate the risks 
associated with transplantation of live cells including emboli, 
infection and immune incompatibility, EPC-free approach may 
actually be a better therapeutic option. Table 1 summarizes 
the main benefits affiliated with treatments with EPC-
secretome in that the possibility of an off-the-shelf application 
opens a new avenue in the field of regenerative medicine 
and deserves to be investigated as a potential therapeutic 
for ischemic stroke (Ballmoos et al., 2010; Seminatore et al., 
2010; Lodi et al., 2011; Rosell et al., 2013; Vizoso et al., 2017).

Analysis of Endothelial Progenitor Cell 
Secretome
The term “secretome” is defined as a set of molecules, 
including of growth factors, chemokines, cytokines, free 
nucleic acids, lipids and extracellular vesicles, secreted or 
shed from living cells. The secretome may be stratified into 

Figure 1 ｜ Schematic representation of neurovascular unit. Figure 2 ｜ Schematic representation of the effect of ischemic stroke on 
neurovascular unit.
A sudden disruption in cerebral blood flow and ensuing decreases in oxygen 
and energy supply triggers oxidative stress and compromises the integrities of 
tight junctions and blood-brain barrier (BBB). Overproduction of inflammatory 
cytokines and excitotoxicity further damage neuronal loss and BBB 
damage thereby leading to formation of cerebral edemas. ATP: Adenosine 
triphosphate; ECs: endothelial cells; IL: interleukin; ROS: reactive oxygen 
species; TNFα: tumor necrosis factor α.
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microparticles, apoptotic bodies and exosomes (Tjalsma 
et al., 2000; Makridakis et al., 2010, 2013; Pavlou and 
Diamandis, 2010; Skalnikova et al., 2011; Beer et al., 2017). 
Of these, the exosomes are of particular interest due their 
ability to control intracellular communications by mediating 
the transfer of lipids, proteins or RNAs to the target cells. 
Exosomes are small vesicles that range between 40–150 nm 
in size (De Jong et al., 2014; Li et al., 2016). EPC-exosomes are 
surrounded by a bilayer of lipids and have a cup or biconcave 
morphology which protect them from enzymatic degradation 
and enable them to serve as transportation cargoes in the 
body (Yellon and Davidson et al., 2014; Vicencio et al., 2015; 
Kong et al., 2018). By increasing the expression of vascular 
endothelial growth factor (VEGF) and endothelial nitric oxide 
synthase, EPC-exosome appears to promote the survival, 
proliferation and tubulogenic activity of endothelial cells 
(Zhang et al., 2019) while inhibiting vascular leakage in lungs 
and kidneys (Zhou et al., 2018). Furthermore, EPC-exosome 
has been shown to inhibit neointima formation and enhance 
angiogenesis in both in vitro and in vivo settings like a rodent 
model of carotid artery injury (Sahoo et al., 2011; Kong et al., 
2018). Recent evidence demonstrates that similar to EPC-
derived exosome, EPC-derived mitochondria also help protect 
NVU from ischemic damage by incorporating into endothelial 
cells and increasing intracellular adenosine triphosphate 
levels and tight junctional tightness (Hayakawa et al., 2018; 
Borlongan, 2019). 

Like mature endothelial cells, EPCs are also able to secret 
a wide range of substances with different mechanism of 
action (Table 2). Shotgun proteomics and difference gel 
electrophoresis studies have identified 82 proteins in the 
conditioned media of human early EPCs (EPC-CM) which 
include various members of cathepsin family, proangiogenic 
substances like chemokine ligand 18, hemoglobin scavenger 
receptor CD163 and thymidine phosphorylase and few anti-
oxidant enzymes such as mitochondrial superoxide dismutase 
and hemoxygenase-1 (Urbich et al., 2011). The 71 out of 
these 82 proteins in EPC-secretome appeared to be different 
from those of CD14+ monocytes and human umbilical veins 
endothelial cells (Urbich et al., 2011). By culturing cells in 
growth factor-free medium over a period of 72 hours, Rehman 
et al. (2003) have found that late EPCs release granulocyte 
colony-stimulating factor (G-CSF), VEGF, hepatocyte growth 
factor and granulocyte-macrophage colony-stimulating factor 
as angiogenic growth factors. Additional studies have shown 
that human EPC-CM also contains chemokines, thrombo-
inflammatory mediators and adhesion molecules. Interestingly, 
while thrombo-inflammatory mediators such as tissue factors 
are secreted mainly by early EPCs, those regulate migration 
and infiltration of monocytes or macrophages, e.g., monocyte 
chemoattractant protein-1 are mainly released by late EPCs 
(Zhang et al., 2009). These add further weight to the previous 
studies indicating that early EPCs and OECs represent distinct 
EPC populations. Indeed, while cultured early EPCs express 
many genes linked to immunity and inflammation such as toll-
like receptors, human leukocyte antigens and CD14 (Medina 
et al., 2010), OECs express the markers of senescence and 

Table 1 ｜ Comparative impact of treatments with EPCs and EPC-secretome

 EPCs therapy EPC-secretome therapy 

Risk of infection + + + + 
Risks of immune incompatibility  + + + +
Emboli formation + + + 
Need for toxic agents for 
cryopreservation

+ + +

Preparation time + + +
Cost + + +

EPCs: Endothelial progenitor cells.

produce greater levels of cytokines. Inflammatory elements 
such as IL-8, IL-6, IL-1β and IL-1α have been identified as 
the major facilitators of OEC senescence (Medina et al., 
2013). In light of the evidence, treatments with early EPC 
or OEC secretome should be conducted with care to avoid 
exacerbation of pre-existing inflammatory response in the 
ischemic microenvironment. 

Possible Mechanisms of Action of Endothelial 
Progenitor Cell Secretome in Ischemic Stroke    
Anti-inflammatory activity 
Inflammation, characterized by the exaggerated release 
of pro-inflammatory cytokines, e.g., IL-1β, IL-6 and tumor 
necrosis factor-α, represents one of the main mechanisms 
that develop following a cerebral ischemic injury. Stroke 
patients with localized (cerebral) or systemic inflammation 
exhibit clinically poorer outcome (Allan and Rothwell, 2001; 
Fann et al., 2013; Abdullah and Bayraktutan, 2016). Through 
concurrent regulation of various anti-inflammatory cytokines 
and inflammatory genes such as Brahma, IκB and Foxf1, 
EPCs attenuate the toxic and apoptotic tendencies of the 
inflammatory milieu. In support of this notion, co-culture of 
human EPCs with human endothelial cells has been shown 
to significantly block the elevations of aforementioned pro-
inflammatory genes during experimental ischemic stroke. 
Likewise, intracerebral administration of late EPCs into animal 
model of ischemic stroke (after 4 hours) has also been shown 
to improve neurological recovery up to 30 days post cell-
therapy by significantly downregulating the gene expression 
of Brahma, IKB and Foxf1 in the cortex and striatum (Tajiri 
et al., 2012; dela Peña et al., 2015; Acosta et al., 2019). In 
accordance with these findings, administration of EPC-CM 
into a rat model of spinal cord injury has been found to induce 
functional recovery where attenuation of apoptosis, M1 
macrophage activation and IL-6 release along with stimulation 
of angiogenesis appeared to aid functional recovery (Wang 
et al., 2018). Similar to these observations, intratracheal 
administration of EPC-exosome to a mice model of acute lung 
injury has also significantly reduced chemokine, cytokine and 
protein concentrations in the bronchoalveolar lavage fluid, 
further supporting the anti-inflammatory and tissue-protective 
effects of EPC-secretome (Zhou et al., 2019). In another study, 
reinfusion of a specific paracrine factor, namely thymosin B4 
released by embryonic EPCs has diminished infarct size in 
pigs subjected to myocardial ischemia and enhanced post-
hypoxic cardiomyocyte survival by moderating post-ischemic 
inflammatory responses (Hinkel et al., 2008).   

Tissue repair and angiogenic regulation
Discovery of an abundance of highly mitogenic cytokines, 
notably IL-8 and angiogenin in EPC-CM strongly implies 
that EPC-secretome can readily stimulate the chemotactic, 
proliferative and tubulogenic capacity of endothelial 
cells (He et al., 2005). Post-stroke administration of EPC-
secretome rich in angiogenic factors may help facilitate 
vascular repair and suppress neointima formation by inducing 
proliferation of the resident endothelial cells at the site of 
vascular damage (Paneni et al., 2016). It is of note here that 
the process of angiogenesis, involving the activation and 
migration of endothelial cells, is also regulated by cytokines 
and chemokines (Gnecchi et al., 2008). Transplantation of 
OEC-secretome rich in cytokines and chemokines has been 
coupled to marked increases in the angiogenic capacity 
of brain BMECs in a mouse model of chronic cerebral 
hypoperfusion and in in vitro settings (Di Santo et al., 2014). 
Furthermore, greater availability of different growth factors 
such as VEGF and IGF-1 has also been implicated in increased 
angio-neurogenesis in the ischemic area of stroke rats treated 
with late EPCs (Urbich et al., 2005b; Moubarik et al., 2011; 
Schneller et al., 2019). 
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Antioxidant capacity 
Oxidative stress, emerging from an imbalance between 
pro- and anti-oxidants, is another major mechanism that 
can induce or worsen cerebrovascular damage following 
an ischemic cerebral injury (Allen and Bayraktutan, 2009). 
Compared to mature endothelial cells, EPCs possess 
significantly higher total antioxidant capacity. Indeed, greater 
expression of antioxidant enzyme glutathione peroxidase, Mn-
containing superoxide dismutase and catalase enables EPCs 
to tolerate a certain degree of oxidative stress (Dernbach et 
al., 2004) and potentiates their vasoreparative and angiogenic 
capacities in both ischemic and inflammatory settings. For 
instance, treatments with late EPC-secretome has been 
shown to mitigate the deleterious effects of oxidative stress 
on BBB during and after an ischemic stroke (Dernbach et al., 
2004) and reduced the extent of oxidative injury in human 
umbilical veins endothelial cells by augmenting the expression 
of antioxidant enzymes, Mn- and CuZn-containing superoxide 
dismutase (Yang et al., 2011). 

Migration and tissue invasion   
EPCs also regulate cellular chemotaxis by modulating the 
release of prominent pro-angiogenic factors like VEGF, SDF-
1, IGF-1 and hepatocyte growth factor. Increases in VEGF and 
SDF-1 also facilitate adhesion and recruitment of EPCs to the 
site of ischemic and non-ischemic damage (Anderson et al., 
2015). Similarly, EPC-secretome has been shown to increase 
mobilization, proliferation and migration of various progenitor 
and resident vascular cells like cardiac progenitor cells and 
endothelial cells, respectively. Increased migration of mature 
endothelial cells to the site of limb ischemia in rats treated with 
human EPC-CM corroborates this notion (Urbich et al., 2005a).   

Apart from growth factors and cytokines, EPCs also synthesize 
and release many lysosomal peptidases including cathepsin L, 
cathepsin D, cathepsin H and cathepsin O. Bearing in mind that 
inhibition of these enzymes, in particular that of cathepsin L, 
has abated the invasion, incorporation and function of EPCs in 
a model of hindlimb ischemia (Urbich et al., 2005b), specific 

targeting of these peptidases may prove to be instrumental 
in controlling the recruitment of EPCs to the site of injury. It 
is possible that EPC-secretome supplemented with cathepsin 
L may substantially induce homing and incorporation of 
circulating EPCs to the site of ischemic cerebral injury. Figure 3 
summarizes potential mechanism of action of EPC secretome 
on NVU during and after ischemic stroke. 

Key Mechanisms Associated with Modification 
of Endothelial Progenitor Cell Secretome 
Hypoxia is regarded as the main element that can enhance 
the migratory and angiogenic capacities of transplanted cells 
(Wei et al., 2012; Morancho et al., 2013). As exposure of EPCs 
to hypoxia promotes secretion of a series of growth factors, 
notably VEGF, VEGF-D, PDGF-BB, epidermal growth factor, 
basic fibroblast growth factor as well as angiogenin, leptin 
and thrombopoietin, it is likely that CM obtained from EPCs 
subjected to hypoxia can augment the regenerative potential 
of native and transplanted progenitor cells (Di Santo et al., 
2014). Indeed, such treatment has recently been shown 
to induce mobilization of EPCs from bone marrow and led 
to increases in hindlimb blood flow and capillary density 
while inhibiting apoptosis of mature endothelial cells (Di 
Santo et al., 2009). Furthermore, application of hypoxic EPC-
CM entrapped in polymer-based nanoparticles, carriers for 
controlled release of EPC secretome, has also been shown to 
increase blood perfusion and capillary formation in ischemic 
limb model (Felice et al., 2018). EPCs grown under hypoxic 
conditions have been shown to secrete 647 proteins. Of these, 
83 appear to be differentially regulated compared to the cells 
grown under normoxic conditions. While the expression of 
17 of these 83 proteins, mostly angiogenic factors including 
protein S100 family, apolipoprotein E, protease inhibitors are 
upregulated by hypoxia, the expression of 12 proteins, notably 
dermcidin, trypsin-1, cystatin-C and calcium-binding protein 
39 appear to be downregulated (Felice et al., 2018). 

Inflammation or inflammatory reactions can also influence 

Table 2 ｜ Important paracrine factors of endothelial progenitor cell-secretome

Factors                                                  Function References

Angiogenin                                                                                        Angiogenesis, migration, proliferation  Di Santo et al. (2009); Maki et al. (2018) 
Hepatocyte growth factor Angiogenesis, motility, morphogenesis Rehman et al. (2003); Di Santo et al. (2009)
Interleukin-8 Chemoattraction, proliferation, angiogenesis   Urbich et al. (2005); Di Santo et al. (2009); Pula et al. (2009) 
Platelet derived growth factor B Angiogenesis, proliferation, recruitment  Di Santo et al. (2009)
Stromal derived factor-1 Angiogenesis, antipoptosis, migration Di Santo et al. (2009); Paneni et al. (2016); Maki et al. (2018) 
Vascular endothelial growth factor Migration, proliferation, angiogenesis  Rehman et al. (2003) 
Vascular endothelial growth factor A Migration, mitogenesis, angiogenesis Urbich et al. (2005); Di Santo et al. (2009); 
Pre-B cell-enhancing factor Angiogenesis, antipoptosis  Pula et al. (2009) 
Matrix metalloproteinase-9 Angiogenesis, migration, proliferation  Rehman et al. (2003); Pula et al. (2009)
Macrophage migration inhibitory factor Angiogenesis, migration, recruitment  Pula et al. (2009)
Cathepsins Invasion, angiogenesis  Urbich et al. (2005); Pula et al. (2009); Urbich et al. (2011)
Protease inhibitors Angiogenesis, migration, invasion  Pula et al. (2009)
S100 proteins Angiogenesis, proliferation, invasion  Pula et al. (2009)
Thymidine phosphorylase Angiogenesis, antipoptosis, migration  Pula et al. (2009)
2-deoxy-D-ribose-1-phosphate Migration, angiogenesis Pula et al. (2009)
Mitochondrial superoxide dismutase Antioxidants, antipoptosis Dernbach et al. (2004); Urbich et al. (2011)
Homoxygenase-1 Antioxidant, antipoptosis Dernbach et al. (2004); Urbich et al. (2011)
Alternative macrophage markers C-C motif 
chemokine 18

Healing, migration Urbich et al. (2011)

Haemoglobin scavenger receptor CD163 Adhesion, anti-inflammation Urbich et al. (2011)
Cytokine-like 1 Angiogenesis, migration  Schneller et al. (2019)
Platelet-derived growth factor AA/AB/BB Angiogenesis, proliferation, recruitment  Urbich et al. (2005); Maki et al. (2018)
Vascular endothelial growth factor B Angiogenesis, migration Urbich et al. (2005); Maki et al. (2018)
Granulocyte-macrophage colony-stimulating 
factor

Angiogenesis, proliferation, antipoptosis    Rehman et al. (2003)

Granulocyte colony-stimulating factor Proliferation, differentiation, angiogenesis  Rehman et al. (2003); De Jong et al. (2014)
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the number and functionality of EPCs. Inflammatory factors 
such as GM-CSF and SDF-1 enhance mobilization of EPCs from 
bone marrow (Takahashi et al., 1999; Tousoulis et al., 2008). 
For example, the increases seen in number of functional late 
OECs mirrored increases in plasma levels of VEGF, SDF-1 and 
IL-8 in burned patients within the first 24 hours of hospital 
admission (Rignault-Clerc et al., 2013). Another study focusing 
on the mobilization of EPCs in two different groups of patients 
with acute vascular injury emerging from burns or coronary 
artery bypass grafting has also revealed substantial increases 
in circulatory EPC numbers and coupled these to significant 
increases in plasma VEGF and cytokine levels (Gill et al., 2001). 
These findings suggest that enrichment of EPC-secretome 
by exposure to inflammatory stimuli in in vitro settings may 
potentiate its therapeutic impact in in vivo settings through 
recruitment of resident EPCs from bone marrow to the site of 
ischemic injury.  

As indicated above, oxidative stress radically contributes 
to the pathogenesis and progression of ischemic stroke. 
Genetic manipulation of factors associated with the release 
or neutralization of ROS is therefore likely to influence the 
content of EPC-secretome and its therapeutic efficacy. 
Mammalian adaptor p66Shc and JunD, a member of the 
activated protein-1 family of transcription factors which 
modulate mitochondrial ROS production and vascular cell 
senescence have attracted some attention in this context. 
Indeed, compared to OECs obtained from young donors, OECs 
of old subjects express significantly higher levels of p66Shc 
(pro-oxidant) and the lower level of the activated protein-1. 
However, genetic manipulation of OECs isolated from elderly 
donors through silencing of p66Shc or overexpression of JunD 
has been shown to attenuate age-driven ROS generation by 
reinstating a balance between pro-oxidant and anti-oxidant 
enzymes and enhance SDF-1 expression in conditioned media 
(Paneni et al., 2016). 

Therapeutic Potential of Endothelial Progenitor 
Cell Secretome
Considering that proteins secreted into conditioned media in 
in vitro conditions mimicking an ischemic injury are likely to be 
representative of those found in circulation following a cerebral 
ischemic episode, their analysis and accurate identification are 
of profound diagnostic, prognostic and therapeutic importance 
(Stastna and Van Eyk, 2012). In light of the reports illustrating 
post-ischemic increases in circulating numbers of EPCs, it is 
safe to propose that similar increases in the synthesis and 
release of constituents that make up EPC-secretome may also 

Figure 3 ｜ Possible mechanism of action of EPC secretome on restoration 
of neurovascular unit during or after an ischemic stroke. 
EPC-secretome containing many biologically active substances such as growth 
factors, cathepsins, cytokines and chemokines may evoke endogenous 
regeneration and neovascularization by activating resident endothelial cells, 
inhibiting oxidative stress and concomitantly inducing angiogenesis and 
neurogenesis. EC: Endothelial cell; EPC: endothelial progenitor cell.

go up which in turn substantiate their diagnostic value (Sobrino 
et al., 2007). While regenerative potential of EPC-secretome 
is somewhat well-documented in experimental settings, to 
our knowledge there is currently no clinical study that has 
assessed the putative therapeutic role of EPC-secretome after 
an ischemic stroke. In fact, phase I and phase II clinical trials 
of intravenous transplantation of allogenic mesenchymal stem 
cells for patients with chronic ischemic stroke (> 6 months 
of onset) have been shown to be safe and associated with 
significant behavioral gain over a 12-month follow up (Levy et 
al., 2019). As the microenvironment affecting the NVU after 
an ischemic stroke is under persistent change (Liao et al., 
2017), while designing prospective clinical trials, the timing 
of treatments with EPC-secretome is an important factor 
to take into consideration. Transplantation of EPCs or EPC-
secretome rich in VEGF, PDGF-BB and fibroblast growth factor 
into a mouse model of ischemic stroke, within 30–32 hours 
of ischemic stroke, has been shown to enhance capillary 
density in the peri-infarct areas and improved functional 
strength of forelimbs. The improvements in functional aspects 
remained noticeable at 2 weeks following ischemic injury 
and were largely attributed to the appearance of additional 
blood vessels in the peri-infarct areas (Rosell et al., 2013). 
Intravenous injection of EPCs into a rodent model of transient 
ischemic stroke 24 hours after the occlusion of middle cerebral 
artery also led to a significant functional recovery within two 
weeks. Given that the direct incorporation of EPCs into rat 
neovasculature could not be visualized in this study, functional 
improvements observed might actually be due to the paracrine 
effects of EPC-secretome (Moubarik et al., 2011). A relevant 
study testing the angiogenic capacity of early (within 1 hour of 
stroke) and late (48 hours after stroke) administration of VEGF, 
a key component of EPC-secretome, to a rodent model of 
ischemic stroke has generated some interesting findings in that 
while the former approach compromised the integrity of the 
BBB and promoted hemorrhagic transformation in the focal 
ischemic lesions, the latter approach enhanced angiogenesis in 
the ischemic penumbra and significantly improved neurological 
recovery. Taken together these findings imply that future 
therapeutic strategies considering exogenous administration 
of EPC-secretome should pay a very close attention to the 
treatment start time and adjust the concentration of EPC-
secretome according to the phase of ischemic stroke; 
hyperacute, acute, subacute versus chronic (Zhang et al., 
2000). 

Similar to the beneficial effects observed after ischemic stroke, 
EPC-derived factors have been shown to protect cultured 
cortical neuronal progenitor cells from a metabolic injury 
induced by glucose and serum deprivation (Santo et al., 2020). 
Again, transplantation of EPCs to a mice model of traumatic 
brain injury led to elevations in neovasculogenesis and 
neurological recovery. Here, stimulation of axonal outgrowth 
of neurons along with increased proliferation, survival and 
recruitment of resident EPCs to the site of ischemic brain 
injury by key constituents of EPC secretome, namely VEGF, 
SDF1 and proangiogenic cytokines, was thought to play a 
critical role (Zhang et al., 2013). EPC secretome-mediated 
suppression of inflammation alongside the regulation of 
angiogenesis, functional recovery and axonal regeneration 
has also been implicated in neuroprotection in a rat model 
of spinal cord injury (Wang et al., 2018). Furthermore, 
intravenous administration of EPC-secretome to mice at 24 
hours and 7 days of permanent bilateral occlusion of carotid 
arteries has also been associated with promotion of vascular 
density and protection of cognitive function in a mouse 
model of white matter injury following prolonged cerebral 
hypoperfusion (Maki et al., 2018). In light of these studies, it 
is reasonable to suggest that administration of EPC-secretome 
to patients with ischemic stroke beyond the hyperacute phase 
of the disease may be beneficial. Table 3 summarizes the 
major benefits of EPC-secretome in pre-clinical settings. 
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Conclusion 
It is evident that EPCs secrete a vast range of substances 
with differing function. Evidence gathered from an increasing 
number of in vitro and in vivo studies suggest that these 
factors may help repair the damaged neurovasculature after 
an ischemic stroke by inducing mobilization, proliferation, 
migration and homing of resident or circulatory progenitor 
cells to the damaged vasculature. Available evidence also 
indicates that timing of post-stroke administration of EPC-
secretome is of crucial importance to improve neurological 
outcome and to prevent hemorrhagic transformation. 
However, well-thought future studies scrutinizing the 
therapeutic potential and efficacy of EPC-secretome in 
laboratory, translational and clinical settings are required 
before a cell-free treatment regimen can become a 
therapeutic possibility for patients with ischemic stroke.

Author contributions: Literature retrieval and manuscript preparation: 
MA; manuscript review and review guiding: RRA; review conception and 
manuscript editing: UB. All authors approved the final version of this 
manuscript.
Conflicts of interest: The authors declare that they have no conflicts of 
interest.
Financial support: None.
Copyright license agreement: The Copyright License Agreement has 
been signed by all authors before publication.
Plagiarism check: Checked twice by iThenticate. 
Peer review: Externally peer reviewed. 
Open access statement: This is an open access journal, and articles 
are distributed under the terms of the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 License, which allows others to remix, 
tweak, and build upon the work non-commercially, as long as appropriate 
credit is given and the new creations are licensed under the identical 
terms.

References
Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-

brain barrier. Nat Rev Neurosci 7:41-53.
Abdulkadir RR, Alwjwaj M, Othman OA, Rakkar K, Bayraktutan U (2020) Outgrowth 

endothelial cells form a functional cerebral barrier and restore its integrity after 
damage. Neural Regen Res 15:1071-1078.

Abdullah Z, Bayraktutan U (2016) Suppression of PKC-α attenuates TNF-α-evoked 
cerebral barrier breakdown via regulations of MMP-2 and plasminogen-plasmin 
system. Biochim Biophys Acta 1862:1354-1366. 

Acosta SA, Lee JY, Nguyen H, Kaneko Y, Borlongan CV (2019) Endothelial progenitor cells 
modulate inflammation-associated stroke vasculome. Stem Cell Rev Rep 15:256-275. 

Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 
2:734-744.  

Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of 
ischaemic stroke. Int J Stroke 4:461-470.

Anderson EM, Kwee BJ, Lewin SA, Raimondo T, Mehta M, Mooney DJ (2015) Local 
delivery of VEGF and SDF enhances endothelial progenitor cell recruitment and 
resultant recovery from ischemia. Tissue Eng Part A 21:1217-1227. 

Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, 
Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for 
angiogenesis. Science 275:964-967. 

Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, 
regulation, and clinical implications. Neurobiol Dis 16:1-13. 

Ballmoos MWV, Yang Z, Jan Völzmann, Baumgartner I, Kalka C, Santo SD (2010) 
Endothelial progenitor cells induce a phenotype shift in differentiated endothelial 
cells towards pdgf/pdgfrβ axis-mediated angiogenesis. PLoS One 5:e14107.

Bayraktutan U (2019) Endothelial progenitor cells: potential novel therapeutics for 
ischaemic stroke. Pharmacol Res 144:181-191.

Beer L, Mildner M, Ankersmit HJ (2017) Cell secretome based drug substances in 
regenerative medicine: when regulatory affairs meet basic science. Ann Transl Med 
5:170. 

Borlongan CV (2019) Concise review: stem cell therapy for stroke patients: are we there 
yet? Stem Cells Transl Med 8:983-988.

Brennan-Minnella AM, Won SJ, Swanson RA (2015) NADPH oxidase-2: linking glucose, 
acidosis, and excitotoxicity in stroke. Antioxid Redox Signal 22:161-174. 

Carvey PM, Hendey B, Monahan AJ (2009) The blood-brain barrier in neurodegenerative 
disease: a rhetorical perspective. J Neurochem 111:291-314.

Condon ET, Wang JH, Redmond HP (2004) Surgical injury induces the mobilization of 
endothelial progenitor cells. Surgery 135:657-661.

De Jong OG, Van Balkom BW, Schiffelers RM, Bouten CV, Verhaar MC (2014) Extracellular 
vesicles: potential roles in regenerative medicine. Front Immunol 5:608.

Deb P, Sharma S, Hassan KM (2010) Pathophysiologic mechanisms of acute ischemic 
stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. 
Pathophysiology 17:197-218.

del Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of 
ischemic stroke. Thromb Res 98:73-81.

dela Peña IC, Yoo A, Tajiri N, Acosta SA, Ji X, Kaneko Y, Borlongan CV (2015) Granulocyte 
colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation 
in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood 
Flow Metab 35:338-346.

Dernbach E, Urbich C, Brandes RP, Hofmann WK, Zeiher AM, Dimmeler S (2004) 
Antioxidative stress-associated genes in circulating progenitor cells: evidence for 
enhanced resistance against oxidative stress. Blood 104:3591-3597.

Di Santo S, Seiler S, Fuchs AL, Staudigl J, Widmer HR (2014) The secretome of endothelial 
progenitor cells promotes brain endothelial cell activity through PI3-kinase and MAP-
kinase. PLoS One 9:e95731.

Di Santo S, Yang Z, Wyler von Ballmoos M, Voelzmann J, Diehm N, Baumgartner I, Kalka 
C (2009) Novel cell-free strategy for therapeutic angiogenesis: in vitro generated 
conditioned medium can replace progenitor cell transplantation. PLoS One 4:e5643. 

Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. 
Neuropharmacology 55:310-318.

Fann DY, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV (2013) Pathogenesis 
of acute stroke and the role of inflammasomes. Ageing Res Rev 12:941-966.

Felice F, Piras AM, Rocchiccioli S, Barsotti MC, Santoni T, Pucci A, Burchielli S, Chiellini 
F, Ucciferri N, Solaro R, Altomare A, Cecchettini A, Di Stefano R (2018) Endothelial 
progenitor cell secretome delivered by novel polymeric nanoparticles in ischemic 
hindlimb. Int J Pharm 542:82-89.

Gallina C, Turinetto V, Giachino C (2015) A new paradigm in cardiac regeneration: the 
mesenchymal stem cell secretome. Stem Cells Int 2015:765846. 

Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii 
S (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+)
AC133(+) endothelial precursor cells. Circ Res 88:167-174.

Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell 
signaling and therapy. Circ Res 103:1204-1219. 

Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, 
Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D; ECASS 
Investigators (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic 
stroke. N Engl J Med 359:1317-1329.

Hayakawa K, Chan SJ, Mandeville ET, Park JH, Bruzzese M, Montaner J, Arai K, Rosell A, 
Lo EH (2018) Protective effects of endothelial progenitor cell-derived extracellular 
mitochondria in brain endothelium. Stem Cells 36:1404-1410. 

He T, Peterson TE, Katusic ZS (2005) Paracrine mitogenic effect of human endothelial 
progenitor cells: role of interleukin-8. Am J Physiol Heart Circ Physiol 289:H968-972. 

Hinkel R, El-Aouni C, Olson T, Horstkotte J, Mayer S, Müller S, Willhauck M, Spitzweg C, 
Gildehaus FJ, Münzing W, Hannappel E, Bock-Marquette I, DiMaio JM, Hatzopoulos 
AK, Boekstegers P, Kupatt C (2008) Thymosin beta4 is an essential paracrine factor 
of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation 
117:2232-2240.

Hisham NF, Bayraktutan U (2013) Epidemiology, pathophysiology, and treatment of 
hypertension in ischaemic stroke patients. J Stroke Cerebrovasc Dis 22:e4-14.

Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) 
Characterization of two types of endothelial progenitor cells and their different 
contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288-293. 

Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, 
Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for 
therapeutic neovascularization. Proc Natl Acad Sci U S A 97:3422-3427.

Kong J, Wang F, Zhang J, Cui Y, Pan L, Zhang W, Wen J, Liu P (2018) Exosomes of 
endothelial progenitor cells inhibit neointima formation after carotid artery injury. J 
Surg Res 232:398-407. 

Levy ML, Crawford JR, Dib N, Verkh L, Tankovich N, Cramer SC (2019) Phase I/II study of 
safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in 
chronic stroke. Stroke 50:2835-2841.

Table 3 ｜ Therapeutic effects of EPC-secretome on various conditions

Study Study design Route of administration Major effects

Rosell et al. 
(2013)

EPC-CM injected to a mouse model of ischemic 
stroke

200 µL intravenous Enhanced neurobehavioral outcomes, capillary density of peri-
infarct areas, and improved functional strengths of forelimbs.  

Kong et al. 
(2018)

EPC-exosome injected to a rat model of carotid 
artery injury.

30 µg intravenous Prevented neointima formation.

Wang et al. 
(2018)

EPC-CM injected to a rat model of spinal cord 
injury.

1 mL intraperitoneal Induced recovery of motor function of bilateral hind limb.   

Li et al. (2016) EPC-exosome injected to a rat model of 
balloon-induced carotid injury.

30 µg intravenous Accelerated early re-endothelialization.  

Maki et al. 
(2018)

EPC-secretome given to mice subjected to 
permanent bilateral carotid artery stenosis.

160 µL intravenous Enhanced vascular density, myelin, and mature oligodendrocytes in 
white matter and rescued cognitive function. 

CM: Culture medium; EPC: endothelial progenitor cell.



NEURAL REGENERATION RESEARCH｜Vol 16｜No. 8｜August 2021｜1489

Li X, Chen C, Wei L, Li Q, Niu X, Xu Y, Wang Y, Zhao J (2016) Exosomes derived 
from endothelial progenitor cells attenuate vascular repair and accelerate 
reendothelialization by enhancing endothelial function. Cytotherapy 18:253-262.

Liao S, Luo C, Cao B, Hu H, Wang S, Yue H, Chen L, Zhou Z (2017) Endothelial progenitor 
cells for ischemic stroke: update on basic research and application. Stem Cells Int 
2017:2193432.

Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for 
neurologic disorders. N Engl J Med 330:613-622.  

Lodi D, Iannitti T, Palmieri B. Stem cells in clinical practice: applications and warnings 
(2011) J Exp Clin Cancer Res 30:9.

Ma F, Morancho A, Montaner J, Rosell A (2015) Endothelial progenitor cells and 
revascularization following stroke. Brain Res 1623:150-159.

Maki T, Morancho A, Martinez-San Segundo P, Hayakawa K, Takase H, Liang AC, Gabriel-
Salazar M, Medina-Gutiérrez E, Washida K, Montaner J, Lok J, Lo EH, Arai K, Rosell 
A (2018) Endothelial progenitor cell secretome and oligovascular repair in a mouse 
model of prolonged cerebral hypoperfusion. Stroke 49:1003-1010. 

Makridakis M, Roubelakis MG, Vlahou A (2013) Stem cells: insights into the secretome. 
Biochim Biophys Acta 1834:2380-2384. 

Makridakis M, Vlahou A (2010) Secretome proteomics for discovery of cancer 
biomarkers. J Proteomics 73:2291-2305. 

Martin HG, Wang YT (2010) Blocking the deadly effects of the NMDA receptor in stroke. 
Cell 140:174-176. 

Medina RJ, O’Neill CL, O’Doherty TM, Chambers SE, Guduric-Fuchs J, Neisen J, Waugh DJ, 
Simpson DA, Stitt AW (2013) Ex vivo expansion of human outgrowth endothelial cells 
leads to IL-8-mediated replicative senescence and impaired vasoreparative function. 
Stem Cells 31:1657-1668.

Medina RJ, O’Neill CL, Sweeney M, Guduric-Fuchs J, Gardiner TA, Simpson DA, Stitt AW 
(2010) Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two 
distinct cell populations with different identities. BMC Med Genomics 3:18.

Morancho A, Hernández-Guillamon M, Boada C, Barceló V, Giralt D, Ortega L, Montaner 
J, Rosell A (2013) Cerebral ischaemia and matrix metalloproteinase-9 modulate the 
angiogenic function of early and late outgrowth endothelial progenitor cells. J Cell 
Mol Med 17:1543-1553.

Moubarik C, Guillet B, Youssef B, Codaccioni JL, Piercecchi MD, Sabatier F, Lionel P, Dou 
L, Foucault-Bertaud A, Velly L, Dignat-George F, Pisano P (2011) Transplanted late 
outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell 
Rev Rep 7:208-220. 

Nag S (2003) Morphology and molecular properties of cellular components of normal 
cerebral vessels. Methods Mol Med 89:3-36. 

Paneni F, Costantino S, Kränkel N, Cosentino F, Lüscher TF (2016) Reprogramming ageing 
and longevity genes restores paracrine angiogenic properties of early outgrowth cells. 
Eur Heart J 37:1733-1737. 

Pavlou MP, Diamandis EP (2010) The cancer cell secretome: a good source for discovering 
biomarkers? J Proteomics 73:1896-1906. 

Petty MA, Lo EH (2002) Junctional complexes of the blood-brain barrier: permeability 
changes in neuroinflammation. Prog Neurobiol 68:311-323.

Prakash R, Carmichael ST (2015) Blood-brain barrier breakdown and neovascularization 
processes after stroke and traumatic brain injury. Curr Opin Neurol 28:556-564. 

Pula G, Mayr U, Evans C, Prokopi M, Vara DS, Yin X, Astroulakis Z, Xiao Q, Hill J, Xu Q, 
Mayr M (2009) Proteomics identifies thymidine phosphorylase as a key regulator 
of the angiogenic potential of colony-forming units and endothelial progenitor cell 
cultures. Circ Res 104:32-40.

Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor 
cells” are derived from monocyte/macrophages and secrete angiogenic growth 
factors. Circulation 107:1164-1169. 

Reis C, Wilkinson M, Reis H, Akyol O, Gospodarev V, Araujo C, Chen S, Zhang JH (2017) 
A look into stem cell therapy: exploring the options for treatment of ischemic stroke. 
Stem Cells Int 2017:3267352. 

Rignault-Clerc S, Bielmann C, Delodder F, Raffoul W, Waeber B, Liaudet L, Berger MM, 
Feihl F, Rosenblatt-Velin N (2013) Functional late outgrowth endothelial progenitors 
isolated from peripheral blood of burned patients. Burns 39:694-704. 

Rosell A, Morancho A, Navarro-Sobrino M, Martínez-Saez E, Hernández-Guillamon M, 
Lope-Piedrafita S, Barceló V, Borrás F, Penalba A, García-Bonilla L, Montaner J (2013) 
Factors secreted by endothelial progenitor cells enhance neurorepair responses after 
cerebral ischemia in mice. PLoS One 8:e73244.

Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, Ito A, Liu T, Kamide C, 
Agrawal H, Perlman H, Qin G, Kishore R, Losordo DW (2011) Exosomes from human 
CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109:724-
728. 

Santo SD, Seiler S, Guzman R, Widmer HR (2020) Endothelial progenitor cell-derived 
factors exert neuroprotection in cultured cortical neuronal progenitor cells. Cell 
Transplant 29:963689720912689. 

Schneller D, Hofer-Warbinek R, Sturtzel C, Lipnik K, Gencelli B, Seltenhammer M, Wen 
M, Testori J, Bilban M, Borowski A, Windwarder M, Kapel SS, Besemfelder E, Cejka P, 
Habertheuer A, Schlechta B, Majdic O, Altmann F, Kocher A, Augustin HG, et al. (2019) 
Cytokine-Like 1 is a novel proangiogenic factor secreted by and mediating functions of 
endothelial progenitor cells. Circ Res 124:243-255.

Seminatore C, Polentes J, Ellman D, Kozubenko N, Itier V, Tine S, Tritschler L, Brenot M, 
Guidou E, Blondeau J, Lhuillier M, Bugi A, Aubry L, Jendelova P, Sykova E, Perrier AL, 
Finsen B, Onteniente B (2010) The postischemic environment differentially impacts 
teratoma or tumor formation after transplantation of human embryonic stem cell-
derived neural progenitors. Stroke 41:153-159.

Serlin Y, Shelef I, Knyazer B, Friedman A (2015) Anatomy and physiology of the blood-
brain barrier. Semin Cell Dev Biol 38:2-6.

Skalnikova H, Motlik J, Gadher SJ, Kovarova H (2011) Mapping of the secretome of 
primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 
11:691-708.

Sobrino T, Hurtado O, Moro MA, Rodríguez-Yáñez M, Castellanos M, Brea D, Moldes O, 
Blanco M, Arenillas JF, Leira R, Dávalos A, Lizasoain I, Castillo J (2007) The increase of 
circulating endothelial progenitor cells after acute ischemic stroke is associated with 
good outcome. Stroke 38:2759-2764.

Stastna M, Van Eyk JE (2012) Secreted proteins as a fundamental source for biomarker 
discovery. Proteomics 12:722-735.

Tajiri N, Acosta S, Glover LE, Bickford PC, Jacotte Simancas A, Yasuhara T, Date I, Solomita 
MA, Antonucci I, Stuppia L, Kaneko Y, Borlongan CV (2012) Intravenous grafts of 
amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate 
behavioral deficits in ischemic stroke rats. PLoS One 7:e43779.

Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, 
Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-
derived endothelial progenitor cells for neovascularization. Nat Med 5:434-438.

Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent 
protein transport in Bacillus subtilis: a genome-based survey of the secretome. 
Microbiol Mol Biol Rev 64:515-547.

Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C (2008) Role of 
inflammation and oxidative stress in endothelial progenitor cell function and 
mobilization: therapeutic implications for cardiovascular diseases. Atherosclerosis 
201:236-247.

Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, Dimmeler S 
(2005a) Soluble factors released by endothelial progenitor cells promote migration of 
endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 39:733-742. 

Urbich C, De Souza AI, Rossig L, Yin X, Xing Q, Prokopi M, Drozdov I, Steiner M, Breuss 
J, Xu Q, Dimmeler S, Mayr M (2011) Proteomic characterization of human early pro-
angiogenic cells. J Mol Cell Cardiol 50:333-336. 

Urbich C, Heeschen C, Aicher A, Dernbach E, Zeiher AM, Dimmeler S (2003) Relevance 
of monocytic features for neovascularization capacity of circulating endothelial 
progenitor cells. Circulation 108:2511-2516.

Urbich C, Heeschen C, Aicher A, Sasaki K, Bruhl T, Farhadi MR, Vajkoczy P, Hofmann 
WK, Peters C, Pennacchio LA, Abolmaali ND, Chavakis E, Reinheckel T, Zeiher AM, 
Dimmeler S (2005b) Cathepsin L is required for endothelial progenitor cell-induced 
neovascularization. Nat Med 11:206-213.

Vicencio JM, Yellon DM, Sivaraman V, Das D, Boi-Doku C, Arjun S, Zheng Y, Riquelme 
JA, Kearney J, Sharma V, Multhoff G, Hall AR, Davidson SM (2015) Plasma exosomes 
protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol 65:1525-
1536. 

Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017) mesenchymal stem cell 
secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol 
Sci 18:1852.

Wang T, Fang X, Yin ZS (2018) Endothelial progenitor cell-conditioned medium promotes 
angiogenesis and is neuroprotective after spinal cord injury. Neural Regen Res 13:887-
895.

Wei L, Fraser JL, Lu ZY, Hu X, Yu SP (2012) Transplantation of hypoxia preconditioned 
bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after 
cerebral ischemia in rats. Neurobiol Dis 46:635-645. 

Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood-brain barrier in brain 
homeostasis and neurological diseases. Biochim Biophys Acta 1788:842-857. 

Williams-Karnesky RL, Stenzel-Poore MP (2009) Adenosine and stroke: maximizing the 
therapeutic potential of adenosine as a prophylactic and acute neuroprotectant. Curr 
Neuropharmacol 7:217-227.

Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, 
composition and regulation. Vascul Pharmacol 38(6):323-337.

Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV (2011) 
Pathophysiology, treatment, and animal and cellular models of human ischemic 
stroke. Mol Neurodegener 6:11. 

Xing C, Arai K, Lo EH, Hommel M (2012) Pathophysiologic cascades in ischemic stroke. Int 
J Stroke 7:378-385.

Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce 
M, Masuda H, Losordo DW, Isner JM, Asahara T (2003) Stromal cell-derived factor-1 
effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic 
neovascularization. Circulation 107:1322-1328. 

Yang Z, von Ballmoos MW, Faessler D, Voelzmann J, Ortmann J, Diehm N, Kalka-Moll W, 
Baumgartner I, Di Santo S, Kalka C (2011) Paracrine factors secreted by endothelial 
progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial 
cells. Atherosclerosis 211:103-109.

Yao Y, Chen ZL, Norris EH, Strickland S (2014) Astrocytic laminin regulates pericyte 
differentiation and maintains blood brain barrier integrity.  Nat Commun 5:3413.

Yellon DM, Davidson SM (2014) Exosomes: nanoparticles involved in cardioprotection? 
Circ Res 114:325-332.

Zehendner CM, Luhmann HJ, Kuhlmann CR (2009) Studying the neurovascular unit: an 
improved blood-brain barrier model. J Cereb Blood Flow Metab 29:1879-1884. 

Zhang X, Lu A, Li Z, Sun J, Dai D, Qian L (2019) Exosomes secreted by endothelial 
progenitor cells improve the bioactivity of pulmonary microvascular endothelial cells 
exposed to hyperoxia in vitro. Ann Transl Med 7:254. 

Zhang Y, Ingram DA, Murphy MP, Saadatzadeh MR, Mead LE, Prater DN, Rehman J (2009) 
Release of proinflammatory mediators and expression of proinflammatory adhesion 
molecules by endothelial progenitor cells. Am J Physiol Heart Circ Physiol 296:H1675-
1682.

Zhang Y, Li Y, Wang S, Han Z, Huang X, Li S, Chen F, Niu R, Dong JF, Jiang R, Zhang J (2013) 
Transplantation of expanded endothelial colony-forming cells improved outcomes of 
traumatic brain injury in a mouse model. J Surg Res 185:441-449.

Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen Nv, Chopp M (2000) 
VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the 
ischemic brain. J Clin Invest 106:829-838.

Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV (2015) Establishment and dysfunction of the 
blood-brain barrier. Cell 163:1064-1078.

Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, Fan H (2018) Exosomes from 
endothelial progenitor cells improve the outcome of a murine model of sepsis. Mol 
Ther 26:1375-1384.

Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, Zingarelli B, Fan H 
(2019) Exosomes from endothelial progenitor cells improve outcomes of the 
lipopolysaccharide-induced acute lung injury. Crit Care 23:44.

Zhu JH, Wang XX, Zhang FR, Shang YP, Tao QM, Zhu JH, Chen JZ (2008) Safety and efficacy 
of autologous endothelial progenitor cells transplantation in children with idiopathic 
pulmonary arterial hypertension: open-label pilot study. Pediatr Transplant 12:650-
655. 

C-Editors: Zhao M, Wang L; T-Editor: Jia Y


