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ABSTRACT Sindbis virus-infected baby hamster kidney cells were analyzed by thin section 
fracture-label. Specific immunolabel with antiviral glycoprotein antibodies or with conventional 
lectin label (wheat germ agglutinin) were used in conjunction with colloidal gold-conjugated 
protein A or ovomucoid, respectively. In addition, intact infected cells were analyzed with 
both labeling procedures. Experiments with Sindbis infected-chick embryo fibroblast cells 
were carried out as controls. Viral transmembrane glycoproteins appeared present in freeze- 
fractured inner and outer nuclear membrane, endoplasmic reticulum, Golgi stacks and vesicles, 
and plasma membranes; a clear preferential partition with the exoplasmic faces of all intracel- 
lular membranes was observed. By contrast, at the plasma membrane level, Sindbis glycopro- 
teins were found to partition preferentially with the protoplasmic face. It seems likely that this 
protoplasmic partition is related to the binding with the nucleocapsid that takes place during 
the budding of the virus. At the cell surface, viral glycoproteins always appeared clustered 
and were predominantly associated with budding figures: moreover, large portions of the 
plasma membrane were devoid of both glycoproteins and budding viruses. 

Sindbis virus has only two integral membrane glycoproteins, 
E1 and E2, which form the spike complex in the membrane 
envelope and one capsid protein, C, which interacts with the 
genomic RNA to form the nucleocapsid. The bulk of the 
glycoprotein mass is exposed on the extracellular face of the 
membrane. In addition, E2 has a short cytosolic tail which 
anchors the membrane envelope to the nucleocapsid. The 
early events in the biosynthesis and membrane assembly of 
Sindbis (and of the closely related Semliki forest virus) gly- 
coproteins have been intensively studied (1-4). Already in the 
rough endoplasmic reticulum newly synthesized glycoproteins 
probably interact to form a dimer (5), which is then trans- 
ported to the plasma membrane via Golgi stacks and vesicles 
(6). During transport, extensive posttranslational modifica- 
tions take place (7-10). The route along which the Sindbis 
glycoproteins are transported intracellularly and the sites at 
which these posttranslational modifications take place have 
not yet been elucidated. Budding occurs at the plasma mem- 
brane and is probably due to the interaction of spike com- 
plexes with the C proteins assembled in the nucleocapsid (11). 

Fracture-label techniques have recently been developed ( 12, 

13). The main advantage of these methods, which permit 
direct labeling of the fracture faces in freeze-fractured cells, is 
that they allow identification of membrane components and 
their sideness. Several studies concerning the partition after 
fracture of integral plasma membrane proteins, as well as the 
distribution and compartmentalization of intracellular mem- 
brane glycocomponents, have been reported (14-17). It has 
been shown, for example, that in human erythrocytes glyco- 
phorin and band 3 have different partitions after fracture. 
This observation was attributed to their different insertion in 
the membrane, and to their different association with cyto- 
skeletal elements (12, 18). 

We decided to analyze Sindbis-infected baby hamster kid- 
ney (BHK) 1 cells by thin section fracture-label for two main 
reasons: (a) to identify the intracellular membranes bearing 
viral glycoproteins, and (b) to establish whether transmem- 
brane proteins present in various cellular membranes main- 
tain the same partition after fracture in all their locations. In 

Abbreviations used in this paper: BHK, baby hamster kidney; CEF, 
chick embryo fibroblast; WGA, wheat germ agglutinin. 
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the present paper, we show the results obtained by using 
wheat germ agglutinin (WGA) and anti-Sindbis spike anti- 
bodies to perform fracture-label and conventional surface 
label. These data are the first obtained by the combination of 
immunocytochemistry and fracture-label technique: the use 
of specific antibodies in this method may represent a very 
helpful approach in membrane protein studies. 

MATERIALS AND METHODS 

Cell Culture and Virus Infection 
Cultures of BHK and chick embryo fibroblasts (CEF) cells were maintained 

in plastic tissue culture dishes using minimum essential medium supplemented 
with 5% fetal bovine serum (Flow Laboratoreis, Inc., Scotland). Sindbis virus 
H R strain was plaqued, grown, and titered on CEF cells essentially as previously 
described (19). Subeonfluent monolayers were infected at a multiplicity of 50 
plaque-forming units/cell for 1 h at 37"C in phosphate-buffered saline (PBS) 
containing Ca ++ and Mg ÷+ and 1% fetal calf serum. After incubation, the 
medium was replaced with an appropriate volume of minimum essential 
medium containing 5% fetal bovine serum, and the infection was proceeded 
for 3-6 h. 

Antibody Preparation 
An anti-Sindbis antiserum was prepared in rabbit against purified Sindbis 

virus grown on CEF cells. The immunoglobulin G fraction was obtained by 
Na sulphate precipitation and DEAE-ceUulose column and was preadsorbed 
against formaldehyde-fixed uninfected BHK cells by two incubations (30 min 
at 37"C). The immunoglobulin G fraction was then stored at 4"C in aliquots at 
the concentration of 10 mg/ml. This antibody does not react with any cellular 
proteins, as shown by immunofluorescence microscopy, and specifically rec- 
ognizes the Sindbis envelope glycoproteins at all stages of maturation as 
determined by indirect immunoprecipitation (data not shown). 

Fracture-label and Surface Label 
The Sindbis-infected and uninfected BHK and CEF cells were washed three 

times in PBS, pH 7.4, and fixed with 1% glutaraldehyde in the same buffer (30 
rain at 25"C). 

FREEZE-FRACTURE: BHK cells were embedded in 30% bovine serum 
albumin cross-linked by glutaraldehyde. The resulting gels were cut into small 
pieces, impregnated in 30% glycerol in PBS, and frozen in Freon 22 cooled by 
liquid nitrogen. Frozen gels were fractured in liquid nitrogen by repeated 
crushing with a glass pestle, thawed in 1% glutaraldehyde/30% glycerol in PBS, 
gradually deglycerinated, and washed twice in PBS before labeling. 

IMMUNOCYTOCHEMICAL AND WGA-CYTOCHEMICAL LABEL- 
1N (; : Fractured gel fragments were incubated in anti-Sindbis spike antibodies 
(0.5 mg/ml) in PBS for 1 h at 4°C, washed extensively, and finally labeled for 
3 h at 4°C with colloidal gold (prepared by the citrate method) conjugated with 
protein A (20) (Pharmacia Fine Chemicals, Uppsala, Sweden). Isolated BHK 
and CEF unfractured cells were also directly surface-labeled with the antibodies 
followed by protein A-colloidal gold as above. Alternatively, fractured gel 
fragments of Sindbis-infected and uninfected BHK cells were incubated for 1 
h at 37°C in a solution of 0.25 mg/ml of WGA (Sigma Chemical Co., St. Louis, 
MO) in 0.1 M Sorensen's phosphate buffer, 4% polyvinylpyrrolidone, pH 7.4. 
Controls were preincubated for 15 min at 37"C in 0.4 M N-acetyl-D-glucosa- 
mine, and then incubated with WGA in the presence of the sugar (1 h at 37"C). 
The lectin-treated gel fragments and the controls were then incubated for 3 h 
at 4*C in colloidal gold (prepared by the citrate method) conjugated with 
ovomucoid (16, 21). Isolated unfractured BHK cells were also directly surface- 
labeled with WGA ( 1 mg/ml for 1 h at 37°C) and ovomucoid-colloidal gold as 
described above. 

Processing for Electron Microscopy 
Fracture-labeled gel fragments and surface-labeled isolated cells were post- 

fixed in 1% osmium tetroxide in Veronal acetate buffer, pH 7.4, for 2 h at 4"C, 
stained with uranyl acetate (5 mg/ml), dehydrated in acetone, and embedded 
in Epon 812. Thin sections were examined unstained and poststained with 
uranyl acetate and lead hydroxide. 

RESULTS 

The ultrastructure of protoplasmic and exoplasmic faces of 

both plasma and intracellular membranes in fracture-labeled 
preparations shows the usual aspect, as previously reported 
and discussed (12, 18), of interrupted unit membrane seg- 
ments, due to reorganization events after fracture and thaw- 
ing. 

Fracture-label of Intracellular Membranes 
To analyze the distribution of viral glycoproteins on intra- 

cellular membranes, we used immunolabeling with anti-Sind- 
bis spike antibodies, followed by protein A-colloidal gold in 
BHK cells freeze-fractured after different periods of infection 
(3, 4.5, and 6 h). The amount of labeling over endoplasmic 
reticulum, nuclear envelope, and Golgi membranes (Fig. 1) 
was similar in relative intensity and distribution at the differ- 
ent times of infection, whereas an increasing amount of 
immunolabeling was observed at the plasma membrane level, 
clearly related with the increase in viral budding with time. 
In all freeze-fractured intracellular membranes, the immu- 
nolabeling was present over the exoplasmic faces. Whenever 
identification of intracellular protoplasmic faces was possible 
(as in "cracks" where the two leaflets of the fractured mem- 
brane remain in close opposition) (12), no significant labeling 
was observed (Fig. l f).  Over the exoplasmic faces of rough 
endoplasmic reticulum (Fig. l a), inner (Fig. 1, b, d, and f 
[arrow]) and outer (Fig. l c) nuclear envelope, and Golgi 
apparatus membranes (Fig. 1, a and g), gold particles appeared 
almost uniformly distributed. When penetration of the label 
through cross fractures of the Golgi complex occurred, the 
unfractured inner surfaces of dilated cisternae appeared heav- 
ily labeled (Fig. 1, e andf[arrowhead]). In Fig. 1 g, unlabeled 
protoplasmic faces (arrows) and labeled exoplasmic faces (ar- 
rowheads) of fractured membranes of a Golgi region are 
evident. Cross-fractured cytoplasm as well as mitochondria 
membranes were not labeled. Low labeling in Golgi areas of 
the cytoplasm was associated with small vesicles probably 
responsible for the transport of viral glycoproteins. Free nu- 
cleocapsids scattered in the cytoplasm were not labeled (data 
not shown). In the control uninfected cells the density of the 
labeling was very low (~ 10% with respect to the infected cells, 
not shown in the figures). 

Surface Label 
Surface labeling with anti-Sindbis spike antibodies and 

WGA of unfractured Sindbis virus-infected BHK cells (at 3, 
4.5, 6 h after infection) was performed to study the distribu- 
tion of the viral glycoproteins and their relationship with the 
budding virions. The immunolabeling was always exclusively 
restricted to the budding virion, showing the high specificity 
of the antibodies used (Fig. 2, b and c). Budding viruses and 
immunolabeling were not distributed at random on the entire 
cell surface, but concentrated in discrete areas (Fig. 2, a and 
b). This nonrandom distribution was evident even at the early 
times of infection (3 h), as well as at a later time (6 h), despite 
the great differences in the amount of immunolabeling and 
budding observed. The same results were obtained by im- 
munolabeling of Sindbis-infected CEF cells at 4.5 h after 
infection (data not shown). Controls, using uninfected BHK 
cells, showed only unlabeled surfaces (not shown). 

WGA-labeling of cell surfaces showed a uniform distribu- 
tion over the entire plasma membrane, without preferential 
concentration in budding areas (Fig. 2e), even if budding 
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FIGURE 1 Fracture immunolabel of intracellular membranes of infe~ted BHK cells: preferential partition with the E faces of viral 
glycoproteins. (a) E face of endoplasmic reticulum membrane (4.5 h after infection); (/9) E face of inner nuclear envelope (6 h 
after infection); (c) E face of outer nuclear envelope (6 h after infection); (d) E face of inner nuclear envelope (6 h after infection); 
(e) P face of fractured Golgi cisternae and inner surfaces of dilated rims and cisternae (6 h after infection); (f) "crack" showing 
complementary P face and E face (arrow) of an inner nuclear envelope and inner surfaces of dilated Golgi cisternae (arrowhead) 
(6 h after infection); (g) E faces (arrowheads) and P faces (arrows) of Golgi fractured cisternae (3 h after infection). (a) 38,000; (b) 
x 23,000; (c) x 38,700; (d) x 55,000; (e) x 41,000; (f) x 25,000; (g) x 31,600. 

viruses were very intensely labeled by the lectin (Fig. 2d). No 
differences in amount of WGA label could be observed be- 
tween uninfected and infected BHK cells (at 3, 4.5, and 6 h 
after infection). Controls, in which the cells were treated with 
the lectin in the presence of N-acetyl-D-glucosamine, showed 
drastic (>90%) reduction of the label (not shown). 

Fracture-label of Plasma Membranes 
The partition after fracture of viral glycoproteins with the 

protoplasmic and exoplasmic faces of plasma membrane of 
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Sindbis virus-infected BHK cells was studied by immunola- 
beling with anti-Sindbis spike antibodies followed by protein 
A-colloidal gold, 3, 4.5, and 6 h after infection. At variance 
with the results obtained with endomembranes, significant 
immunolabel was observed over the protoplasmic faces, fre- 
quently at sites of budding, revealed by the co-localization 
with the underlying nucleocapsids (Fig. 3, a - c  [arrows]). The 
gold particles were usually clustered in small groups, and only 
rarely isolated. These images were well observed at 4.5 h after 
infection, when a good balance occurred between the amount 
of labeling and the preservation of the plasma membrane. 



FIGURE 2 Surface immunolabel and surface WGA label of infected BHK cells: nonrandom distribution of viral glycoproteins and 
budding figures, in contrast with the uniform distribution of the WGA-label. (a-c) Imrnunolabeling (4.5 h after infection); (d and 
e) WGA labeling (4.5 h after infection). (a-e) x 12,000, 22,000, 66,000, 35,000, and 14,000, respectively. 

The WGA labeling of the protoplasmic faces was as significant 
as the immunolabeling, and appeared with the same distri- 
bution in small clusters in opposition to the underlying nu- 
cleocapsids (Fig. 3d). Unlabeled nucleocapsids, as well as 
clusters of gold particles unrelated with nucleocapsids, were 
only rarely observed (Fig. 3 c). Because of the heterogeneous 
distribution of budding and immunolabeling at the cell sur- 
face (see above and Fig. 2, a and b), the observation of 

exoplasmic faces was confined to those which showed mature 
virions budded from and still in contact with the surface, 
embedded in the bovine serum albumin matrix. These exo- 
plasmic faces were very weakly immunolabeled (Fig. 4, a-c), 
even if gold particles penetrated in the gel were seen decorating 
the surface of adjacent unfractured budding virions (Fig. 4c 
[arrows]). In contrast, the WGA labeling over the exoplasmic 
faces was intense and uniformlydistributed (Fig. 4d) (16). 
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FIGURE 3 Fracture immunolabel and fracture WGA label over P faces of infected BHK cells: the immunolabeling as well as the 
WGA labeling is clustered and frequently related to underlying nucleocapsids (arrows). (a-c) Immunolabeling (6, 6, and 3 h after 
infection, respectively). (d) WGA-labeling (4.5 after infection). (a-d) x 65,000, 73,000, 58,400, and 24,000, respectively. 

D ISCUSSION 

Examples of different partition after fracture of transmem- 
brahe glycoproteins had been previously reported (12, 18). 
Human glycophorin, which in the plasma membrane oferyth- 
rocytes is oriented in a fashion very similar to Sindbis glyco- 
proteins, was preferentially found over the exoplasmic face of 
the plasma membrane. This partition can be explained by the 
knowledge that the bulk of glycophorin mass, comprising the 
carbohydrate side chains, is exposed at the extracellular side 
of the plasma membrane. However, band 3, a glycoprotein 
which also has a conspicuous mass and carbohydrate side 
chains exposed at the extracellular face of the plasma mem- 
brane, is preferentially found over the protoplasmic face of 
the membrane after fracture. This peculiar partition has been 
interpreted as probably due to the association of band 3 to 
components of the erythrocyte cytoskeleton. The main find- 
ing we report in this paper is the apparent difference of 
partition after fracture of Sindbis glycoproteins present in 
different cellular membranes. In all fractured intracellular 
membranes, viral glycoproteins remained exposed at the ex- 
oplasmic face, whereas at the plasma membrane a clear 
preferential partition with the protoplasmic face was con- 
stantly found. The peculiar WGA pattern of labeling of the 
plasma membrane, diffuse labeling of the exoplasmic face 

and discrete labeling of the protoplasmic faces at the site of 
viral budding, demonstrates that the change of partition po- 
larity of endomembranes and plasma membranes is not a 
general phenomenon of all membrane glycoproteins but, 
rather, is specific for viral glycoproteins. These results strongly 
suggest that the partition after fracture of a transmembrane 
glycoprotein depends more on the interaction with other 
components adjacent to the membrane than on the orienta- 
tion of the protein itself in the membrane. Along this line it 
seems likely that Sindbis glycoproteins acquired a proto- 
plasmic partition at the plasma membrane level because of 
their interaction across the membrane with the underlying 
nucleocapsid. This interaction takes place during the budding 
process. In most cases, the dense nucleocapsid was observed 
in close contact to the regions of the protoplasmic face of the 
plasma membrane where viral glycoproteins were detected; 
moreover, when nucleocapsid was not evident, we cannot 
exclude that this was due to the plane of sectioning. 

Sindbis spike complexes and budding viruses showed a 
clear nonrandom distribution at the surface of both BHK and 
CEF cells. Large regions of the plasma membrane were devoid 
of both glycoproteins and budding viruses. These results 
confirm an earlier report (22) on surface replica images of 
BHK infected cells. The amount of surface labeling that 
cannot be ascribed to budding figures was always low. We 
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FIGURE 4 Fracture immunolabel and fracture WGA label over the E faces of infected BHK cells: the immunolabeling is very 
weak or absent, in contrast with the heavily labeled budded virions in the BSA-gel matrix (arrows). The WGA labeling appears 
dense and uniform. (a-c) Immunolabeling (6 h after infection). (d) WGA-labeling (4.5 h after infection). (a-d) x 67,000, 65,000, 
91,000, and 90,000, respectively. 

favor, therefore, the view that the pool of free viral spikes in 
the plasma membrane is small (23). In addition, surface 
labeling experiments made at an earlier or later time of 
infection (3 or 6 h) showed great differences in the amount of 
budding and of glycoprotein labeling, but always demon- 
strated a nonrandom distribution of both. 

The thin section fracture-label technique gives a good pres- 
ervation of the subcellular structures and thus permits us to 
recognize the cellular organelles being labeled. By applying 
this methodology to Sindbis-infected BHK cells, we show in 
this paper that viral glycoproteins are present in the inner and 
outer nuclear membrane, endoplasmic reticulum, Golgi 
stacks and vesicles, and plasma membranes. These results 
confirm and extend the previous data on Semliki forest virus- 
infected BHK cells obtained by immunolabeling of ultrathin 
frozen sections (6). An unexpected and interesting finding 
was the high concentration of spike proteins in the inner 
nuclear membrane, which is devoid of attached ribosomes. 
Because the labeling we observed was comparable to that 
found on the outer nuclear membrane, it could be argued 
that viral glycoproteins synthesized by the polyribosomes 

attached to the outer membrane freely diffused from the outer 
to the inner membrane despite the pore complex structure. 
However, we have no evidence that the glycoproteins present 
in the inner nuclear membrane are destined to enter into the 
intracellular transport pathway, as their counterparts present 
on the outer membrane presumably do. To answer this point, 
analysis of infected cells, fractured at different times after 
cycloheximide addition (6), is currently in progress. The pres- 
ence of vesicular stomatitis virus G glycoprotein on the inner 
nuclear membrane of infected Chinese hamster ovary cells 
had been previously reported (24); in that study, however, the 
viral glycoproteins were detected only in localized blebbing 
regions of the nuclear envelope, presumably because of the 
limitations of the ultrathin frozen sections technique used. 
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