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Objectives.The purpose of this study was the automated generation and validation of parametric blood flow velocity maps, based on
contrast-enhanced ultrasound (CEUS) scans.Materials andMethods. Ethical approval for animal experiments was obtained. CEUS
destruction-replenishment sequences were recorded in phantoms and three different tumor xenograft mouse models. Systematic
pixel binning and intensity averaging was performed to generate parameter maps of blood flow velocities with different pixel
resolution. The 95% confidence interval of the mean velocity, calculated on the basis of the whole tumor segmentation, served
as ground truth for the different parameter maps. Results. In flow phantoms the measured mean velocity values were only weakly
influenced by the pixel resolution and correlated with real velocities (𝑟2 ≥ 0.94, 𝑝 < 0.01). In tumor xenografts, however, calculated
mean velocities varied significantly (𝑝 < 0.0001), depending on the parameter maps’ resolution. Pixel binning was required for all
in vivomeasurements to obtain reliable parameter maps and its degree depended on the tumormodel. Conclusion. Systematic pixel
binning allows the automated identification of optimal pixel resolutions for parametric maps, supporting textural analysis of CEUS
data.This approach is independent from the ultrasound setup and can be implemented in the software of other (clinical) ultrasound
devices.

1. Introduction

Over the last decades tumor heterogeneity has gained more
and more attention in cancer research [1–3]. The highly
complex and variable process of cancer evolution causes
the development of a wide variety of genetically and phe-
notypically different cancer cell subclones in tumors [2, 4,
5]. Since tumor heterogeneity is recognized as an indicator
for poor clinical prognosis, increasing efforts are spent on
characterizing the spatial and temporal heterogeneity of
tumor phenotypes [6–8]. In this regard, medical imaging
techniques are increasingly used to noninvasively acquire
tomographic images and to assess intratumoral heterogeneity
[9–11], to improve disease diagnosis, prediction of therapy
response, treatment monitoring, and prognosis [7, 12, 13].

Contrast-enhanced (CE) imaging strongly supports
anatomical imaging when it comes to the detection of

therapy responses [14, 15]. However, most previous studies
on texture analysis and radiomics are based onmorphological
features and not on functional (vascular) data [12, 13, 16, 17].

Ultrasound (US) is an inexpensive and widely avail-
able imaging modality which is highly suitable to deter-
mine anatomical, functional, and molecular parameters of
tumors [18]. Postprocessing of contrast-enhanced ultrasound
(CEUS) data, that is, the calculation of functional parameters
based on time-intensity curves (TIC), is used to generate
functional parameter maps to assess intratumoral hetero-
geneity [19, 20].The quality of these parametermaps depends
on the spatial resolution, the ultrasound frequency, the
contrast agent, the imaging system, and the technique used
for image acquisition. A high spatial resolution, for example,
pixel-wise analysis, which is desired by the user, is usually
accompanied by low signal-to-noise ratios (SNR), as the
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likelihood of a sufficient amount of microbubbles (MB) is
reduced in smaller resolution cells. In addition, smaller seg-
mentations are more susceptible to motion artifacts, which
further reduces the SNR and complicates reliable curve fitting
to the data. Therefore, it is important to individually validate
parameter maps.

For that reason, we developed a postprocessing approach
that allows the automated generation of validated functional
parameter maps from destruction-replenishment CEUS data
by systematic pixel binning. We propose that future studies
should implement such validation steps in their analysis to
ensure the reliability and robustness of their parameter maps.

2. Materials and Methods

2.1. Flow Phantom Experiments. A gelatin phantom contain-
ing a single channel of 0.96mm in diameter was prepared for
MB velocity measurements. In-house produced polymeric
(poly-butyl cyanoacrylate; PBCA) MB with a mean diameter
of 2 𝜇m were used as US contrast agent [21]. Using a
syringe pump and a MB concentration of 5 ∗ 108MB/ml,
several destruction-replenishment cine loops (𝑛 = 4) were
recorded at various flow velocities ranging from 0.038mm/s
to 1.21mm/s. B-mode images were calculated from the raw
radio-frequency (RF) CEUS data and analyzed as described
below.

2.2. Mouse Tumor Model. All animal experiments were
approved by the governmental ethics approval committee.
To induce tumor growth 4 ∗ 106 cells of either A431, MLS,
or A549 origin were injected into the right flank of CD-
1 nude mice (Charles River, Sulzfeld, Germany) (𝑛 = 3 for
each group). When the tumors reached a size of 5–8mm in
diameter, the mice were subjected to CEUS imaging. After
CEUS imaging the mice were sacrificed and tumors were
removed for histological analysis (see SupplementalMaterial,
available online at https://doi.org/10.1155/2017/2098324).

2.3. Contrast-Enhanced Ultrasound Imaging. During the
whole imaging procedure, themice were kept under continu-
ous anesthesia using 2% v/v isoflurane. Each mouse received
a bolus injection of 50 𝜇l contrast agent (2 ∗ 108 PBCA
MB/ml) via a tail vein catheter. The injection phase and
the subsequent destruction-replenishment sequence were
recorded at 50 frames per second, using the MS550D trans-
ducer, operating at 40MHz, connected to the Vevo 2100
System (FUJIFILM VisualSonics Inc., Toronto, Canada). The
B-mode images were directly computed from RF-data and
analyzed as described below.

2.4. Calculation of Blood Flow Velocities. A region of interest
(ROI), that is, tumor or channel, was manually selected for
further analysis. The calculation of the mean blood flow
velocity was based on a slightly modified version of the
destruction-replenishment model by Wei et al. [22]. The
signal intensity, generated by the contrast agent reentering the

imaging slice after a destructive pulse, was modeled by the
following exponential function:

𝑦 (𝑡) = 𝐴 (1 − 𝑒−𝛽𝑡) + 𝑐, (1)

where 𝐴 is the amplitude, 𝛽 is the rate constant determining
the steepness of the rise, and 𝑐 is an additional factor to shift
the function. The time constant 𝜏 is the inverse of the rate
constant 𝛽 and has to be multiplied with the thickness of the
imaging plane d to obtain the velocity V.

𝜏 = 1
𝛽
,

V = 𝜏𝑑.
(2)

The curve fitting was performed using MATLAB R2015a
(MathWorks, Natick, USA). The 95% confidence interval
of the mean blood flow velocity was used to evaluate the
reliability of the parametric perfusion maps.

2.5. Generation and Validation of Parametric Maps. System-
atic pixel binning (𝑛2 × 𝑛2; 𝑛 = 1–8), by averaging the signal
intensities, resulted in several datasets with differing spatial
resolution. Similar to the algorithm described above, an
exponential function was fitted to the TIC of each individual
pixel of the ROI in all datasets. To exclude pixels with low
SNR, exclusion criteria were introduced (see Supplement
Figure 1). In accordancewith the imaging data, our algorithm
calculated parametric velocitymapswith a resolution ranging
from 1 × 1 pixel to 256 × 256 pixels (𝑛2 × 𝑛2; 𝑛 = 1–8).
With the imaging setup used, the reconstructed images had
a pixel size of 22𝜇m × 22𝜇m and 55 𝜇m × 22𝜇m for
the phantom measurements and the in vivo measurements,
respectively. For validation purposes, the postprocessing
algorithm calculated for each parametric velocitymap amean
flow velocity, by averaging the individual velocities of the
ROI. The reliability of the parameter maps was validated
by comparing the average velocity of each single parameter
map with either the preadjusted velocity of the syringe pump
(phantom experiments) or the velocity calculated from the
whole tumor segmentation (in vivo experiments). Only when
the average velocity of the parameter map lies in the 95%
confidence interval of the velocity calculated from the whole
tumor segmentation, the parameter map was regarded as
reliable.

2.6. Statistical Analysis. The nonparametric Spearman corre-
lation coefficient and coefficient of determination of pread-
justed and calculated MB velocities as well as the one-way
ANOVA analysis of the in vivo data were determined using
GraphPad Prism 5 (GraphPad Software, La Jolla, USA).

3. Results

3.1. Flow Phantom Experiments. Irrespective of the pixel
resolution, the mean MB velocity of all parameter maps
in Figure 1(a) was similar. As shown in Figure 1(b) and
Supplement Figure 2, the calculated mean flow velocities
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Figure 1: Flow phantommeasurements. Parametric maps of different resolutions were calculated and color-coded as shown in (a). At higher
resolution, a laminar flow profile can be observed. These measurements were performed at different flow speeds and used to calculate the
mean flow velocity. The correlation (𝑝 < 0.01) of calculated mean flow velocity and preadjusted flow velocity are exemplarily shown for a
pixel-wise analysis, a binning size of 64, where 8 × 8 pixels were binned, and a binning size of 4096, where the whole ROI is covered by a
single segmentation in (b). It proves the independence of the pixel size and mean flow velocity of the whole ROI at ideal conditions, as well as
the functionality of our algorithm to calculate flow velocities. The correlations for the other binning sizes are shown in Supplement Figure 2.

correlated very well with the preset velocities of the syringe
pump, resulting in 𝑟2-values of at least 0.94 and slopes of the
linear regression curve close to the ideal value of 1. Figures
2(a)–2(d) show exemplary TIC of differently sized segmen-
tations and the resulting exponential curve fit. An increase
in signal fluctuations with decreasing segmentation size was
found, which, however, still resulted in a reasonably good
exponential curve fit for the pixel-wise analysis (Figure 2(d)).

3.2. In Vivo Experiments. The applicability of our algorithm
was tested in three tumor xenograftmodels, which are known
to express different patterns of angiogenesis [23]. While
A431 tumors are highly angiogenic and show many small
immature vessels homogeneously distributed over the entire
tumor, MLS tumors are heterogeneous with immature and
mature regions. A549 tumors are the most mature and least
vascularized ones with many large vessels in the periphery
[23]. For all tumor models the best curve fit was obtained
when the whole tumor area was segmented. In this context,
A549 (0.09 ± 0.02mm/s) and A431 (0.1 ± 0.05mm/s) tumors
showed higher MB velocity values than MLS tumors (0.07 ±
0.01mm/s; Supplement Figure 3).

When the parameter maps were analyzed, increasing
mean velocities were observed with increasing resolution
of the parameter maps (𝑝 < 0.0001). Apparently, the
background noise in TIC of smaller segmentations was

misinterpreted by the software as replenishment effect (Fig-
ures 2(e)–2(h)). Furthermore, the number of pixels, which
needed to be binned to obtain reliable parameter maps,
varied between individual measurements and tumor models
(Figure 3). The number of pixels which had to be binned
to generate reliable parameter maps was highest in A549
tumors, followed by A431 and MLS tumors. For some of the
measurements none of the parameter maps was identified as
reliable.

Without binning, hardly any regional differences in the
flow velocities were observed in the parametric maps and,
thus, all three tumor models looked similar (Figures 4(a),
4(b), and 4(c); pixel-wise analysis). However, differences in
between the tumor models become apparent if pixel binning
is performed (Figures 4(a), 4(b), and 4(c); reliable resolution).
For A431 and MLS tumors the parameter maps of higher
resolution (8 × 8 pixels) were in good agreement with data
from literature and our own findings, about the vascular
composition of these tumors: the MB velocity values in
A431 tumors showed a lower variability than in MLS tumors
and a relatively homogeneous distribution (Figure 4(b)).
As indicated in Figure 4(c) the vascular network of the
MLS tumor was more heterogeneously distributed with
many unperfused pixels and pixels with high velocity values.
These results are in line with the histological images, A431
tumors have a relatively dense network of small immature



4 Contrast Media & Molecular Imaging

Re
lat

iv
e s

ig
na

l i
nt

en
sit

y 
(a

.u
.)

Re
lat

iv
e s

ig
na

l i
nt

en
sit

y 
(a

.u
.)

Re
lat

iv
e s

ig
na

l i
nt

en
sit

y 
(a

.u
.)

Re
lat

iv
e s

ig
na

l i
nt

en
sit

y 
(a

.u
.)

Re
lat

iv
e s

ig
na

l i
nt

en
sit

y 
(a

.u
.)

Re
lat

iv
e s

ig
na

l i
nt

en
sit

y 
(a

.u
.)

(a)

(b)

(c)

(d)

Phantom In vivo h
g

f

Whole ROI Whole ROI

d

c

b

(e)

(f)

(g)

(h)

0

0.5

1

1.5

2

5 10 150
Time (s)

0.96

0.97

0.98

0.99

1

1.01

1.02

5 100
Time (s)

0

0.5

1

1.5

2

5 10 150
Time (s)

0

0.5

1

1.5

2

5 10 150
Time (s)

5 100
Time (s)

0

0.5

1

1.5

2

2.5

3

5 100
Time (s)

0.9

0.95

1

1.05

1.1

1.15

1 × 11 × 1

8 × 8 16 × 16

Figure 2: MB velocity map and TIC of a phantom and A431 tumor measurement. The exemplary velocity maps of a pixel-wise analysis are
depicted in (a) and (e).The representative TIC of the segmentations demarked inwhite are presented in (b)–(d) for the phantommeasurement
and in (f)–(h) for the in vivo measurement.
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Figure 3: Parametric perfusion analysis of mouse tumors. Graphs of nine individual in vivo measurements displaying the calculated mean
MB velocity of different pixel resolution. The arrow indicates the parameter map with the best pixel resolution, having a mean MB velocity
falling into the 95% confidence interval of the MB velocity calculated for a single segmentation, which is covering the whole tumor (tumor
mean). The high variability in between the measurements shows the need for an individual assessment of each tumor. The number of pixels
on the top of each graph displays the size of the tumor segmentation.

vessels throughout the tumor, and MLS tumors show a more
heterogeneous network of small and large vessels (Figures
5(b) and 5(c)). Due to the high binning rate in A549 tumors
(128 × 128 pixels), structural characteristics of the vasculature
could hardly be assessed (Figure 4(a)). A larger vessel, which
can be seen in the pixel-wise analysis on the right side of the
tumor, is masked by the high binning rate. However, in line
with the presence of larger vessels in the tumor periphery that
were found in histology (Figure 5(a)), the reliable parameter
map presented in Figure 4(a) shows a higher MB velocity in
the lower periphery of the tumor.

4. Discussion

Our results show that CEUS parameter maps of in vivo
measurements are strongly influenced by noise, pointing to

the need for their validation. We show that if this is done on
an individual basis the maximal pixel resolution of a reliable
parameter map can be obtained. In our study, it would have
been desirable to additionally compare our results to a gold
standard of blood flow velocity; however, imaging tumor
blood flow velocity with other imaging techniques, such as
DCE MRI or DCE CT, is difficult as well and often not
possible at a quantitative level. In addition, this is complicated
by image registration problems which occur when trying to
image the same regions of interest. Furthermore, in contrast
to the phantom measurements, the in vivo measurements
cannot be compared to and validated by a priori known
values. However, if the calculations are reliable, all parameter
maps of different pixel resolutions have approximately the
same average velocity, as in case of the phantom experiments.
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Figure 4: Exemplary parametric MB velocity maps for each tumor model. The left panel presents a parametric map which is based on a
pixel-wise analysis. The right panel presents the validated parametric map of our analysis algorithm. For the A549 tumor 128 × 128 pixels had
to be binned. The parameter map enables the identification of a region of higher MB flow velocities in the lower periphery (a). The reliable
parameter map of the A431 tumor, with a binning of 8 × 8 pixels, shows a homogeneously distributed vascular network with relatively low
MB velocities (b). Also in this MLS tumor a binning of 8 × 8 resulted in a reliable parameter map. In this context, regional differences and
the more heterogeneous distribution of velocities as well as the larger spectrum of different velocity values can clearly be identified.

Themost reliable mean tumor blood flow velocity calculation
for eachmeasurement is based on the TIC of the whole tumor
segmentation.This measurement is the best available control
to validate the different in vivo parameter maps. Defining
the 95% confidence interval of each individual ground truth
as validation criterion links the goodness of the ground
truth measurement directly to the parameter map. Thus, our
approach takes the variability of individualmeasurement into

account and does not use a fixed number for pixel binning as
it is performed in other studies [19, 20].

While A431 tumors are highly angiogenic and showmany
small immature vessels homogeneously distributed over the
entire tumor, MLS tumors are heterogeneous with immature
and mature regions. A549 tumors are the most mature and
least vascularized ones with larger vessels in the periphery
[23]. With respect to the intratumoral vessel distribution,
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Figure 5: Representative immunohistochemistry images of A549, A431, and MLS tumors. The A549 tumor shows larger, more mature
vessels in the tumor periphery, as it can be seen on the magnified image sections I and II. In contrast, the core shows a lower degree of
vascularization with smaller vessels. A431 tumors have small immature vessels homogeneously distributed throughout the tumor, as it can be
seen on the magnified image sections from the tumor periphery and core. MLS tumors present a more heterogeneous vessel network. This
tumor model presents bigger vessels throughout the tumor (I and II). However, directly next to these highly vascularized areas, regions of
lower vascularization can be observed (II and III). The scale bars correspond to 600 𝜇m.

the A549 tumor model is the most heterogeneous one. At
the same time, the A549 tumor model presents the highest
binning rates. We expect that largely unperfused areas in the
tumor core, which are apparently not excluded by our exclu-
sion criteria as well as the most restrictive 95% confidence
interval, prevent parameter maps of higher resolution to be
defined reliably.

To improve the applicability of our algorithm the fol-
lowing limitations should be addressed in future studies.
First, our binning approach is based on a chessboard-
like segmentation, which does not consider the shape and
position of the tumor. Depending on the location and size
of the individual segmentations they might suffer from
a partial volume effect, compromising the quality of the
respective parameter map. Mathematical optimization of the
location, shape, and size of the segmentations could help to
overcome this issue. This would potentially result in a finer
segmentation and resolution in highly perfused areas and
lower resolution in avascular areas. Second, the exclusion
criteria, to identify pixels with low SNR, can be refined.Third,
alternative ground truth definitions, for example, using a
fixed percentile, can be tested. Fourth, preprocessing the data,
to account for the complex noise statistics, might reduce the
reliable resolution of the parameter map. Fifth, a continuous
infusion of the contrast agent, instead of a bolus injection,
would enable several destruction-replenishment sequences,
reducing the variability caused by the measurement. Sixth,
more sophisticated fitting algorithms should be tested to
reduce systematic errors which might have been introduced
by themodel used in this study. Seventh, all experiments were
performed with a preclinical US device using experimental
MB. However, neither the use of a clinical US device nor of
clinically approved MB should influence our software-based
analysis strategy. As in clinical US images pixel sizes are larger
and MB specific scan modes are available, we even expect
better performance due to higher SNR.

Overall, our results show that highly spatially resolved
parameter maps, obtained from high-frequency CEUS, need
to be validated. Systematic pixel binning can help to identify
the pixel resolution to generate reliable parametric maps for
each individual measurement. We want to stress the fact that
with pixel binning the reliability of the parameter map is
improved, but spatial information is lost. Alternative binning
methods, with variable resolution in different areas of the
ROI, as well as more extensive preprocessing of the US
data, to remove noise, should be tested in future studies to
improve the resolution of reliable parameter maps. As this
method is independent of the used equipment, it can be
implemented into other (clinical) US software packages to
validate functional parametermaps. Reliable parametermaps
will better support textural analysis of CEUS data and thus
may be capable of improving diagnosis, prediction of therapy
response, treatment monitoring, and prognosis.
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