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Neural network approaches 
for solving Schrödinger equation 
in arbitrary quantum wells
A. Radu1* & C. A. Duque2

In this work we approach the Schrödinger equation in quantum wells with arbitrary potentials, using 
the machine learning technique. Two neural networks with different architectures are proposed and 
trained using a set of potentials, energies, and wave functions previously generated with the classical 
finite element method. Three accuracy indicators have been proposed for testing the estimates given 
by the neural networks. The networks are trained by the gradient descent method and the training 
validation is done with respect to a large training data set. The two networks are then tested for two 
different potential data sets and the results are compared. Several cases with analytical potential have 
also been solved.

In recent decades, more and more types of problems have been systematically addressed through artificial intelli-
gence methods1. In particular, the application of machine learning (ML) to solve problems already admitting con-
ventional solutions can be equally instructive and promising for further extensions to more advanced contexts. 
A problem of very recent interest, mostly for computational material science and quantum chemistry, is solving 
the Schrödinger equation (SE) using neural models. So far there are rather few works dealing with this topic, 
the content of the most noticeable from a physicist point of view being succinctly described in the following.

In a pioneering work2, M. Sugawara introduced a new methodology for solving the one-dimensional (1D) 
SE by mixing a genetic algorithm (GA) and a neural network (NN). Approximations of the eigenfunction and 
eigenvalue were generated by applying an original version of the GA and were later refined by training the NN. 
A random evaluation point method was used to speed up the convergence in early generations of approximated 
eigenfunctions. For testing and validation, the method was applied to the harmonic oscillator and Morse poten-
tial systems. The acknowledged benefits of this methodology were the relatively small number of unknown 
parameters and the intrinsically parallel character of the algorithms. K. Mills et al. proposed a deep learning 
method for solving the two-dimensional (2D) SE3. They trained a NN to predict the ground and the first excited 
state energies of an electron in different classes of 2D confining potentials. Their work was intended to gener-
ally demonstrate the ability of a properly trained deep NN to rapidly fit the solution to a partial differential 
equation. A comparison of ML approaches – kernel ridge regression, random forests, and artificial NNs – was 
also included in the paper. J. Han et al. solved the many-electron SE using deep NNs4. They proposed a new 
family of trial wave functions (WFs), the physical nature of which was explicitly imposed by the Pauli Exclu-
sion Principle. The WF optimization was done through a variational Monte Carlo approach. Successful results 
were presented for a series of atomic systems: H2, He, LiH, Be, B, and a chain of 10 hydrogen atoms under open 
boundary conditions. A millihartree accuracy was achieved for two-electron systems. However, a decrease of 
the accuracy was found as the number of electrons increased. S. Manzhos published a survey of the recent ML 
techniques used to solve the electronic and vibrational SEs, typically related to computational chemistry5. He 
pointed out that, for abundant and qualitative training data, single-hidden layer NNs seem to be advantageous 
over multi-layer NNs. Some disadvantages were also mentioned: failing to extrapolate outside of the learning 
domain, ignoring the symmetries, and costly optimization of parameters. J. Hermann et al. proposed a deep NN 
representation of electronic WFs for molecules with up to 30 electrons and showed that it can outperform other 
quantum chemistry methods based on variational approaches6. H. Li et al. used a NN model to solve the static 
SE by computing multiple excited states and orthogonalized WFs7. They discussed the efficiency and scalability 
of the solver by analyzing 1D and 2D examples of quantum systems. L. Grubišić et al. studied two types of NN 
architectures for approximating eigenmodes localized by a confining potential8. A dense deep network was used 
for a compressed approximation of the ground state and a fully convolutional NN architecture was considered 
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for dealing with the mapping nonlinearly connecting a mesh sample of the potential with the related landscape 
function. They finally analyzed the accuracy and effectiveness of the proposed methods.

By the present work we intend to approach the Schrödinger problem in quantum wells (QWs) with finite 
walls and arbitrary potentials, using rather simple NNs. When SE is solved by conventional numerical methods, 
the computation of the energy eigenvalues and eigenfunctions cannot be conceived as separate, independent 
problems. The NN approach has the particular advantage of allowing the calculation to be decoupled into two 
disconnected problems: the estimation of the energies and the estimation of the wave functions. For the energy 
eigenvalue estimation, an independent NN can be used similarly to how the value of the wave function is esti-
mated by a NN at a particular point in space. The novelty of our paper consists in bringing into discussion and 
comparing different neural architectures. Given that solving SE does not imply a single numerical estimate, but 
rather an unknown function discreetly represented as a collection of numbers, two types of NNs with different 
structures will be proposed for generating these numbers. The NNs are differently trained using a set of potentials, 
energies, and WFs previously generated by the finite element method (FEM). The main difference between the 
two NNs used is that the first can be understood as a set of separately trained subnets, for each element of the 
position discretization. This makes the training process more transparent than for the second network, the lat-
ter acting more like a mathematical black box. Three accuracy indicators will be proposed for testing the NNs. 
The networks are trained by the gradient descent (GD) method using different data batches, and the training is 
validated with respect to a training data set (DS) containing 151 kilosamples. Then both networks will be tested 
for two different DSs. Several cases with analytical potential will also be solved and analyzed.

The paper is structured as follows: Sect. 2 presents the principles of the methods used and Sect. 3 details 
the calculations, the results obtained, and the discussions on their account. The conclusions are formulated in 
Sect. 4, and the Appendix at the end contains technical details about the sets of potentials used in the calculations.

Methods
Schrödinger equation and data sets.  We consider the SE of a particle confined in a QW:

where the finite-walls confinement potential:

is defined so that 0 ≤ Vi(x) ≤ Vo and V(x) has a finite number of discontinuities.
With the notations ξ ≡ x/a , ψ(ξ) ≡ ϕ(aξ) , v(ξ) ≡ V(aξ)/Vo , e ≡ E/Vo , and µ ≡ 2m∗Voa

2/�2 , Eq. (1) can 
be put in the convenient dimensionless form:

where 0 ≤ v(ξ) ≤ 1 , the WF will be normalized so that max|ψ(ξ)| = 1 , and e ∈ (0, 1).
We will denote by {vσ }1≤σ≤S : [−b/a, b/a] → [0, 1] a family of S dimensionless arbitrary confinement func-

tions generated so as to ensure the existence of at least one bound state in each well. A conventional numerical 
solver is used to calculate the corresponding ground state WFs {ψσ } and energies {eσ } , with Dirichlet boundary 
conditions at ξ = ±b/a . The DSs {vσ ;ψσ ; eσ }1≤σ≤S thus defined will be later used for training and testing the 
NNs.

Neural networks architectures and functions.  We use two discretizations of the domain on which 
the dimensionless Schrödinger problem is defined: one for sampling the input data (values of the confinement 
potential function) and the other for estimating the output data (values of the wave function). Two types of NNs 
are taken into account; they will be denoted by (a) and (b), as presented in Fig. 1. The input and output discre-
tizations determine the number of neural nodes in the input and output layers, respectively. Both network types 
have M nodes in the input layer (IL), corresponding to a uniform discretization �in ≡ {ξi}1≤i≤M of the spatial 
domain [−b/a, b/a] , and P nodes in the output layer (OL), corresponding to a different uniform discretization 
�out ≡ {ξk}1≤k≤P of the same domain. The NNs differ in the architecture of the nodes in the hidden layer (HL): 
NN(a) has PN neurons separately feeding the P neurons of the OL by individual groups of N neurons each, 
while NN(b) has N hidden neurons connected to all neurons of the OL. He have practically P similar separate 
subnets composing the NN(a), each of them predicting the WF at a single point. Conversely, NN(b) cannot be 
decomposed in separate subnets. Both networks have PN connections between HL and OL, but they differ in the 
number of connections between IL and HL: PNM for NN(a) and only NM for NN(b).

We consider that a neural activation function nonlinear and continuously differentiable on the entire domain 
would be the best choice, because this type of function favors an easier calculation and use of the gradients further 
involved. Also, the dimensionless SE with WF values and energies in the range (0, 1) demands an activation func-
tion with bounded codomain. The mentioned criteria reduce the possible list to logistic sigmoid and hyperbolic 
tangent functions. Of these, we prefer the logistic (soft step) function because it has a slightly simpler derivative 
and it is widely used in the literature.

All neurons have as activation function some variant of the logistic sigmoid. In the following expressions, 
all matrix operations are element-wise, excepting for the product explicitly noted by “ · ”. The equations below 

(1)−
�
2

2m∗

d2ϕ(x)

dx2
+ V(x)ϕ(x) = Eϕ(x),

(2)V(x) =

{

Vi(x), x ∈ (−a, a)
Vo, x ∈ [−b,−a] ∪ [a, b]

(3)−
1

µ

d2ψ(ξ)

dξ2
+ v(ξ)ψ(ξ) = eψ(ξ),
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Figure 1.   Connection diagram for: (a) NN composed of P independent subnets, each with different N nodes in 
the HL and the same M nodes in the IL; (b) NN with common architecture, having P nodes in the OL, N nodes 
in the HL, and M nodes in the IL.
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apply to NN(b) and to each subnet in NN(a) (in which case P will be formally 1). Given a particular potential 
function vσ , the data fed by the HL to a neuron in the OL is

where hσ is an (N × 1) vector, H is a scale coefficient, �h is the (N ×M) weights matrix of the HL, and vσ (�in) 
is the (M × 1) vector of the potential data in the IL. The output of the NN is then given by

where ψ̃σ is the (P × 1) vector of the current estimated WF solution in �out , Q is a scale coefficient, and �o is the 
(P × N) weights matrix of the OL.

For the energy eigenvalue calculation, an extra subnet of the type in NN(a) can be used, formally replacing 
ψ̃σ by ẽ in Eq. (5a), and making �o to be an (1× N) weights vector:

where Q′ is the scale coefficient of the energy.

Weights optimization and training.  The ( P × 1 ) loss vector corresponding to the training DS is calcu-
lated as:

where ψσ (�out) is the (P × 1) vector of the expected solution for the current sample data.
The loss function is defined as:

and its gradient components with respect to the weights are the (N ×M) and (P × N) matrices, respectively:

The starting values of the weights �0
h and �0

o are randomly chosen and give an initial value L0 of the loss 
function. The weights matrices and implicitly the loss function are then iteratively updated by a first order 
approximation such as to minimize the loss in Eq. (7), i.e. the GD method:

Here 0 ≤ τ ≤ T , with T the maximum number of iterations, and � is the learning rate.
The training procedure of the energy subnet is analogous, formally replacing in Eq. (6) ψσ and ψ̃σ by e and ẽ , 

respectively, and considering P = 1 in writing the matrices.

Testing the networks.  Three indicators for testing the trained NNs are proposed, based on the dispersion 
from the expected values in the testing DSs of the predicted energy, WF, and average position of the particle. The 
relative deviation of the energy is:

Comparing the predicted and expected WFs can be done by calculating the relative Euclidean “distance” 
between ψ̃σ and ψσ:

(4)hσ = H

{

2

1+ exp[−�h · vσ (�in)]
− 1

}

,

(5a)ψ̃σ =
Q

1+ exp(−�o · hσ )
,

(5b)ẽ =
Q′

1+ exp(−�o · hσ )
,

(6)L =

S
∑

σ=1

[

ψ̃σ (�out)− ψσ (�out)

]2
,
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P
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;
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The average positions are compared with:

Calculations and results
To train and test the NNs, three DSs have been prepared (hereinafter referred to as DS1, DS2, and DS3). DS1 was 
used for training and validation and contains 151,000 (151 k) samples (potentials, WFs, and energies), while DS2 
and DS3 were used for testing and contain 14 k samples each. Different algorithms have been used to generate the 
arbitrary confinement potentials corresponding to the three sets, as explained in the Appendix. For computing 
the expected ground state WFs and energies, the FEM was used to solve the SE with b/a = 3 and µ = 20 for all 
the potential functions in all DSs9. Given that for any bound state the WF decreases exponentially to zero far 
enough away from the QW, the Dirichlet boundary conditions ψ(±b/a) = 0 were assumed. The chosen value 
of the parameter b/a was high enough to ensure an accuracy better than one part in a million regarding the cal-
culation of the ground state energy. The estimation of the typical error was made by comparing the FEM result 
with the exact solution, in the particular case of a square quantum well and for the user-controlled discretization. 
When solving a 1D differential problem, a common FEM software considers the standard physics-controlled 
mesh with 101 nodes to be “extremely fine”. Indeed, for most cases of usual confinement potentials, the spatial 
element size of this mesh is small enough that the accuracy of solving the SE is fully sufficient. However, in this 
work we have allowed some random confinement functions from the DSs to have less trivial behaviors, with faster 
variations and sometimes with several points of discontinuity. For this generality reason we opted for a user-
controlled mesh with more elements. We have thus assumed a larger number of nodes in the IL, ie M = 1501 , 
which corresponds to a spatial element of 0.004 for b/a = 3 . Regarding the spatial discretization used for the WF, 
corresponding to the OL, this was less fine because the solution of the SE is generally slowly variable with posi-
tion, even for potentials with fast or frequent changes. The chosen number of nodes in the OL, ie P = 301 , defined 
a discretization interval of 0.02, so five times larger than for the IL. In the absence of a systematical optimization 
study that would provide the minimal settings of the NNs, we preferred to use comfortably large numbers of 
nodes. The heuristic optimization of the NN architecture is rather difficult due to the huge time consumption 
required for repeated calculations with different combinations of node numbers. Concerning the neurons in the 
HL, we found no conclusive or methodical rule in the literature for setting the optimal number. We therefore 
followed a rather empirical choice of taking it close to the geometric mean of the IL and OL numbers of nodes.

Table 1 contains all numerical parameters and details concerning the architecture and the training/testing 
of the NNs.

NN(b) looks more like a mathematical black box and the details of the training remain somewhat obscure, 
in the sense that it is rather unclear why the loss function varies in a certain way over time and what happens to 
the weight matrices during minimizing this function. Because NN(a) is practically a parallel set of identical P 
subnets, considerably simpler than NN(b), at least some aspects of training are simpler to perceive. In this sense, 
it may be useful to visualize in Fig. 2 the statistical manner in which the WFs expected as solutions in the training 
DS1 are spatially distributed. To build this figure, all 151 k WF solutions of the training set were analyzed. The 
interval [0, 1] in which all WFs take values was uniformly discretized, defining a discrete set {ωm}1≤m≤751 . For 
each value ξk of the discrete position �out and each value of m between 1 and 750, all the wave solutions from DS1 
were counted, which at that position ξk take values between ωm and ωm+1 , the result being denoted by nk,m . In 
this way, a discrete frequency function of two discrete variables is obtained. This frequency can be interpreted in 
terms of unnormed probability, given the very large number of samples. The decimal logarithm of this function 
(to which 1 was artificially added to ensure positive values only) is represented in color gradient in the inset of 
Fig. 2. The results were also represented in Fig. 2 in the form of histogram-like plots with 750 bins whose vertical 
bars were not drawn, being marked only their heights by discrete points. For seven equidistant particular values 
from the uniform discretization �out (more precisely for k = 301, 376, 451, 526, 601, 676, and 751 ), Fig. 2 shows 
the logarithmic probability lg

(

nk,m + 1
)

 as a function of the ωm variable, in the form of scattered discrete point 
trails. The trails dispersion along the vertical axis, with respect to some median profile, is produced by statistical 
fluctuations (being for this reason more visible in the range of low probabilities).

The content of Fig. 2 can be better understood by taking a few examples. In the potential barriers ( |ξ | > 1 ), 
the farther we go from the QW (for example at ξ301 = −1.8 ), the more likely that the WF will take values close 
to zero, and very unlikely to take much higher values. The corresponding trail profile is narrow with a high maxi-
mum (see for example the point trail marked with a green circle). In the proximity of the potential walls ( |ξ | ≈ 1 ) 
and inside the QW (for example at ξ526 = −0.9 ), a wide range of WF values can be taken with comparable prob-
abilities. The trail profile is broader with a moderate maximum (see for example the point trail marked with a 
green rhombus). At the center of the QW ( ξ751 = 0 ) the probability is high that the WF takes values very close 
to the maximum 1, and decreases to small values close to 0.5 and practically to zero near 0.2 (see the point trail 
marked with a green star). Among the seven discrete point trails in Fig. 2, the one indicated with a blue pentagon 
(for ξ601 = −0.6 ) corresponds to the widest range of almost equiprobable WF values. NN learning process is 
expected to be slower for the latter position, which will indeed be confirmed by Fig. 3a.

(11)dwσ ≡











�P
k=1

�

ψ̃σ (ξk)− ψσ (ξk)

�2
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2
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
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Figure 3 presents the learning curves for the two NNs. It should be noted that each of the 301 subnets of 
NN(a) was trained with a different batch of 5 k samples randomly selected from the 151 k samples of the training 
DS1. NN(b) was trained with a stationary batch composed by the first 14 k samples in DS1. The graphs in Fig. 3 
show the relative loss function Lτ /L0 depending on the number τ of iterations. Figure 3a selectively illustrates 
the results obtained while training the seven individual subnets corresponding to the position values considered 
when constructing the trails in Fig. 2. It can be seen that learning occurs very quickly (under 100 iterations) for 
the position marked with a green circle (away from the well): the relative loss function decreases sharply to zero 
in a few iterations after which it has only a faint variation. The learning also goes fast for the position marked with 
a green star (the center of the QW), but the value of the first plateau reached is different, considerably higher. In 
a first stage of 70 iterations a plateau is reached at 12%, and between 1500 and 3000 iterations, the relative loss 
function decreases towards a second plateau, at approximately 7.5%. These observations anticipate poorer post-
training prediction accuracy in the center of the QW than in the barrier region, away from the well. The curve 
marked with a green rhombus (inside the QW, close to the potential wall) indicates a fast learning down to 33%, 
followed by a second stage of slower learning, in the first 1000 iterations, down to around 5%. The value of the 
relative function after the whole training cycle is about 3.5%. It is observed that the slowest learning occurs for 
the position marked with blue pentagon, the one for which in Fig. 2 the maximum range of equiprobable values 
of the WF was noticed. However, even for this position, the learning is almost complete after the first 2000 itera-
tions, the relative loss function stabilizing at approximately the same value obtained for the center of the QW. 
After this discussion, it is more apparent that the learning speed of the subnets depends directly on the statistic 
dispersion of the WF values in the training set, corresponding to the position for which the subnet is defined. 
Figure 3b shows the learning curve of the NN(b), which descends very rapidly in the first 20 iterations, stabilizes 
at approximately 6–7% in the first 500 iterations, then decreases again between iterations 500 and 700, and then 
changing very slowly to a final value below 1%.

To investigate whether the subnets of NN(a) benefited from sufficiently large individual training batches 
and whether NN(b) does not overfit the 14 k training batch, the following validation test is performed. The two 
completely trained networks are applied on the batch of the first 14 k samples from DS1, and then on the entire 
set of 151 k samples, and the results are compared using the effectiveness indicators described in Sect. 2.4. The 
statistical sets being large, the frequencies of occurrence of different results can be interpreted in the sense of 
probabilities. If the probability distribution in relation to the range of occurring values is very different between 
the batch 14 k and the entire set 151 k, it can be considered that the network training failed. On the contrary, 
if the results are similar in the limit of small statistical fluctuations, it may be considered that the training was 
satisfactory. This validation test also serves as a preliminary comparison of the accuracy of the two types of 
NN. The validation results are illustrated graphically in Fig. 4a-c, by plotting the normalized probabilities, as 
functions of the three parameters defined by Eqs. (10), (11), and (12), respectively. The data in Fig. 4a, obtained 
with a subnet such as those in NN(a), show a very good agreement between batches 14 k and 151 k DS1, with 
statistical fluctuations naturally smaller for the larger DS. It is observed that, on the training set, there is a prob-
ability of over 50% that the subnet will predict the energy with a relative error of less than 5%, and a probability 

Table 1.   Technical aspects of the NNs

Parameter NN(a) NN(b) Technical details

S 5 k ×P 14 k Each of the P NN(a) subnets was trained with a different 5 k data batch chosen at random from the 151 k samples available in DS1. NN(b) was 
trained with the first 14 k data samples in DS1.

M 1501 For both architectures we set the same IL and OL. The refinements of the two layers differ because, while the potential can have fast variations, 
the WF has relatively slow variations.P 301

N 37 672 There is no methodical rule for the HL optimal size. Numbers were empirically chosen close to the geometric mean of the IL and OL numbers of 
nodes (for NN(a) subnet and NN(b))

HL neurons 11,137 672 NN(a) and NN(b) have a total of 16,727,774 and 1,210,944 connections, respectively. An NN(a) subnet has 55,574 connections.

H 5 h(z) = H
[

2

1+e−z − 1

]

 (HL sigmoid – Eq. (4))

Q 1.1 q(z) = Q
1+e−z  (OL sigmoid – Eqs. (5a) and (5b))

Q′ 1.0 –

�0

h
 , �0

o normally distributed random numbers with mean 0 and standard deviation 10−3

� · 107 2.5 1 NN(a) has a larger learning rate since its subnets are trained separately, with smaller batches. Larger the batch, smaller the learning rate must be.

T 5000 For both NNs this value is sufficient to get cvasistationary weights.

Time (a.u.) 181 153 For NN(a) the given time cumulates the training of all subnets.
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of almost 90% to predict the energy within less than 10% relative error. Lower energy levels are more likely to be 
predicted with higher relative error, at the same magnitude of the absolute error. It is noted that the maximum 
probability is reached around the relative error of −5% , so it is quite likely that the network underestimates the 
energy by a few percent. Figures 4b and c also demonstrate a very good agreement between the predictions made 
for training batches 14 k and 151 k. In addition, these two figures illustrate comparatively the accuracy of the 
two NNs. There are some differences, especially in terms of the relative deviation of the estimated WF from the 
expected one. Figure 4b shows that the NN(a) predicts the WF with a slightly higher accuracy, as demonstrated 
by a higher and slightly narrower probability profile. In contrast, Fig. 4c seems to indicate a minor advantage of 
the NN(b) in correctly predicting the average position of the particle in the QW, relative to the samples in DS1. 
According to these observations, two clear conclusions can be drawn concerning the validation step: (i) the 
training of both networks is satisfactory, the training batches were large enough; (ii) there are small differences 
in the accuracy of the two types of network in the predictions made on DS1, with a slight apparent advantage 
for NN(a). This benefit is added to the fact that the NN(a), being made up of subnets with the same architecture, 
is more suitable for parallelizing the training calculation.

The next stage of the work consists in testing the two NNs, by analyzing their accuracy in estimating the 
Schrödinger solution obtained by FEM for potential functions from the distinct DS2 and DS3 (14 k samples 
each), which the networks never "met" during training. The same accuracy indicators are used as in Fig. 4 and 
the results are systematically compared with the standard accuracy obtained on the training with 14 k samples 
from DS1. It should be noted that although different, as shown in the Appendix, the potentials in DS2 are, by 
the nature of their generation algorithm, somewhat "related" to those in DS1. However, the functions in DS3 
are much more different from those in DS1. All probability functions in the test will be normalized such that 
to make sense of the case comparison. The accuracy measure is a high and narrow probability profile. Compar-
ing the results presented in Fig. 5 shows that, although the accuracy is slightly lower for DS2 and DS3, the NN 
method still works very well in the new situations. Indeed, the fact that for DS2 the prediction is slightly better 
than for DS3, may be a sign of the partial influence on the NN of the algorithm model behind the generation 
of "arbitrary" potentials. Nothing that is based on some algorithm is absolutely "arbitrary", this being different 
from the pseudo-random nature of the numbers involved. Networks not only "learn" the Schrödinger problem, 
but also learn something about the particular patterns encountered in the training DSs.

Finally, the accuracy indicators of NNs in some particular cases of piecewise analytically-defined confine-
ment potentials (which are not found in any of the three sets of training or testing) are calculated. These cases 
are also used to plot and compare the aspect of the WFs estimated by each NN with the expected WFs calculated 
by FEM. Several simple finite-barrier potential types widely used in scientific works on QWs were considered: 
Square (SQW), Parabolic (PQW), V-shaped (VQW), Trapezoidal (TQW), Semi-parabolic (SPQW), Graded 
(GQW), Laser-dressed (LDQW), and Asymmetric Step (ASQW). Figures 6a–h display the numerical and graphi-
cal results, respectively. In Fig. 6a–c, and g (QWs with symmetrical potentials) it is found that the accuracy of 
both NNs is lower in the vicinity of the well center, but very good in the rest of the position interval. For SQW 
through both NNs a profile of the WF with 2 close maxima is obtained, instead of one. The small fluctuations 
of the NN(a) solution come from training the subnets with different 5 k sample batches at different positions. 
In Fig. 6d–f, and h (QWs with asymmetric potentials) a slightly larger deviation of the estimated WF solutions 
from those expected is observed. The best energy estimate was for the SQW ( r = 1.3% ), and the weakest for 
ASQW ( r = 17.9% ). The WF was best estimated for PQW and VQW, by both networks ( dw ≈ 4% ), and worst 

Figure 2.   Logarithmic probability of occurrence of the WF possible values, at several chosen positions, for all 
151 k samples in DS1. The inset encodes the same type of information in color gradient.
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for the GQW ( dw ≈ 20% ). The average position of the particle was best estimated for symmetrical QWs, given 
that the NN solutions were also symmetrical, and the worst for the GQW ( dp ≈ 17%).

Conclusions
In this paper we approached the SE in QWs with finite walls and arbitrary potentials, using the method of ML. 
Two NNs with different architectures have been proposed and trained using a set of potentials, energies, and WFs 
previously generated with the classical FEM. The main difference between the two NNs used was that the first 
can be decomposed into a set of separately trained subnets, for each element of the position discretization. Three 
accuracy indicators have been proposed for testing the estimates given by the NNs. The networks were trained 
by the GD method and the training was validated with respect to the training DS containing 151 kilosamples. 
The learning curves of the two networks were presented and discussed. Then both NNs provided solutions for 
two different DSs and the results were compared and commented. It was found that the networks have similar 
effectiveness, slightly lower for the test sets than for the training set. The key advantage of NN(a) is that the cal-
culation is easier to parallelize, while the plus of NN(b) is a smaller number of required neurons and connections. 
Several cases with analytical potential have also been solved, presenting explicit graphs of estimated WFs. It has 
been observed that networks have better accuracy in estimating the WFs for potentials with position symmetry.

The improvements and developments that can be made in future works are: (i) using deep networks (with 
multiple HLs) in order to study whether the accuracy of estimating the WF solutions increases with the number 
of layers; (ii) using highly mixed training DSs, with arbitrary potential functions generated by multiple different 
algorithms; (iii) using adaptive learning parameters and/or enhanced optimization algorithms, such as Nesterov 

Figure 3.   (a) Learning curves of several subnets in NN (a). The lower inset indicates each subnet position in the 
spatial domain. The upper left inset details the behavior of the loss curves for the first 100 iterations. The upper 
right inset indicates the values of the relative loss function at the end of the learning cycle. (b) Learning curve of 
NN (b). The left/right inset shows the descent of the loss curve for the first/last 100 iterations. For both (a) and 
(b) plots the discrete points have been connected with solid lines.
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Figure 4.   Multiple histograms comparing the NNs estimations for 14 k and 151 k samples in the training 
DS1: (a) relative deviation of energies; (b) relative “distance” between wave solutions; (c) accuracy of average 
positions. The height of a histogram bar indicates the probability to get a result in the corresponding bin. The 
bins cover uniformly the range of possible values on the horizontal axis. The face-colored bars are for the 14 k 
samples set and the edge-colored bars are for the entire 151 k samples set.
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Figure 5.   Multiple histograms comparing the NNs predictions for the 14 k samples in each of the testing DS2 
and DS3 and the estimations for the 14 k samples in the training DS1: (a) relative deviation of energies; (b) 
relative “distance” between wave functions; (c) accuracy of average positions. The underlying shapes of the 
probability distributions are indicated by the histogram external perimeters.
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Figure 6.   The FEM and NNs WF solutions and accuracy indicators in 8 particular cases with piecewise 
analytically-defined potential functions: (a) SQW; (b) PQW; (c) VQW; (d) TQW; (e) SPQW; (f) GQW; (g) 
LDQW; (h) ASQW.
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or momentum methods; (iv) generalization of NN solutions to 2D and 3D problems (quantum wires and dots); 
(v) predicting excited energy levels.
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