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The V-type H+-ATPase in vesicular trafficking: targeting,
regulation and function
Vladimir Marshansky1 and Masamitsu Futai2
Vacuolar-type H+-ATPase (V-ATPase)-driven proton pumping

and organellar acidification is essential for vesicular trafficking

along both the exocytotic and endocytotic pathways of

eukaryotic cells. Deficient function of V-ATPase and defects of

vesicular acidification have been recently recognized as

important mechanisms in a variety of human diseases and are

emerging as potential therapeutic targets. In the past few years,

significant progress has been made in our understanding of

function, regulation, and the cell biological role of V-ATPase.

Here, we will review these studies with emphasis on novel direct

roles of V-ATPase in the regulation of vesicular trafficking events.
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Introduction
Vesicular trafficking is an essential cellular process in

eukaryotic cells to deliver either membrane proteins or

soluble cargos from one compartment to another. Defects

of trafficking have been recently recognized as an import-

ant cell biological mechanism in various human diseases

such as cancer, neurological disorders, and autoimmune

and metabolic diseases including diabetes [1]. Both exo-

cytotic and endocytotic traffic should be regulated by the

different forms of ‘protons’ including transmembrane pH

gradient, membrane potential and the acidic pH lumen of

their intracellular organelles. The acidic environments

outside the cells are also important for mammals,

examples being osteoclast bone resorption lacuna, and

the extracellular compartment of tumors as well as renal

tubular and epididymal lumens. V-ATPase is a major

proton pump in the proton homeostasis of eukaryotic

cells. In accordance with their crucial roles in cellular
www.sciencedirect.com
function, V-ATPases have been also implicated in the

pathophysiology of various human diseases [2,3��].

Most of the biochemistry, cell biology, and physiology

related to V-ATPase have been recently reviewed

[2,3��,4–6]. Generally accepted roles of V-ATPase in-

clude establishing acidic pH, which gives optimal con-

ditions for enzymes in the lumens of compartments such

as lysosomes and bone resorption lacuna. Acidic pH is also

necessary for the entry of viruses, bacteria and dis-

sociation of internalized ligand–receptor complexes in

endosomes. The electrochemical proton gradient consti-

tutes a driving force for the accumulation of neurotrans-

mitters and hormones into secretory vesicles. However,

recent studies revealed that, in addition to well-known

functions of V-ATPase, its subunits may have direct roles

in the regulation of vesicular trafficking.

In this review, we will focus on targeting V-ATPase to the

membranes of specific intracellular compartments. We

will also discuss the roles of V-ATPase in vesicular

trafficking between organelle and plasma membranes

in the exocytotic pathway. Finally, we will discuss the

emerging role of V-ATPase in interaction with small

GTPases, well-known ‘molecular switches’, and the

implication of this rendezvous for the regulation of the

endocytotic pathway.

The V-ATPase: structure and function of the
proton pumping rotary nano-motor
Structure and function of V-ATPase

The V-ATPase is a multimeric complex that functions as

a proton pumping rotary nano-motor (Figure 1a). Both

yeast and mammalian V-ATPases share a high degree of

homology in their subunit compositions [7] and sim-

ilarities in biochemical mechanism [3��,4,5]. The cyto-

plasmic V1-sector is composed of eight different subunits

with defined stoichiometry (A3B3CDEFG2H1-2) and is

responsible for ATP hydrolysis. The transmembrane VO-

sector is composed of six different subunits (ac4c0c00de)

and is responsible for proton translocation. Functionally,

the catalytic hexamer A3B3 is connected to the proton

pathway by stalks. The central stalk (formed by subunits

D and F) is attached to a ring of hydrophobic subunits (c,

c,0 c00) and operates as a ‘rotor’ (Figure 1a, in red). The

cytosolic N-terminal domain of the a-subunit together

with the C, E, G, and H subunits form two peripheral

stalks. They are attached to the A3B3 hexamer and form a

‘stator’. Thus, ATP hydrolysis and proton pumping are

coupled by a rotary mechanism, that is, rotation of a ‘rotor’

relative to a ‘stator’ in the nano-machine.
Current Opinion in Cell Biology 2008, 20:415–426
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Figure 1
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Similarities and differences between V-ATPase

and F-ATPase

V-ATPase shares similarities with ATP-synthase (F-

ATPase) in subunit structure and rotational catalysis, as

schematically shown in Figure 1b. Homologous subunits,

such as the A-subunit of V-ATPase and the b-subunit of

F-ATPase are shown in the same color. Both models

(Figure 1a,b) are consistent with experiments showing

subunit rotation in bacterial F-ATPase [5,8,9��,10�] and

yeast V-ATPase [5,11�] (see Supplementary Information,

Figures S1, S2 and Movies S1, S2). In spite of their

similarities, there are important differences between F-

ATPase and V-ATPase. F-ATPase is exclusively loca-

lized to the mitochondrial inner membrane, where it

operates predominantly as an ATP-synthase, coupled

with the proton motive force ( pmf) generated by the

respiratory chain (Figure 1b). By contrast, V-ATPases

are found in diverse endomembrane organelles and

plasma membranes (Figure 2), and function as proton

pumps (Figure 1a). The targeting, function and regula-

tion of V-ATPase is more complex than F-ATPase and

depend on the specificity of cell biological function as

well as membrane composition and cytosolic environ-

ment of these compartments.

Diverse V-ATPases targeting to unique
acidic compartments
Multiple subunit isoforms of V-ATPase

Consistent with the presence of V-ATPases in diverse

compartments [12,13], a large spectrum of subunit iso-

forms are found in mammals; two isoforms for the B, E, H

and d subunits [14–18] and three isoforms for the C and G

subunits [15,18–20]. The expression of these isoforms is

tissue-specific and cell-specific. The B subunit isoform

B1 is specific for kidney and inner ear, whereas B2 is

ubiquitous. Thus, the mutations of B1 are not lethal, but

cause human renal acidosis with hearing defects [14]. V-

ATPase with C1 is found ubiquitously, whereas C2-a is

found specifically in the lamellar bodies of lung alveolar

epithelial cells responsible for surfactant secretion and

C2-b is found in plasma membranes of renal a-interca-

lated and b-intercalated cells responsible for ion homeo-

stasis [18,19]. V-ATPase with the E1 isoform is located

specifically in developing acrosomes of spermatids and

acrosomes in mature sperm, whereas E2 is expressed in all
(Figure 1 Legend ) Comparative structural models and functional roles of V

organelles and mitochondria, respectively. The comparative subunit compos

indicated on the left, while the catalytic hexamers, stalks and proton pathway

of V-ATPase and the b-subunit of F-ATPase are shown in the same colors.

hydrolysis drives clockwise rotation of the central stalk and ring of proteolip

protons from the cytosol to form an acidic lumen of endomembrane organe

force ( pmf) across the membrane. In endosomes the V-ATPase promotes t

exchanger with unknown stoichiometry, which might be n = 2 as in its bacte

components DC and DpH were recently determined for the early phagosom

ATPase) is shown as a secondary pump. F-ATPase function (proton transloca

pmf that is primarily generated during the function of respiratory chain enzy

reversible under certain experimental conditions. The rotation of yeast V-ATP

bacterial F-ATPase (see Supplementary Information, Figure S2 and Movie S
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tissues that have been examined [17]. The G subunit

isoform, G1 is expressed ubiquitously, whereas G2 and

G3 are found in neuron synaptic vesicles and kidney,

respectively [20]. Recent immunoprecipitation exper-

iments have demonstrated that V-ATPases with unique

combinations of subunit isoforms are localized in specific

cellular membranes that could dictate their functions

[18,21].

Role of a-subunit isoforms in intracellular targeting

of V-ATPase

Mammalian transmembrane VO of V-ATPase is more

complicated than Fo of F-ATPase (Figure 1a,b). It is

formed by a transmembrane ring and an adjacent a-sub-

unit, containing a large N-terminal cytosolic tail and a C-

terminal hydrophobic domain with six to nine putative

membrane spanning helices [3��,4]. The interface be-

tween the a-subunit and the ring is a target for bafilomy-

cin A1 and concanamycin, macrolide antibiotics, which

specifically inhibit V-ATPase catalysis and rotation. Their

high specificities have contributed to the study of orga-

nelles with acidic luminal pH.

Multiple isoforms with unique intracellular localizations

are also found for the a-subunit. In yeast the N-terminal

cytosolic domains of two a-subunit isoforms (Vph1p and

Stv1p) are responsible for the specific targeting of V-

ATPase to vacuolar and Golgi compartments, respect-

ively [22�]. By contrast, the C-terminal domain has been

implicated in the specific targeting of 17 a-subunit iso-

forms recently identified in Paramecium tetraurelia [23�].

Four a-subunit isoforms (a1, a2, a3, and a4) were found in

mice and humans [24–27]. They are localized in different

endomembrane organelles and plasma membranes of

specialized cells (Figure 2). The targeting of V-ATPases

with different a-isoforms is a cell-specific dynamic process.

During osteoclast differentiation, the a3-isoform relocates

from lysosomes to the plasma membrane (Figure 3a,b)

[28��]. It is noteworthy that this isoform is specifically

(about 80%) targeted to insulin containing secretory gran-

ules in pancreatic b-cells (Figure 4a–d) [29�].

Targeting and localization of a-isoforms are also com-

partment-specific. All four isoforms are expressed in
-ATPase and ATP-synthase (F-ATPase) expressed in endomembrane

ition of transmembrane (VO and FO) and peripheral (V1 and F1) sectors are

s are indicated on the right. Homologous subunits, such as the A-subunit

(a) V-ATPase is shown as a primary proton pumping nano-motor. ATP

id subunits indicated in red. This rotation leads to the translocation of

lles, and generates an electrochemical proton gradient or proton-motive

he neutralizing current mediated by electrogenic CLC-5 (nCl�/H+-

rial homologue [45]) and drives further acidification. The values of pmf

al compartment [46��]. (b) Mitochondrial ATP-synthase (also called F-

tion, counter clockwise rotation, and coupled ATP synthesis) is driven by

mes. The function and rotation of both V-ATPase and F-ATPase are

ase (see Supplementary Information, Figure S1 and Movie S1) [11�] and

2) [10�] nano-motors. Movies are adapted from Refs. [10�,11�].
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418 Membranes and organelles

Figure 2

Differential targeting of the a-isoforms and vesicular trafficking of V-ATPase in eukaryotic cells. The scheme depicts the compartments of endocytotic

(yellow/red) and exocytotic (gray) pathways. Vesicular trafficking steps are indicated for endocytosis in red arrows and for exocytosis in blue arrows.

Differential targeting of V-ATPase is cell-specific and compartment-specific. Localization of V-ATPase a-isoforms is shown as demonstrated in

Figure 4 and described in text. (i) In particular, V-ATPase with a1-isoform is targeted to Golgi and involved in synaptic vesicles fusion and secretion. It

is also found on presynaptic plasma membrane. (ii) V-ATPase with a2-isoform is targeted either to early endosomes or to Golgi. In early endosomes

a2-isoform functions as pH-sensor by recruiting small GTPases in acidification dependent manner and involved in the formation of endosomal carrier

vesicles also known as multivesicular bodies (ECV/MVB). These vesicular intermediates are involved in the trafficking between early and late

endosomes or in exosomes formation and secretion. (iii) V-ATPase with a3-isoform is targeted to lysosomes and in some cells is involved in lysosomal

secretion and is also localized to plasma membrane. (iv) V-ATPase with a4-isoform is specifically targeted to plasma membrane of some cells.
mouse kidney proximal tubule cells, however, while a1-

isoform, a3-isoform, and a4-isoform are targeted to

the plasma membrane, the a2-isoform is targeted to

early endosomes in situ (Figure 2) [30��]. Specific local-

ization of a4 to the plasma membrane and a2 to early

endosomes in proximal tubule cells is shown

(Figure 4e,f) (see Supplementary Information, Figure

S3 and Movie S3). It is noteworthy that in these cells a2-

isoform does not target to Golgi (Figure 4g). By contrast,

both a2-isoform and a1-isoform are targeted to the

Golgi complex in cultured osteoclast cells (Figure 4h)
Current Opinion in Cell Biology 2008, 20:415–426
[28��]. Interestingly, recent studies suggested that

the a2-isoform is involved in Golgi function and de-

velopment of congenital disorders of glycosylation in

humans [31��]. The kidney specific a4-isoform is also

specifically targeted to the apical plasma membrane of

collecting duct intercalated and epididymal clear cells

[32]. In nerve terminals, the a1-isoform is specifically

delivered to synaptic vesicles from which it could also be

relocated to the presynaptic plasma membrane [33].

Although it is generally accepted that a-subunit isoforms

are crucial for trafficking V-ATPase, the mechanism of
www.sciencedirect.com
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Figure 3

Differential targeting of the a3-isoform of V-ATPase in osteoclasts. (a) Raw 264.7 cells were cultured for 7 days in medium containing sRANKL and

M-CSF. Osteoclast-like cells were identified as multinuclear cells exhibiting positive staining for tartrate-resistant acid phosphatase (TRAP). (b)

Targeting and colocalization of a3 and Lamp2 in lysosomes of RAW 264.7 cells and their targeting to the plasma membrane during differentiation into

osteoclast-like cells. Double immunochemical staining with anti-a3 and anti-Lamp2 antibodies was performed after different days of osteoclast

differentiation followed by confocal microscopy analysis. Merged images are shown both in horizontal view (x–y sections, upper panels) and lateral

view (z–x sections, lower panels). Adapted from Ref. [28��].
their specific targeting is currently unknown in mam-

malian cells.

Regulation of V-ATPase and the luminal
pH of organelles
Diverse acidic organelles are present in eukaryotic cells

with different lumenal pH. The pH of compartments

becomes more acidic as the exocytotic or endocytotic

pathways approach their destination. The regulation of

luminal acidity is selectively achieved by the combination

of first, ‘fine-tune’ regulation of V-ATPase activity

depending on isoform composition and cellular micro-

environments (cytosolic and luminal environment, mem-

brane composition, etc.) and second, specific targeting

and trafficking of V-ATPase as well as other ‘acidification

machinery’ proteins such as channels, exchangers to

organelles.

Regulation of V-ATPase by reversible assembly/

disassembly of V1VO sectors

Reversible assembly/disassembly of VO and V1 sectors is

an important regulatory mechanism of V-ATPase, and

observed in response to glucose depletion in Saccharo-
www.sciencedirect.com
myces cerevisiae [34] and kidney proximal tubule epithelial

cells [35��,36,37] as well as in response to ceased feeding

in Manduca sexta [6]. In yeast, this mechanism is regulated

by a-isoforms of V-ATPase and dependent on the cellular

and membrane environment where the two isoforms are

located [3��,38,39�,40]. V-ATPase (with Vph1p a-subunit)

targeted to vacuoles is disassembled upon glucose

depletion, whereas that (with Stv1p a-subunit) targeted

to the Golgi does not [38]. However, V-ATPase with a

chimeric a-subunit of Vph1p and Stv1p (N-terminal and

C-terminal, respectively) and localized in vacuoles is

disassembled. These results suggest that the N-terminal

cytosolic tail of a-subunits function as a glucose sensor

[3��] and its function also depends upon the cytosolic,

lumenal and/or membrane environment where V-ATPase

is localized [40]. The glucose-dependent assembly/dis-

assembly of V-ATPase is partly controlled by vacuolar

luminal pH [39�]; however, this is not the only cellular

parameter involved [40]. The disassembly (but not

assembly) involves the cytosolic microtubular network

[3��], whereas the assembly (but not disassembly)

requires the cytosolic RAVE (regulator of H+-ATPase

of vacuolar and endosomal membranes) complex [34].
Current Opinion in Cell Biology 2008, 20:415–426
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Figure 4

Differential targeting of the a2-isoform, a3-isoform and a4-isoform of V-ATPase in eukaryotic cells. (a–d) Specific targeting and localization of the

a3-isoform to insulin containing secretory granules in pancreatic b-cells. bTC6 cells were double stained with antibodies against the a3-isoform (green)

and against either (a) insulin, (b) Lamp2, (c) GM130 or (d) synaptophysin (red) as indicated. Adapted from Ref. [29�]. (e) Differential targeting of a2-

isoform to endosomes and a4-isoform to plasma membrane in kidney proximal tubule epithelial cells. Mouse kidney proximal tubules were double

stained with antibodies against the a2-isoform (green) and against the a4-isoform (red). (f, g) Specific targeting of the a2-isoform to early endosomes in

mouse proximal tubule cells (MTC). Cells were double stained with antibodies against the a2-isoform (red) and against either (f) EEA1 or (g) GM130

(green) as indicated. Adapted from reference [30��]. (h) Localization of the a2-isoform to Golgi complex in osteoclasts. Raw 264.7 cells were double

stained with antibodies against the a2-isoform (green) and against the GM130 (red). Adapted from Ref. [28��].
In mammalian renal epithelial cells, the effect of glucose

on V-ATPase is mediated by phosphatidylinositol 3-

kinase (PI3K)-dependent signaling [36]. The direct inter-

action of cytosolic aldolase (an enzyme in the glycolytic

pathway) with a, B and E subunits has been also impli-

cated in reversible assembly/disassembly of V-ATPase,

and aldolase was suggested to be a glucose-sensor [35��].
Importantly, the crucial role of this regulatory mechanism

for the endocytotic protein degradation pathway was

recently demonstrated in mammalian dendritic cells

[41��]. The regulation of V-ATPase activity by the assem-

bly of VOV1 sectors onto the lysosomal membrane was

observed during maturation of these cells. This mechan-

ism is crucial for lysosomal acidification, activation of

proteases, protein degradation and antigen presentation

[41��].

Regulation of V-ATPase coupling efficiency by specific

subunit isoforms

Modulation of coupling efficiency between ATP hydroly-

sis and proton pumping is also important regulatory

mechanism of V-ATPase. The a-subunit isoforms and
Current Opinion in Cell Biology 2008, 20:415–426
non-homologous 90 amino acid region unique to the A-

subunit V-ATPase not found in F-ATPase have been

implicated in regulating in yeast [38,39�]. However, the

unique properties of mammalian V-ATPases with differ-

ent isoforms are difficult to analyze because hetero-

geneous assemblies are present in the same cell. Thus

‘mouse/yeast’ hybrid V-ATPase, constructed by introdu-

cing mouse cDNA into mutant yeast lacking the corre-

sponding gene, may shed light on the properties and

function of subunit isoforms. This approach was success-

fully applied to study the roles of the mouse E-subunit

and C-subunit isoforms in the regulation of V-ATPase

coupling efficiency [17,19].

Modulation of organelle pH by vesicular trafficking

and chemiosmotic mechanisms

Targeting and vesicular trafficking of V-ATPase to

specific membranes is an important regulatory mechan-

ism for acidification. In renal intercalated and epididymal

clear cells, the density of V-ATPase in the plasma mem-

brane is controlled by a balance of endocytosis and ex-

ocytosis of apical vesicles containing the same enzyme
www.sciencedirect.com



V-type H+-ATPase in vesicular trafficking Marshansky and Futai 421
[42,43]. The V-ATPase generates an electrochemical

proton gradient or proton-motive force consisting of

membrane potential (DC) and proton gradient (DpH).

In endosomes, they promote electrophoretic chloride

transport via the CLC5 exchanger (2Cl�/H+-antiporter)

increasing the acidity of the compartment (Figure 1a)

[44,45]. The values of DC 27 mV and DpH 2.2 units were

recently determined in direct FRET experiments in early

phagosomes where the lumenal pH is 5.2 [46��]. Chloride

accumulation during endosomal acidification (with a

lumen pH of 5.3–5.6) was also shown in vivo [47]. The

emerging roles of the CLC-family of chloride transporters

in the endosomal/lysosomal pathway [44,45] as well as

important roles of the NHE-family of cation/proton

exchangers in organellar acidification and homeostasis

were recently discussed [48].

V-ATPase and acidic organelles are essential from

yeast to mammals: functional role of acidic pH

Yeast mutants lacking any gene encoding a V-ATPase

subunit cannot grow at neutral pH (VMA phenotype).

Silencing in Caenorhabditis elegans of three of the four a-

subunit isoforms results in death during development

[49]. Deletion of the mouse c-subunit, that is coded by

a single gene, results in impaired acidification and causes

defective intracellular trafficking essential for develop-

ment [50]. These data indicate that V-ATPase is required

for vesicular trafficking during early development from

worms to mammals. The crucial role of V-ATPase in

establishing acidic compartments is generally accepted

[2–5,12,51,52�,53]; however, emerging evidence indicates

that various subunits of V-ATPase may also have direct

roles in the regulation of vesicular trafficking within both

the exocytotic and endocytotic pathways.

Direct role of V-ATPase in vesicular trafficking
of exocytotic pathway
Roles of V-ATPase in membrane fusion

Vesicular trafficking, essential for communication be-

tween organelles, involves a combination of two crucial

steps: first, budding of vesicles from a donor and second,

fusion with an acceptor compartment/membrane [54].

These two steps are tightly regulated to ensure efficient

formation of vesicles during budding and to avoid mis-

targeting of their cargo during the fusion step. Recent

emerging evidence indicates that providing an acidic

environment is not the exclusive function of V-ATPase,

and that it is directly involved in both budding and fusion

events.

Direct participation of VO sector c-subunits in membrane

fusion has been proposed for yeast vacuole biogenesis.

According to this model, the c-subunits of VO are directly

involved in the fusion of two vacuoles (VO trans-complex

formation) which also depends on Rab-GTPase Ypt7 and

calmodulin [55��]. Inactivation of the Vph1p a-subunit

also blocks fusion between VO sectors [56,57]. It is
www.sciencedirect.com
noteworthy that in contrast to fusion, vacuole fission

and fragmentation in vivo depends on proton pumping

by V-ATPase [57]. Although the exact molecular mech-

anism of VO trans-complex formation remains controver-

sial, recent studies suggest a direct role of V-ATPase in

fusion in other organisms (Figure 2). In Drosophila mel-
anogaster, the VO a-subunit has been implicated in synap-

tic vesicle fusion [58] and the a1-isoform directly interacts

with calmodulin at fly synapses [59]. In Caenorhabditis
elegans, the a-subunit mediates secretion of Hedgehog-

related proteins from exosomes to the apical membrane

[60]. Finally, crystallographic studies of the c-ring of

Nephrops norvegicus V-ATPase also suggest the direct role

of the VO-sector in membrane fusion [61].

Role of V-ATPase in mammalian hormone exocytosis

In mouse pancreatic b-cells, the V-ATPase containing the

a3-isoform is specifically targeted to insulin-containing

secretory vesicles (Figure 4a–d) [29�]. Oc/oc-mice, con-

taining a null mutant of the a3 gene, are unable to secrete

insulin in response to glucose or depolarization,

suggesting that they are defective in insulin exocytosis.

Increased levels of the a2-isoform in oc/oc-mice did not

replace the function of the a3-isoform. However, while

the inhibition of V-ATPase by bafilomycin results in

disappearance of endomembrane acidic lumens it does

not prevent secretion of insulin in bTC9 cell line. These

results suggest that insulin secretion does not require

proton pumping, but intact V-ATPase with a3-isoform

is necessary. The a3-isoform is highly expressed in endo-

crine tissues including adrenal, parathyroid, thyroid and

pituitary glands, suggesting that function of the a3-iso-

form could be commonly involved in the regulation of the

exocytotic pathway and secretion (Figure 2) [62].

Trafficking of V-ATPase to the plasma membrane:

secretory lysosome of the osteoclast

Bone homeostasis in vertebrates depends on bone for-

mation by osteoblasts and resorption by osteoclasts.

During the resorption process, V-ATPase secrets protons

into ‘bone resorption lacuna’, a compartment formed

between the plasma membrane and the bone surface.

This compartment is rich with proteases and an acidic

lumen is essential for mineral dissolution and matrix

protein degradation. The a3-isoform of V-ATPase is

specifically localized to the plasma membrane of osteo-

clasts [24]. Consistent with these findings, mutations in

the a3-isoform result in deficient bone resorption and

osteopetrosis in humans [63,64] and mice [65].

The RAW264.7 cell is an established macrophage line

that can form osteoclast-like cells upon differentiation.

The a3-isoform is localized in lysosomes before stimu-

lation, whereas after stimulation the same isoform is

targeted to the plasma membrane together with lysosomal

enzymes, suggesting that lysosome exocytosis forms

osteoclast plasma membranes (Figure 3) [28��]. Thus,
Current Opinion in Cell Biology 2008, 20:415–426
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localization of the V-ATPase a3-isoform is a dynamic

membrane process. In human osteoclasts the a3-subunit

is colocalized with the VO d2-isoform [66]. Knockout of

d2-isoform in mice results in markedly increased bone

mass because of defective osteoclasts and enhanced

bone formation [67��]. However, the disruption of the

d2-gene did not affect osteoclast differentiation or V-

ATPase activity, suggesting the direct role of the d2-

isoform in the fusion of osteoclast progenitors. Exocytosis

of lysosomes is an important function in phagocyte-

derived, neutrophil-derived, and monocyte-derived cells

including macrophages and osteoclasts. Thus, the fuso-

genic role of V-ATPase could play an important biological

role in general.

Direct role of V-ATPase in vesicular trafficking
of endocytotic pathway
Role of V-ATPase in endocytosis of viruses,

microorganisms, and toxic molecules

The endocytotic pathway is used by viruses and bacteria

to enter into eukaryotic cells. They have developed a

variety of strategies in order to reach their site of replica-

tion (cytosol or intracellular organelles) and/or to avoid

degradation in lysosomes [68,69]. One strategy of the

infection process requires a V-ATPase-driven acidic

environment in early or late endosomes. For example,

membrane fusion of vesicular stomatitis virus and its

escape to the cytosol depends upon the endosomal acidic

lumen. The function of the M2-protein from influenza A-

virus and SARS coronavirus proteinase also need acidifi-

cation. The translocation of various toxins from endo-

somes to the cytosol also depends upon acidification and

includes among others: anthrax, diphtheria, and clostridial

toxins [68,70,71]. An alternative survival strategy is

applied by Mycobacterium tuberculosis. These microorgan-

isms diminish the acidity of phagosomes and impair their

fusion with lysosomes [69].

An acidification-independent strategy of internalization is

employed by HIV (human immunodeficiency virus) and

requires the direct interaction with V-ATPase. Negative

factor (Nef) of HIV plays a crucial role in viral pathogen-

esis and promotes the progression to AIDS. Nef directly

interacts with the H-subunit of V-ATPase and promotes

CD4 internalization at the plasma membrane [72]. The

H-subunit is homologous to b-adaptins [73], interacts

with the m2-chain of AP2 adaptor and promotes cla-

thrin-coated vesicle (CCV) formation [74], suggesting that

V-ATPase is acting as a scaffolding complex. Thus this

strategy of viral infection involves direct interaction with

V-ATPase in the early stages of budding and coat for-

mation at the plasma membrane.

When V-ATPase meets with small GTPases: functional

significance of this rendezvous

Organelles along the endocytotic pathway have acidic

lumenal pH that is crucial for vesicular trafficking.
Current Opinion in Cell Biology 2008, 20:415–426
Acidification in early endosomes of BHK cells is

required for the formation of endosomal carrier vesicles

(ECV) or multivesicular bodies (MVB) (Figure 2), that

mediate either trafficking between early and late endo-

somes [75] or involved in exosomes formation and

secretion [76��]. It has been proposed that biogenesis

of ECV/MVB vesicles is a tightly regulated budding

process coupled to the acidification of endosomes.

Indeed, it has been shown the acidification-dependent

recruitment of cytosolic coatomer proteins (b-COP, e-

COP) and Arf1 small GTPase onto early endosomes.

Furthermore, the involvement of a hypothetical pH-

sensing protein (PSP) in direct interaction with b-

COP during the formation of endosomal carrier vesicles

has been suggested [77,78].

In kidney physiology, receptor-mediated endocytosis by

proximal tubule epithelial cells plays an important role in

protein homeostasis via reabsorption of albumin, hor-

mones, chemokines, vitamin-binding proteins, etc. [53].

This protein degradation pathway also depends on endo-

somal acidification, with defects in this process leading to

proximal tubulopathies in humans and mice [53]. Early

studies on small GTPases demonstrated the colocaliza-

tion of V-ATPase with Arf6 and ADP-ribosylation factor

nucleotide site opener (ARNO) in early endosomes of the

degradation pathway [79]. The recruitment of these small

GTPases was driven by intra-endosomal acidic pH, and

the presence of PSP in the endosomes was proposed [80].

Recently, V-ATPase has been identified as pH-sensor

that directly interacts with small GTPases in an acidifica-

tion-dependent manner [30��,81,82]. In particular, the a2-

isoform is targeted to early endosomes of the proximal

tubule (Figure 2) (Figure 4e,f) (see Supplementary Infor-

mation, Figure S3 and Movie S3) and directly interacts

with ARNO in acidification-dependent manner, while

Arf6 specifically interacts with the c-subunit of the VO-

sector of V-ATPase. Importantly, these studies also

demonstrated that the acidification-dependent inter-

action between V-ATPase and small GTPases is crucial

for protein trafficking between early and late endosomes

[30��] (see Supplementary Information, Figure S4 and

Movies S4,S5). Although these studies showed that V-

ATPase could modulate vesicular trafficking by scaffold-

ing and recruiting small GTPases, the downstream targets

of this V-ATPase/ARNO/Arf6 complex as well as func-

tional significance of this rendezvous remains to be elu-

cidated.

The Ras-superfamily of small GTPases function as

‘molecular switches’ and regulate an extraordinary

variety of cell functions [83]. The transition between

the ‘on’ and ‘off’ states of this molecular device is

mediated by the GDP/GTP cycle. The ADP-ribosyla-

tion factor (Arf) family belongs to the Ras-superfamily

and also functions as a molecular switch to regulate

vesicular traffic and organelle structure [84]. The acti-
www.sciencedirect.com
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vation of Arfs (GTP-bound conformation, ‘on’-state) is

mediated by guanine-nucleotide exchange factors

(GEFs), while deactivation (GDP-bound conformation,

‘off’-state) is catalyzed by GTPase-activating proteins

(GAPs). Both small GTPase Arf6 and its cognate GEFs

and GAPs have been implicated in the regulation of the

endocytotic pathway and organelle biogenesis by: first,

recruiting coat components; second, modifying phos-

pholipids; and third, remodeling the cytoskeleton near

vesicular membranes [30��,85��]. Thus, the acidifica-

tion-dependent recruitment of ARNO/Arf6 and their

binding to endosomal V-ATPase may trigger these

downstream pathways giving rise to the endosome

carrier vesicles (ECV/MVB) formation.

Finding the interaction between V-ATPase and small

GTPases pointed out the intriguing possibility that small

GTPases might function as ‘molecular on/off switches’

for V-ATPase function. The following results suggest

possible ‘cross-talk’ between V-ATPase/small GTPase

interaction and disassembly/assembly of V-ATPase. First,

the glucose-dependent disassembly of V-ATPase is also

controlled by the acidification of vacuoles suggesting the

presence of a vacuolar pH-sensor [3��,39�,40]. Second, V-

ATPase is known to directly interact with the actin-

microfilament cytoskeleton [3��,6,86] and requires an

intact microtubular network for the dissociation of

VOV1 complex [3��]. Thus, when recruited to V-ATPase,

Arf6 could be involved in cytoskeleton remodeling

[3��,6,85��,87]. Third, binding of V-ATPase to F-actin

[86] and glucose-dependent assembly of the VOV1 com-

plex [36] depend on PI3-kinase activity, that is also

necessary for specific recruitment of ARNO [88] and

Arf6-mediated actin dynamics [89]. Finally, aldolase

modulates assembly/disassembly of V-ATPase by the

interaction with the a, B, and E subunits [35��,36,37].

Recently, the direct and specific interaction of aldolase

with ARNO has been demonstrated (Marshansky Labora-

tory, unpublished data) suggesting that ARNO can modu-

late the assembly/disassembly of the V-ATPase/aldolase

complex. On the basis of these data it is tempting to

propose that the pH-sensing function of V-ATPase and

the acidification-dependent recruitment of small

GTPases are integral parts of the glucose/aldolase-de-

pendent regulation of V-ATPase. Thus, the generally

accepted function of small GTPases as ‘molecular

switches’ may directly be applied to the assembly/disas-

sembly of V-ATPase and turning ‘on/off’ this remarkable

nano-machine.

Conclusions and perspectives
The function of V-ATPases in different compartments is

tightly coordinated with the unique roles of different

organelles and their cytosolic microenvironments. Identi-

fication of the mechanisms of isoform-specific targeting

and assembly of V-ATPase at specific organelles in mam-

malian cells is an important challenge for the years to
www.sciencedirect.com
come. The mechanism of glucose-dependent reversible

dissociation of V-ATPase is starting to be resolved. Its

significance in vesicular trafficking is of interest because

the levels of glucose are tightly controlled in multicellular

organisms. It becomes increasingly clear that reversible

dissociation of V-ATPase is controlled by a variety of

other cellular pathways and the potential regulatory role

of small GTPases in the assembly/disassembly of VOV1

awaits further studies.

Our understanding of vesicle trafficking will be reinforced

by further studies of V-ATPase as a pH-sensor and

identification of effectors downstream of V-ATPase/

GTPase complex. In particular the direct role of V-

ATPase as pH-sensor and recruitment of small GTPases

is of interest for the formation of endosomal carrier

vesicles (ECV/MVB) because emerging evidence suggest

that these vesicles are involved in biogenesis and function

of exosomes. Thus the potential regulatory role of V-

ATPase in the formation and/or secretion of exosomes

also awaits further studies.

Emerging evidence also suggests possible interplay be-

tween assembly/disassembly of VOV1 and the direct role

of VO in membrane fusion during vesicular trafficking.

The relevant important questions that remain to be

addressed are: first, does disassembly of V-ATPase take

place during the budding process and, thus, is associated

with the formation of carrier vesicles from the donor

membrane? or second, does disassembly of V-ATPase

take place nearby the acceptor-membrane before fusion

and, is associated with uncoating of vesicles?

Increasing evidence has shown that V-ATPase can inter-

act with numerous regulatory proteins. Cascades of differ-

ent protein–protein interactions modulate targeting,

assembly and activity of V-ATPase, followed by the

regulation of intravesicular acidification and trafficking.

Defective V-ATPase function can impair vesicular traf-

ficking and give rise to human diseases. Thus, future

studies will further shed light on the direct roles of this

magnificent nano-motor in the regulation of vesicular

trafficking and will undoubtedly contribute to the de-

velopment of new drugs specifically targeting V-ATPase

function.
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