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The response to DNA replication stress in eukaryotes is under the control of
the ataxia–telangiectasia and Rad3-related (ATR) kinase. ATR responds to
single-stranded (ss) DNA to stabilize distressed DNA replication forks,
modulate DNA replication firing and prevent cells with damaged DNA or
incomplete DNA replication from entering into mitosis. Furthermore, inhibi-
tors of ATR are currently in clinical development either as monotherapies or
in combination with agents that perturb DNA replication. To gain a genetic
view of the cellular pathways requiring ATR kinase function, we mapped
genes whose mutation causes hypersensitivity to ATR inhibitors with
genome-scale CRISPR/Cas9 screens. We delineate a consensus set of 117
genes enriched in DNA replication, DNA repair and cell cycle regulators
that promote survival when ATR kinase activity is suppressed. We validate
14 genes from this set and report genes not previously described to modu-
late response to ATR inhibitors. In particular we found that the loss of the
POLE3/POLE4 proteins, which are DNA polymerase ε accessory subunits,
results in marked hypersensitivity to ATR inhibition. We anticipate that
this 117-gene set will be useful for the identification of genes involved in
the regulation of genome integrity and the characterization of new biological
processes involving ATR, and may reveal biomarkers of ATR inhibitor
response in the clinic.
1. Introduction
The ATR kinase is a phosphoinositide 3-kinase-like kinase that is activated
when single-stranded (ss) DNA bound by the RPA complex is sensed by path-
ways anchored by the ATRIP or ETAA1 proteins [1–6]. Impaired replication or
stalled replisomes often produce DNA structures that contain ssDNA that are
then sensed by ATR [6–8]. Accordingly, ATR is a key modulator of DNA repli-
cation where it plays multiple roles in ensuring the orderly execution of DNA
synthesis and its coordination with G2 phase entry [9,10]. Perhaps the best-
characterized function of ATR is its role in controlling the timely activation of
cyclin-dependent kinases (CDKs) via its activation of the CHK1 kinase
[11,12]. The activated ATR-CHK1 pathway suppresses CDK activity by inacti-
vating the phosphatases of the CDC25 family, which are CDK activators [13].
A second key role for ATR concerns its function in promoting the stability
of distressed replication forks [14,15]. ATR impacts replication fork stability
at multiple levels, for example by modulating fork reversal via the phos-
phorylation of proteins such as the annealing helicase SMARCAL1 [16],
controlling the supply of dNTPs [17,18] and regulating the availability of
RPA, which protects ssDNA from unscheduled nucleolysis [19]. ATR also
controls DNA replication origin firing on both local and global scales [9,20].
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While ATR activation is known to suppress late origin firing
in both unperturbed and challenged S phase [21–23], origins
located in the vicinity of a blocked replication fork
are shielded from this global inhibition, resulting in an
increase in local origin firing that promotes the completion
of DNA synthesis and the rescue of stalled replication
forks [22,24–26].

These critical functions of ATR in coordinating the
response to replication stress has made it an attractive thera-
peutic target in oncology given the observation that tumours
often display signs of replication stress [27,28]. Multiple clini-
cal-stage ATR inhibitors (ATRi) are now being tested in cancer
treatment either as monotherapies or in combination
with other agents [28,29]. While ATRi are showing single-
agent efficacy in some patients, there is currently a paucity
of robust biomarkers of responses, hampering development of
this class of agents. Nevertheless, mutations in ATM or
ARID1A, overexpression of APOBEC3A/B, as well as overexpres-
sion or rearrangements of the EWSR1,MLL and SS18-SSX genes
have all been proposed as candidate patient-selection markers
for ATRi clinical development [30–36].

We reasoned that the unbiased identification of genes
promoting viability following ATR inhibition would be
useful for two purposes. First, this list may contain genes
that have not been previously associated with the regulation
of DNA replication, cell cycle progression or DNA repair, and
may reveal new facets of the function of ATR in promoting
genome integrity. Second, this gene list may assist in the
development of new patient-selection hypotheses or may
reveal new genetic markers of ATRi response. Prior to the
advent of CRISPR-based genetic screens, the search for gen-
etic interactions with ATR deficiency involved studies in
genetically tractable organisms like budding yeast or the
use of RNA interference. For example, a focused screen for
synthetic lethal interactions with a partially defective bud-
ding yeast ATR mutant, mec1-100, identified mutations in
genes coding for chromatin remodellers, nuclear envelope
components and various transcription regulators [37]. In
another example, a focused siRNA screen in human cells sur-
veying 240 DNA repair and replication genes identified
deficiency of XPF-ERCC1 as well as knockdown of replica-
tion-related genes as conditions that induce ATRi sensitivity
[38,39]. However, the advent of CRISPR/Cas9-based chemoge-
nomic screens now allows the identification of vulnerabilities to
ATR inhibition at the genome-scale level and in a robust
manner, which was not previously possible with techniques
such as RNA interference.

Therefore, we undertook four genome-scale CRISPR/
Cas9 screens and combined their results with those of three
additional, recently published screens [40]. From these
seven screens, performed in five different cell lines and
using two different ATRi, we describe a core set of 117
genes that promote cellular resistance to ATR inhibition. In
particular, we found that loss-of-function mutations in the
genes coding for the POLE3/POLE4 histone-fold complex
cause ATRi hypersensitivity in human cells. POLE3 and
POLE4 form an ancillary subunit complex of DNA polymer-
ase ε involved in histone deposition at the replication fork
[41,42]. Our results using a POLE3 separation-of-function
mutant suggest, however, that impaired histone deposition
does not underlie the observed ATRi sensitivity, pointing
rather to its function in DNA synthesis. We believe that this
consensus genetic map of vulnerabilities to ATR inhibition
will provide a useful resource to those interested in ATR
function and therapeutics.
2. Results and discussion
To identify genes and cellular processes that require ATR
kinase activity for cellular fitness, we undertook a set of
four CRISPR/Cas9 somatic genetic screens in human cells.
The screens, schematically depicted in figure 1a, were carried
out essentially as described before [43,44]. They entailed the
transduction of Cas9-expressing cells with a lentiviral library
of single-guide (sg) RNAs, and after selection and time for
editing, the resulting pool of gene-edited cells was split in
two populations. One control population was left untreated
for the duration of the screen while a second population
was incubated with a sublethal dose of an ATR inhibitor
that killed approximately 20% of cells. sgRNA abundance
was determined in each population after 12 days of treatment
by sequencing and a gene-based depletion score was
determined with the most up-to-date version of drugZ [45].

We initially screened Flag-Cas9 expressing clones of three
cell types: HCT116 cells, derived from a colon carcinoma;
HeLa cells, derived from a cervical carcinoma; and a
p53-mutated clone of RPE1 hTERT, which are telomerase-
immortalized retinal pigment epithelial cells. These three cell
lines were screened with the TKOv1 sgRNA library [44] using
VE-821 as theATR inhibitor [35]. In the fourth screen, the library
used was the newer generation TKOv3 [46] and AZD6738 was
employed as the ATR inhibitor [47]. The gene-level results can
be found in electronic supplementary material, table S1.

Using a hit-selection threshold based on p-values < 0.001,
we found 32, 34 and 130 genes that promoted ATRi resistance
in the HCT116, HeLa and RPE1-hTERT TP53−/− cell
lines, respectively, using the TKOv1/VE-821 combination
(electronic supplementary material, table S1). In the RPE1-
hTERT TP53−/− cell line screened with TKOv3 and
AZD6728, 88 hits were found and there was a good agree-
ment with the two RPE1 screens (figure 1b), with 41
common hits at p < 0.001 (electronic supplementary material,
table S1). This good overlap suggests that both VE-821 and
AZD6738 produce comparable phenotypes. In addition to
these four screens, a recent publication also reported three
CRISPR screens with AZD6738 as an ATR inhibitor in the
MCF10A, HEK293 and HCT116 cell lines using the TKOv3
library [40]. We re-analysed this second set of screens using
the newest version of drugZ [45] in order to provide a com-
parable set of data. We then combined the results of all
seven screens and selected genes that were hits at a normal-
ized z-score value (NormZ) less than −2.5 in at least two
screens, which defined a set of high-confidence genes
whose mutations cause ATR inhibitor sensitivity; this
approach resulted in a ‘core’ set of 117 genes. Gene ontology
(GO) enrichment analyses (figure 1c,d ) indicated that this set
is highly enriched in GO terms associated with DNA replica-
tion, DNA repair and DNA damage checkpoint such as
Replication-born DSB repair via SCE (GO:1990414), DNA
replication checkpoint (GO:0000076) and Recombinational
repair (GO:0000725) among the top enriched terms. Similarly,
GO term analysis for Cellular Component yielded Ribonu-
clease H2 complex (GO:0032299), the Fanconi Anaemia
nuclear complex (GO:0043240) and site of double-strand
break (GO:0035861) as the top 3 enriched terms. Analysis of
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Figure 1. Identification of mutations that sensitize cells to ATR inhibition. (a) Schematic of genome-wide CRISPR/Cas9 screen work flow. (b) NormZ values were
plotted against gene names in alphabetical order. For each screen, the genes with the 20 lowest NormZ values are labelled and coloured. Colour, size and trans-
parency of circles indicate number of screens (our datasets and datasets from [40]) in which the genes were hits (i.e. showed NormZ values <−2.5). (c) Gene
Ontology (GO) term enrichment analysis of Biological Process Complete terms (http://geneontology.org/page/go-enrichment-analysis) of 117 genes that were hits in
at least two out of seven screens using default settings. Shown are GO terms that are enriched at least 10-fold. Circle size indicates number of genes from 117-gene
core set included in each GO term, colour indicates negative log p-value and x-axis position indicates the fold enrichment compared to the whole genome reference
set. (d ) GO term enrichment analysis of Cellular Component Complete terms as in (c). Shown are GO terms that are enriched at least fivefold. DSB, DNA double
strand break; SCE, sister chromatid exchange.
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the gene set using the Reactome pathway database similarly
identified highly connected pathways that revolve around
DNA repair, DNA replication and cell cycle (electronic
supplementary material, figure S1). A graphical comparison
of the screens is shown in electronic supplementary material,
figure S1c.

In this 117-gene core set, 11 genes were found as hits in at
least four out of seven screens indicating that they are likely
to modulate the response to ATR inhibition independently
of cellular context. These genes were APEX2, ATM, ATRIP,
C16orf72, C17orf53, KIAA1524 (also known as CIP2A),
POLE3, POLE4, RNASEH2A, RNASEH2B and RNASEH2C.
The sensitization of ATM-deficient cells to ATR inhibition
had been described before [35]. Similarly, ATRIP is a subunit
of the ATR-ATRIP complex [6], and we (as well as the
Cortez lab [38]) surmise that reducing ATR activity following
ATRIP loss-of-function mutation sensitizes cells to ATR inhi-
bition. In support of this possibility, ATR itself was a hit in
RPE1-hTERT TP53−/− cells/AZD6738 ( p = 1.60 × 10−7), in
the HEK293/AZD6738 ( p = 0.0146) and HeLa/VE-821 cells
( p = 0.0144; electronic supplementary material, table S1).
Drug sensitization by mutation of the drug target is a well-
known phenomenon that has been harnessed to uncover
drug targets in budding yeast [48]. The trimeric ribonuclease
RNase H2 enzyme was recently described to promote resist-
ance to ATR inhibitors [40]. RNase H2 also promotes
resistance to PARP inhibition, and RNase H2-deficient cells
experience replication-associated DNA damage that depends
on topoisomerase I [44]. The replication-associated DNA
lesions caused by defective ribonucleotide excision repair in
RNase H2-deficient cells may cause this observed vulnerability
to ATRi. APEX2 codes for the APE2 nuclease, which has been
implicated in the regulation of ATR activity in Xenopus laevis
cell-free extracts [49] and was recently found to be synthetic
lethal with BRCA1 and BRCA2 deficiency [50]. These findings
support the notion that the 117-gene core set identifies genetic
determinants of the response to ATR inhibition.

To functionally validate the results, we selected 18 genes
that were hits in the screens carried out in our laboratory
(electronic supplementary material, table S2). Of these,
15 out of 18 were part of the 117-gene core set. We
undertook two-colour competitive growth assays in which
Cas9-expressing cells were transduced with lentiviral vectors
that simultaneously express an sgRNA that targets a gene of
interest (GOI) as well as GFP, or a control virus that expresses
an sgRNA targeting LacZ and mCherry (figure 2a). We
carried out these assays first in RPE1-hTERT TP53−/− cells.
Two independent sgRNAs were tested per gene, and
in some cases we monitored indel formation by TIDE analy-
sis [51] to ensure formation of loss-of-function mutations
(electronic supplementary material, figure S2). The infected
cell mixtures were grown in the presence or absence of VE-
821 at doses of 2 and/or 4 µM, over the course of 15 days,
and the proportions of GFP- and mCherry-expressing cells
was determined at regular intervals by high-content
microscopy. Out of this first set of analyses, the sgRNAs for
14 out of 18 genes clearly caused ATRi sensitivity (figure 2b),
whereas the sgRNAs targeting the remaining four genes
(NAE1, DPH1, DTYMK and PPP1R8) produced inconclusive
results because the sgRNAs themselves were highly cytotoxic
in the absence of ATRi treatment (electronic supplementary
material, figure S3). However, as the set of 18 tested genes
was not chosen at random, it is likely that the false positive
rate might be slightly higher than 22% (4/18). Remarkably,
nearly all the genes surveyed that were part of the core set
(13/15) were successfully validated. Importantly, we vali-
dated five (APEX2, C17orf53, CIP2A, POLE3 and POLE4) of
the 11 previously mentioned genes that were found in at
least four out of seven screens, highlighting their importance
in the response to loss of ATR function.

As a second stage of validation, we selected eight genes
(APEX2, C17orf53, CABIN1, CIP2A, DSCC1, POLE4, TOPBP1,
TYMS) and assessed the ability of sgRNAs targeting them to
engender sensitivity both to a second ATRi (AZD6738) and a
second cell line (HCT116 cells). We found that six out of
eight genes promoted resistance to VE-821 and AZD6738 in
both RPE1-hTERT TP53−/− and HCT116 cells (figure 3). The
sgRNAs targeting DSCC1 and CABIN1 did not validate in
HCT116 cells but we did not investigate further whether this
was due to incomplete editing or whether it reflected biological
differences between those cell lines.

As a final stage of validation, we generated clonal loss-of-
function mutations in the APEX2, CIP2A, POLE3 and POLE4
genes (figure 4; electronic supplementary material, figures S4
and S5). We also added clones of C16orf72 loss-of-function
mutants as they were available in the laboratory (figure 4;
electronic supplementary material, figure S4). We assessed
sensitivity to AZD6738 in clonogenic survival assays and
observed that disruption of each of these genes caused hyper-
sensitivity to ATR inhibition, with the mutations in the
POLE3 and POLE4 genes causing the greatest sensitization
to ATR inhibition (figure 4c,d ), in line with the results
obtained in the competitive growth assay (figures 2 and 3).

The remarkable hypersensitivity of POLE3/POLE4-
deficient cells to ATR inhibitors was intriguing in light of the
recent characterization of this protein complex in chromatin
maintenance and within the DNA Pol ε holoenzyme
[41,42,52,53]. The POLE3/4 subunits form a histone-fold com-
plex that is flexibly tethered to the core subunits of Pol ε but is
not essential for DNA polymerization [53]. POLE3/4 acts as a
histone H3-H4 chaperone that ensures symmetric histone
deposition during DNA replication [41,42]. Pole4−/− mice are
viable and show evidence of replication stress despite the fact
that POLE4−/− cells have normal activation of the ATR pathway
in response to a camptothecin or hydroxyurea challenge
(figure 5a) [52]. We tested whether the ATRi sensitivity of
POLE3−/− cells was due to defective histone deposition by com-
plementing POLE3−/− knockout cells with a vector expressing
a variant POLE3 with a C-terminal deletion, POLE3ΔC, which
disrupts the histone deposition function of the POLE3/POLE4
dimer [41]. Expression of wild-type POLE3 or POLE3ΔC fully
restored ATRi resistance, suggesting that histone deposition
by this complex is unlikely to be involved in the normal cellular
resistance to ATR inhibitors (figure 5b,c; electronic supplemen-
tary material, figure S6). Since siRNA-mediated depletion of
Pol ε core subunits POLE leads to ATRi sensitivity [39], the
ATRi sensitivity of POLE3/4-deficient cells may suggest that
slight perturbances in Pol ε activity are sufficient to cause sen-
sitivity to ATR inhibition. However, it is also possible that
POLE3/POLE4 have additional roles at the replisome and
that it is one of those activities that is responsible for the strik-
ing ATRi sensitivity of cells lacking these subunits.

In summary, our mapping of gene mutations that cause
sensitivity to ATRi provides an unbiased view of the genetic
architecture of the ATR-dependent control of genome integ-
rity. We contend that this dataset will be a valuable tool for
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Figure 2. Hit validation using two sgRNAs for each gene of interest. (a) Schematic showing work flow of two-colour competitive growth assay. Cells were trans-
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Figure 3. Hit validation using two ATR inhibitors and two cell lines. (a) Results from two-colour competitive growth assays using RPE1-hTERT Flag-Cas9 TP53−/− cells
and the indicated concentrations of ATRi (VE-821 or AZD6738) or vehicle (DMSO). (b) Results from two-colour competitive growth assays as in panel (a), but using
HCT116 Cas9 cells. Asterisks indicate genes that are not part of ATRi core gene set. Error bars represent standard deviation of three biologically independent experiments.
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both clinical and biological researchers. Beyond revealing
potential new biomarkers of the ATRi response, this list is
rich in potential new avenues for study. For example, there
are many genes in this list that have never been characterized
in-depth for a role in genome integrity. A prime candidate is
C4orf21, also known as ZGRF1, which encodes a protein con-
taining a GRF-type zinc finger, a domain found in bona fide
DNA repair proteins such as TOPIIIα, APE2 and the NEIL3
glycosylase. In some other cases, the inclusion of a gene in
this list cements the potential role of their encoded protein
as a modulator of genome integrity. An example is DHX9,
which is an RNA helicase that promotes R-loop formation
and impedes DNA replication [54]. We also note that this
core gene set is unlikely to be exhaustive because fitness
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screens necessitate that the sgRNAs have some level of rep-
resentation in the control cell population and therefore can
miss cell-essential genes. Given that DNA replication is an
essential process associated with the ATR pathway, it is
likely that a comprehensive list of vulnerabilities to ATR inhi-
bition will necessitate other approaches such as phenotypic
screens or CRISPR interference. Finally, our finding that
mutations in POLE3/POLE4 cause hyper-sensitivity to ATRi
is particularly intriguing and forms the basis of ongoing
studies. Our data indicate that the sensitivity imparted by
the loss of POLE3/POLE4 is not due to defective histone
deposition, suggesting it is rather caused by a defect in
DNA synthesis that remains to be uncovered.

3. Methods
3.1. Plasmids
DNA sequences corresponding to sgRNAs were cloned into
LentiGuide-Puro (Addgene: 52963) or a modified form of
LentiCRISPRv2 (Addgene: 52961) in which the sequence encod-
ing Cas9 was replaced by that for NLS-tagged GFP or mCherry
using AgeI and BamHI (designated as LentiGuide-NLS-GFP or
–mCherry), as described [55,56]. GFP-POLE3 full length and
GFP-POLE3 with amino acid residues 113–140 deleted (GFP-
POLE3ΔC) were cloned between NheI and AgeI restriction
sites of pCW57.1 (Addgene: 41393).
3.2. Cell lines and gene editing
293T cells were obtained from ATCC. HeLa Flag-Cas9 and
RPE1-hTERT Flag-Cas9 TP53−/− were published earlier
[44] and HCT116 Flag-Cas9 cells [43] were a kind gift from
Jason Moffat. RPE1-hTERT Flag-Cas9 TP53−/− were grown
in Dulbecco’s Modified Eagle Medium (DMEM; Gibco/
Wisent) supplemented with 10% fetal bovine serum (FBS;
Wisent), 200 mM GlutaMAX, 1× non-essential amino acids
(both Gibco) and 100 U ml−1 penicillin and 100 µg ml−1

streptomycin (Pen/Strep; Wisent/Gibco). HeLa Flag-Cas9
and 293T cells were cultured in DMEM supplemented
with 10% FBS and Pen/Strep. HCT116 Flag-Cas9 cells
were cultured in McCoy’s 5A medium (Gibco) sup-
plemented with 10% FBS and Pen/Strep. Cell lines stably
expressing Flag-Cas9 were maintained in the presence of
2 µg ml−1 blasticidin.

Lentiviral particles were produced in 293T cells by co-
transfection of the targeting vector with plasmids expressing
VSV-G, RRE and REV using TransIT LT-1 transfection reagent
(Mirus). Viral transductions were performed in the presence of
4–8 µg ml−1 polybrene (Sigma-Aldrich) at an MOI < 1. Trans-
duced RPE1-hTERT Flag-Cas9 TP53−/− and HCT116 Cas9
cells were selected by culturing in the presence of 15–20 or
2 µg ml−1 puromycin, respectively.

APEX2, CIP2A, POLE3 and POLE4 gene knockouts were
generated in RPE1-hTERT Flag-Cas9 TP53−/− cells by electro-
poration of LentiGuide-Puro or LentiGuide-NLS-GFP vectors
using an Amaxa II Nucleofector (Lonza). C16orf72 gene
knockout clones were generated in RPE1-hTERT Flag-Cas9
TP53−/− cells by transfecting sgRNA/Cas9 ribonucleoprotein
complex using Lipofectamine CRISPRMAX Cas9 Transfec-
tion Reagent (Invitrogen). After 24 h transfection, cells were
expanded, followed by single clone isolation. For sgRNA
sequences employed see electronic supplementary material,
table S3; APEX2 #12: APEX2sgRNA1, APEX2 #2:
APEX2sgRNA2, C16orf72 #9 and C16orf72 #21:
C16orf72sgRNA1, CIP2A #6 and CIP2A #17: CIP2Asg RNA2,
POLE3 #15: POLE3sgRNA1, POLE4 #6 and POLE4 #8: POLE4-
sgRNA1. Twenty-four hours following transfection, cells
were selected for 24–48 h with 15–20 µg ml−1 puromycin, fol-
lowed by single clone isolation. Gene mutations were further
confirmed by PCR amplification, DNA sequencing and TIDE
analysis [51]. For primers used for genomic PCR, see elec-
tronic supplementary material, table S4. Loss of gene
expression was further confirmed either by immunoblotting
to assess protein levels if antibodies were available (see
below) or by RT-qPCR to assess mRNA levels using
GAPDH for normalization. Taqman assays employed were
GAPDH (Hs99999905_m1) and APEX2 (Hs00205565_m1)
from Thermo Fisher Scientific.

RPE1-hTERT Flag-Cas9 TP53−/− (WT) or POLE3−/− #15
cells expressing GFP, GFP-POLE3 or GFP-POLE3ΔC were
generated by transduction with lentiviral particles of
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pCW57.1-derived GFP, -GFP-POLE3 or -GFP-POLE3ΔC con-
structs and subsequent selection with 20 µg ml−1

Puromycin for 48 h. Cells were maintained in the presence
of 5 µg ml−1 puromycin and 1 µg ml−1 doxycycline.

3.3. Antibodies, siRNAs and drugs
The following antibodies were used in this study at the
indicated dilutions: anti-CIP2A (CST #14805; 1 : 1000), anti-
GAPDH (Sigma-Aldrich G9545; 1 : 20 000), anti-GFP (gift
from Laurence Pelletier, 1 : 10 000), anti-KAP1 (Bethyl A300-
274A, 1 : 5000), anti-POLE3 (Bethyl A301-245A-1; 1 : 2000),
anti-POLE4 (Abcam ab220695; 1 : 200), anti-Tubulin (Milli-
pore CP06, 1 : 2000), anti-pCHK1 (S345) (Cell Signaling
#2348, 1 : 1000), anti-CHK1 (Santa Cruz sc8408, 1 : 500),
anti-pRPA32 (S33) (Bethyl A300-246A-3, 1 : 20 000), anti-
RPA32 (Abcam ab2175, 1 : 500). The following secondary
antibodies for immunoblotting were used in this study:
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peroxidase-conjugated AffiniPure Bovine Anti-Goat IgG
(Jackson Immuno Research 805-035-180) and peroxidase-con-
jugated Sheep Anti Mouse IgG (GE Healthcare NA931 V). All
peroxidase-conjugated secondary antibodies were used at a
dilution of 1 : 5000. Protein bands were detected using the
SuperSignal West Pico enhanced chemiluminescence reagent
(Thermo Fisher Scientific). The following siRNAs from
Dharmacon were used in this study: control, siGENOME
Non-targeting Pool #2 (D-001206-14-05); POLE3, siGENOME
SMARTpool (M-008460-01-0005); POLE4, siGENOME SMART-
pool (M-009850-01-0005); APEX2, siGENOME SMARTpool
(M-013730-00-0005). ATR inhibitors VE-821 and AZD6738
were purchased from SelleckChem.
Open
Biol.9:190156
3.4. CRISPR/Cas9 screens
RPE1-hTERT Flag-Cas9 TP53−/−, HeLa Flag-Cas9 and HCT116
Flag-Cas9-expressing cells were transduced with the lentiviral
TKOv1 library at a lowMOI (approx. 0.35) and puromycin-con-
taining medium was added the next day to select for
transductants. Selection was continued until 72 h post-transduc-
tion, which was considered the initial time point, t0. To identify
VE-821 sensitizers, the negative-selection screen was per-
formed by subculturing at days 3 and 6 (t3 and t6), at
which point the cultures were split into two populations.
One was left untreated and to the other a dose of VE-821
amounting to 20% of the lethal dose (LD20) (HeLa Flag-Cas9,
1.5 µM; HCT116 Flag-Cas9 1.5 µM; RPE1-hTERT Flag-Cas9
TP53−/−, 4 µM) was added. Cells were grown with or without
VE-821 until t18 and subcultured every 3 days. Sample
cell pellets were frozen at t18 for genomic DNA (gDNA)
isolation. Screens were performed in technical triplicates
and a library coverage of greater than or equal to 200 cells
per sgRNA was maintained at every step. The AZD6738
screen was performed at a concentration of 0.5 µM
AZD6738 using the TKOv3 library [46] in technical duplicates
and a library coverage of greater than or equal to 375 cells per
sgRNA was maintained at every step. Genomic DNA from
cell pellets was isolated using the QIAamp Blood Maxi Kit
(Qiagen) and genome-integrated sgRNA sequences were
amplified by PCR using the KAPA HiFi HotStart ReadyMix
(Kapa Biosystems). i5 and i7 multiplexing barcodes were
added in a second round of PCR and final gel-purified pro-
ducts were sequenced on Illumina NextSeq500 or
HiSeq2500 systems to determine sgRNA representation in
each sample. sgRNA sequence read counts (electronic sup-
plementary material, table S5) were obtained using
MAGeCK [57]. drugZ [45] was used to identify gene knock-
outs which were depleted from ATRi-treated t18 populations
but not depleted from untreated cells.
3.5. Two-colour competitive growth assay
Cells were transduced with either virus particles of NLS-
mCherry LacZ-sgRNA or NLS-GFP GOI-sgRNA. Twenty-
four hours after transduction transduced cells were selected
using 15–20 µg ml−1 puromycin for 48 h. At this time
mCherry- and GFP-expressing cells were mixed 1 : 1 (2500
cells + 2500 cells) and plated in a 12-well format. Cells were
imaged for GFP- and mCherry signals 24 h after initial plat-
ing (t = 0) and ATR inhibitors were added subsequently
(RPE1-hTERT Flag-Cas9 TP53−/−: 2 µM/4 µM VE-821 or
0.5 µM AZD6738; HCT116 Flag-Cas9: 1.5 µM VE-821 and
0.2 µM AZD6738). During the course of the experiment,
cells were subcultured when near-confluency was reached
and imaged on days 3, 6, 9, 12 and 15. An InCell Analyzer
system (GE Healthcare Life Sciences) equipped with a 4×
objective was used for imaging. Segmentation and counting
of the number of GFP-positive and mCherry-positive cells
was performed using an Acapella script (PerkinElmer). Effi-
ciency of indel formation for a subset of sgRNAs was
analysed by performing PCR amplification and sequencing
of the region surrounding the sgRNA target sequence and
TIDE analysis on DNA isolated from GFP-expressing cells 9
days post-transduction.
3.6. Clonogenic survival assays
RPE1-hTERT Flag-Cas9 TP53−/− cells were seeded in 10-cm
dishes (WT: 500 or 1000 cells; APEX2−/−: 1000–1500 cells;
CIP2A−/−: 2000 cells; POLE3−/−: 1000 cells; POLE4−/−:
1000 cells) in the presence AZD6738 or left untreated. For
WT or POLE3−/− cells transduced with pCW57.1-GFP/GFP-
POLE3/GFP-POLE3ΔC 1000 cells were seeded in 10 cm
dishes in the presence of 1 µg ml−1 doxycycline and in the
presence or absence of AZD6738. Doxycycline-containing
medium +/− AZD6738 was refreshed every 3 days.
After 11–14 days, colonies were stained with crystal violet sol-
ution (0.4% (w/v) crystal violet, 20% methanol) and counted
manually. Relative survival was calculated for the drug treat-
ments by setting the number of colonies in non-treated
controls at 100%.
3.7. Incucyte assay for ATRi sensitivity
RPE1-hTERT Flag-Cas9 TP53−/− (WT) or POLE3−/− cells were
seeded into a 12-well plate (2500 cells per well) in the presence
of 1 µg ml−1 doxycycline. After 24 h medium containing
1 µg ml−1 doxycycline and AZD6738 to the desired final con-
centration was added. Every six hours 25 images per well
were acquired using an Incucyte S3 Live Cell Analysis
System (Sartorius) and analysed for percentage confluency
using INCUCYTE S3 2018A software (Sartorius). Doxycycline-
containing medium +/− AZD6738 was refreshed after 3
days. Percentage confluency at the 138 h time point was
used to calculate relative survival by setting the percentage
confluency in non-treated controls at 100%.
Data accessibility. The gene-level normalized Z-scores (drugZ scores)
and the sgRNA-level read counts are available as electronic
supplementary material, tables S1 and table S5, respectively.
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