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Abstract

Metagenomics has altered our understanding of microbial diversity and ecology. This includes its applications to viruses in
marine environments that have demonstrated their enormous diversity. Within these are RNA viruses, many of which share
genetic features with members of the order Picornavirales; yet, very few of these have been taxonomically classified. The only
recognized family of marine RNA viruses is the Marnaviridae, which was founded based on discovery and characterization of
the species Heterosigma akashiwo RNA virus. Two additional genera of marine RNA viruses, Labyrnavirus (one species) and
Bacillarnavirus (three species), were subsequently defined within the order Picornavirales but not assigned to a family. We have
defined a sequence-based framework for taxonomic classification of twenty marine RNA viruses into the family Marnaviridae.
Using RNA-dependent RNA polymerase (RdRp) phylogeny and distance-based analyses, we assigned the genera Labyrnavirus
and Bacillarnavirus to the family Marnaviridae and created four additional genera in the family: Locarnavirus (four species),
Kusarnavirus (one species), Salisharnavirus (four species) and Sogarnavirus (six species). We used pairwise capsid protein com-
parisons to delineate species within families, with 75 per cent identity as the species demarcation threshold. The family dis-
plays high sequence diversities and Jukes–Cantor distances for both the RdRp and capsid genes, suggesting that the classified
viruses are not representative of all of the virus diversity within the family and that there are many more extant taxa. Our pro-
posed taxonomic framework provides a sound classification system for this group of viruses that will have broadly applicable
principles for other viral groups. It is based on sequence data alone and provides a robust taxonomic framework to include vi-
ruses discovered via metagenomic studies, thereby greatly expanding the realm of viruses subject to taxonomic classification.
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1. Introduction

The isolation and subsequent genomic analysis of an RNA virus
infecting the single-celled eukaryotic marine alga, Heterosigma
akashiwo, altered our view of marine viruses due to its clear
evolutionary relationship to viruses infecting higher plants and
animals (Tai et al.2003; Lang, Culley, and Suttle 2004). Moreover,
there is evidence that RNA viruses constitute approximately 50
per cent of marine virus assemblages (Steward et al. 2013), and
play an important ecological role through their infection of ma-
rine eukaryotic phytoplankton (Brussaard 2004; Lawrence and
Suttle 2004; Nagasaki et al. 2004; Tomaru et al. 2009, 2012, 2013;
Gustavsen et al. 2014; Miranda et al. 2016). To date, there are ten
described RNA virus species represented by isolates that infect
marine single-celled eukaryotes (Tai et al. 2003; Lang, Culley,
and Suttle 2004; Brussaard et al. 2004; Nagasaki et al. 2004;
Tomaru et al. 2004; Shirai et al. 2008; Tomaru et al. 2009, 2012,
2013; Kimura and Tomaru 2015). Eight of these (Heterosigma aka-
shiwo RNA virus [HaRNAV], Aurantiochytrium single-stranded RNA
virus, Astarnavirus, Chaetoceros tenuissiumus RNA virus 01,
Rhizosolenia setigera RNA virus [RsRNAV], Chaetoceros socialis
f. radians RNA virus 01 [CsfrRNAV], Chaetenuissarnavirus II, and
Chaetarnavirus 2) have clear affiliations with the order
Picornavirales, while two (Heterocapsa circularisquama RNA virus,
family Alvernaviridae, and Micromonas pusilla reovirus, family
Reoviridae) are divergent and fall outside the Picornavirales.

Culture independent studies indicated that RNA viruses are
abundant and genetically diverse in the ocean (Culley, Lang,
and Suttle 2003; Culley and Steward 2007; Culley et al. 2014;
Gustavsen et al. 2014; Miranda et al. 2016), and metagenomics
revealed the existence of multiple picorna-like viruses that are
more similar to the above-mentioned marine RNA virus isolates
than to other known viruses (Culley, Lang, and Suttle 2007;
Culley et al. 2014; Miranda et al. 2016; Shi et al. 2016). Therefore,
RNA viruses are now considered to be important members of
marine virus assemblages.

The order Picornavirales is comprised of positive-sense
single-stranded RNA (þssRNA) viruses in the families
Picornaviridae, Dicistroviridae, Iflaviridae, Secoviridae, Marnaviridae
(Sanfaçon et al. 2009, 2011a), and the newly defined Polycipiviridae
(King et al. 2018; Olendraite et al. 2018). Marnaviridae existed for
many years with Marnavirus as its only genus and HaRNAV its
only species. Two additional genera of marine RNA viruses
(Labyrnavirus and Bacillarnavirus) were also classified within the
order Picornavirales but were unassigned to a family.

All known genomes of Picornavirales members encode pro-
teins with helicase, 3C-like protease, and RNA-dependent RNA
polymerase (RdRp) domains, as well as capsid proteins with re-
lated structures, although the genome organizations can differ
among viruses (Le Gall et al. 2008). The viral proteins are
expressed as one or more polyprotein(s) that are cleaved into in-
dividual functional proteins and the viruses can vary in their
number of genome segments and open reading frames (ORFs)
(Le Gall et al. 2008). HaRNAV has an 8.6-kb polyadenylated ge-
nome with a single 7.7-kb ORF encoding one polyprotein (Lang,
Culley, and Suttle 2004). Members of the genera Labyrnavirus
and Bacillarnavirus share sequence similarities with HaRNAV, al-
though their genomes have a dicistronic organization (Nagasaki
et al. 2004; Takao et al. 2006; Shirai et al. 2008; Tomaru et al.
2009) similar to viruses belonging to the Dicistroviridae
(Chen et al. 2011a).

Virus classification by the International Committee on
Taxonomy of Viruses (ICTV) is polythetic, and has traditionally
relied on biological information such as host range, replication

cycle, virus particle structure and properties, and serology, as
well as sequence similarity (Simmonds et al. 2017). Although bi-
ological information is absent for viruses identified through
metagenomic studies, given their vast numbers and diversity,
it is important to also incorporate these viruses within the
established taxonomic framework. This argument was recently
formalized (Simmonds et al. 2017) and the Genomoviridae, a
family of single-stranded DNA (ssDNA) viruses, was the first to
include viruses discovered using metagenomics into a taxo-
nomic framework (Varsani and Krupovic 2017). This approach
can be applied to other viral groups.

Here, we present a sequence-based taxonomic framework for
the family Marnaviridae that has been successfully applied to re-
structure this family (Walker et al. 2019). We analyzed the amino
acid sequences of the capsid proteins and the RdRp domains of
eight isolates and twelve metagenomically assembled genomes
(Table 1) ofþssRNA viruses affiliated with the order Picornavirales.
Phylogeny, pairwise identity and domain analyses yielded a
framework for classifying these viruses in seven genera within
the Marnaviridae; this taxonomic framework was further vali-
dated by classifying 187 related metagenomic þssRNA viruses
and therefore can be applied to novel members of the family dis-
covered in the future. This has revealed the enormous diversity
of viruses within the Marnaviridae and enables their appropriate
classification, which is important to further define their roles
in marine environments.

2. Materials and Methods
2.1 Origin of metagenomic and isolate sequences

Genome sequences were downloaded from the NCBI GenBank
database (https://www.ncbi.nlm.nih.gov/genbank/) using the
accession numbers in Table 1. Methods pertaining to the isola-
tion and sequencing of both metagenome-assembled and iso-
late genomes are described in the original papers (Table 1).
Marine RNA virus BC-4 is the only unpublished genome (Vlok,
Short. and Suttle, unpublished), but it was obtained using the
methods described in Vlok, Lang, and Suttle (2019). One hun-
dred and eighty-seven additional new viral genomes assembled
from aquatic metagenomic and meta-transcriptomic datasets
(López-Bueno et al. 2015; Shi et al. 2016; Lachnit, Thomas, and
Steinberg 2016; Moniruzzaman et al. 2017) were downloaded
from GenBank using the accession numbers in Supplementary
Tables S1 and S2.

2.2 Phylogenetic analysis

All sequences were either aligned or added to existing align-
ments using MUSCLE v3.8.425 with the default parameters
(Edgar 2004), and then manually refined with Aliview version
1.17.1 (Larsson 2014). To corroborate amino acid model selec-
tion, both the Smart Model Selection in PhyML (Lefort,
Longueville, and Gascuel 2017) and ProtTest 3.2 (Darriba et al.
2011) as part of the Phylemon2 package (Sánchez et al. 2011)
were used. Maximum-likelihood trees were constructed with
PhyML 3.0 (Guindon et al. 2010) and the LGþIþGþF amino acid
model, and branch support was evaluated with the Shimodaira–
Hasegawa approximate-likelihood ratio test. The resultant trees
were edited in iTOL v3 (Letunic and Bork 2016).

RdRp protein sequences of Picornavirales type members,
spanning the eight conserved domains (Koonin, Dolja, and
Morris 1993), were aligned as described earlier. Capsid protein
sequences were aligned using domains as identified by HMMER
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1.9 (https://www.ebi.ac.uk/Tools/hmmer/) using the Pfam
database. N- and C-termini were trimmed as they have lower
similarity and do not align well. GenBank accession numbers of
relevant sequences are provided in Table 1 and Supplementary
Tables S1 and S2.

2.3 Pairwise similarities and diversity metrics

Relevant alignments were analyzed for Jukes–Cantor distances
and sequence identities using the CLC genomics workbench
v7.5 (CLCBio). Mean distances within and among genera, as well
as the number of amino acid differences per site from mean
diversity calculations (amino acid sequence diversity) for each
population or genus, were calculated for the capsid and RdRp
sequences using the p-distance method in MEGA7 (Kumar,
Stecher, and Tamura 2016).

2.4 Domain analysis

The RdRp-conserved domains were identified as per Koonin,
Dolja, and Morris (1993) and illustrated using WebLogo3 (Crooks
et al. 2004).

3. Results
3.1 Family and genera classifications

Maximum-likelihood phylogenetic analysis of the RdRp domain
sequences placed the 20 marine RNA virus sequences in a
strongly supported monophyletic group relative to other
Picornavirales sequences (Fig. 1). HaRNAV and the Aurantiochytrium
viruses were most distant (Supplementary Figs S1–S3) and basal
within the clade (Fig. 1). Within this Marnaviridae grouping,
mean RdRp amino acid sequence diversity was 59 per cent.

The analyses placed the twenty viruses into seven clades
that we defined as genera within the Marnaviridae, including the
previously classified genus Marnavirus and unassigned genera
Bacillarnavirus and Labyrnavirus. The new genera were named
Kusarnavirus, Locarnavirus, Salisharnavirus, and Sogarnavirus;
as elaborated in Section 4, the names comprise prefixes to ‘rna-
virus’ representing the geographical areas where the ‘type’ vi-
ruses were found. Mean distances between RdRp sequences
ranged from 53 per cent to 54 per cent for Locarnavirus and
Kusarnavirus, and Bacillarnavirus and Sogarnavirus, respectively,
to 75 per cent for Marnavirus and Labyrnavirus (Supplementary
Table S3).

Capsid amino acid sequence analysis corroborated the find-
ings based on the RdRP sequences. Within the Marnaviridae, the
capsid sequence diversity was 69 per cent with mean distances
ranging from 58 per cent for Kusarnavirus and Sogarnavirus to 76
per cent between Marnaviridae, Labyrnavirus, and Locarnavirus.
The seven genera were also supported by the capsid phylogeny
with the exception of Sogarnavirus, which was split into two
distinct groups (Fig. 2 and Supplementary Fig. S4).

Amino acid diversity was not directly related to the number
of genomes analyzed (Fig. 3 and Supplementary Fig. S5). The
mean diversity for the capsid ORFs for each genus was higher
than for the RdRp but was not proportional to the RdRp diver-
sity. For example, the genus Bacillarnavirus had the highest
capsid (66%) and lowest RdRp (37%) diversities, while the genus
Salisharnavirus had the highest RdRp diversity (51%) with the
second-lowest capsid diversity (60%). On average, the amino
acid diversities, or genetic variation, of the Marnaviridae sit in
the middle of the scale of 0–1.

3.1.1 Marnavirus
The only genus originally classified within the Marnaviridae
was Marnavirus, which consisted of one species and represen-
tative virus, HaRNAV (Table 1). In our analyses, it was the
most divergent taxon in the family, sharing 22.4–30.3 per cent
and 18.5–26.4 per cent amino acid sequence identity for the
RdRp and capsid sequences, respectively, with viruses in the
other genera (Supplementary Figs. S1 and S2). It was the most
deeply branching taxon in the family in both phylogenetic
analyses.

3.1.2 Labyrnavirus
This previously unassigned genus contains one representative,
AuRNAV (Table 1). At the amino acid level, it shared 22.4–33.6
per cent and 17.1–22.5 per cent identities with RdRp and capsid
sequences, respectively, from other genera (Supplementary
Figs. S1 and S2). It was a deep-branching taxon in both phyloge-
netic analyses.

3.1.3 Locarnavirus
Four viruses, JP-B, SF-1, SF-2, and SF-3, originating from metage-
nomic data (Table 1), grouped within the genus Locarnavirus.
The RdRp and capsid diversities among these four viruses were
44 per cent and 63 per cent, respectively (Fig. 3). The members
of this genus shared 52.4–59.1 per cent and 32.2–38.3 per cent
identities for the RdRp and capsid amino acid sequences, re-
spectively, with one another. Members of this genus shared
24.0–48.2 per cent and 17.2–27.4 per cent identities for the
RdRp and capsid amino acid sequences, respectively, with other
members of the family (Supplementary Figs. S1 and S2). The
type species is defined by Marine RNA virus JP-B (species name
Jericarnavirus B).

3.1.4 Kusarnavirus
The previously unclassified virus isolate AglaRNAV, which
infects the pennate diatom Asterionellopsis glacialis, is the only
member of this genus and therefore defines the type species
(Table 1; species name Astarnavirus). It shared 25.4–48.2 per
cent and 21.7–47.9 per cent identities for the RdRp and capsid
amino acid sequences, respectively, with viruses from other
Marnaviridae genera. The capsid sequence shared the highest
amino acid identity (44.3–47.9%) with members of the genus
Sogarnavirus (Supplementary Figs. S1 and S2).

3.1.5 Bacillarnavirus
This previously unassigned genus contains three isolates,
Chaetoceros tenuissimus RNA virus 01 (CtenRNAV01),
RsRNAV, and CsfrRNAV (Table 1), all of which infect centric
diatoms. The RdRp and capsid diversities among these three
viruses were 38 per cent and 66 per cent, respectively (Fig. 3).
The members of this genus shared 57.8–64.4 per cent and 29.1–
33.4 per cent identities for the RdRp and capsid amino acid
sequences, respectively. Members of this genus shared 23.8–
47.8 per cent and 18.3–29.4 per cent identities for the RdRp and
capsid amino acid sequences, respectively, with other mem-
bers of the family (Supplementary Figs. S1 and S2). The type
species is defined by RsRNAV (species name Rhizosolenia seti-
gera RNA virus).

3.1.6 Salisharnavirus
This genus includes four viruses, BC-4, PAL473, BC-3, and
PAL128 (Table 1), which were all discovered through metage-
nomics. The RdRp and capsid diversities among these three vi-
ruses were 51 per cent and 60 per cent, respectively (Fig. 3).
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Figure 1. Maximum-likelihood phylogeny of the Picornavirales RdRp amino acid sequences. The tree was rooted with sequences from the Potyviridae. Branches are col-
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scale bar indicates average residue substitution per site.
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Within this genus, members shared 35.6–63.6 per cent and 24.9–
34.4 per cent identities for the RdRp and capsid amino acid
sequences, respectively. Amino acid identities between mem-
bers of this genus and other members of the Marnaviridae
ranged from 24.3 to 47.2 per cent for the RdRp and 18.2 to 31.5
per cent for the capsid (Supplementary Figs. S1 and S2). The
type species is defined by Marine RNA virus BC-4 (species name
Britarnavirus 4).

3.1.7 Sogarnavirus
This was the largest genus and includes six new species, with
four derived from metagenomic studies and two isolates
(Table 1). The RdRp and capsid diversities among these viruses
were 38 per cent and 56 per cent, respectively (Fig. 3). The mem-
bers of this genus shared 48.8–77.0 per cent and 27.6–59.0 per
cent identities for the RdRp and capsid amino acid sequences,

respectively, with one another, and 24.3–47.2 per cent and 17.1–
47.9 per cent identities for the RdRp and capsid amino acid
sequences, respectively, with other members of the family
(Supplementary Figs. S1 and S2). The type species is defined by
CtenRNAV type-II (species name Chaetenuissarnavirus II).

3.2 Species demarcations

Pairwise comparisons of the RdRp and capsid amino acid
sequences revealed a large range of identity values (Fig. 4 and
Supplementary Figs. S1 and S2). Most of the capsid sequences
analyzed shared 22–30 per cent pairwise amino acid identities
compared to 26–46 per cent for the RdRp sequences. The high-
est pairwise identity scores were 59 per cent and 77 per cent
for the capsid and RdRp, respectively. Based on the pairwise
scores (Fig. 4) we suggest conservative species demarcation
cut-offs of 75 per cent for the capsid and 90 per cent for the
RdRp.

3.3 Applying the taxonomic framework to additional
new viruses

An RdRp maximum-likelihood analysis with 187 new viral
genomes, in addition to the 20 viruses used to define the seven
genera within the Marnaviridae, revealed that the proposed gen-
era encompassed the majority of this viral diversity (Fig. 5 and
Supplementary Table S1). In addition to the seven proposed
genera, two new supported clades were observed as well as
nine viruses that did not have strong support within the tree.
However, in this larger analysis, less congruence was observed
for the RdRp and capsid phylogenies (Fig. 5 and Supplementary
Fig. S6).

Frequency profiles of pairwise amino acid identities of the
expanded dataset (Fig. 4C and D) were similar to those observed
for the 20-virus dataset. The majority of the viruses analyzed
were within the species demarcation cut-offs. Some genomes
which were denoted as strains in one study (Shi et al. 2016)
were also indicated as such by this taxonomic framework.
Exceptions were strains of the viruses Wenzhou picorna-like vi-
rus 2 and Hubei picorna-like virus 7, which each had 100 per
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cent RdRp sequence identities but 69 per cent and 48 per cent
capsid sequence identities, respectively. This is likely a result of
recombination. For seven other virus pairs, identities of one of
the two protein regions fell outside the species demarcation
criteria (Supplementary Table S4).

Analysis of the conserved RdRp domains (I–VIII; Koonin,
Dolja, and Morris 1993) showed high conservation of specific
amino acids in the Marnaviridae, although genera were distin-
guished by unique amino acid motifs (Supplementary Fig. S7).
Domains I, IV, VI, and VII showed the highest degree of conser-
vation within genera and at the family level (Supplementary
Figs. S7 and S8).

4. Discussion

Sequence analysis of previously unclassified marine virus iso-
lates and twelve viruses described from metagenomic studies,
as well as members of the previously unassigned genera
Labyrnavirus and Bacillarnavirus, and the genus Marnavirus in the
family Marnaviridae, allow us to greatly expand classification
of viruses within this family. Arguments supporting this expan-
sion are elaborated in the following sections.

4.1 Expanding the family Marnaviridae to encompass
seven genera

The RdRp phylogeny for the viruses analyzed in this
study shows the 20 marine viruses form a well-supported
monophyletic group (Fig. 1). These viruses are more similar to
each other than to other members of the order Picornavirales

(Supplementary Figs. S3 and S8). Because of this relationship,
and the basal location of the originally classified representative,
Marnavirus, we argued that the 20 analyzed viruses (Table 1)
belong within the family Marnaviridae, and this has been ratified
by the ICTV (Walker et al. 2019).

The RdRp phylogeny and measurements of sequence identi-
ties define seven genera in the family (Fig. 1). Polymerases are
sufficiently conserved at the amino acid level that similarities
can be used to establish viral classification at the genus level, as
has been demonstrated for multiple virus families (Baker and
Schroeder 2008; Nibert et al. 2014; Varsani and Krupovic 2017).
The genera newly assigned to the Marnaviridae were selected
based primarily on robust phylogenetic relationships.
Expanding the analysis to include an additional 187 viruses vali-
date the seven genera as representative of most of the currently
known Marnaviridae diversity (Fig. 5 and Supplementary Table
S1). While all genera share some conserved RdRp amino acid
motifs (Supplementary Fig. S7), such as the catalytic GDD (Wang
and Gillam 2001; Kok and McMinn 2009), genus-specific motifs
are also present. Amino acid substitutions that are chemically
different suggest that these positions may not be required for
the catalytic function of the protein but are useful for this level
of sequence classification.

Genome organization is useful for comparing virus groups
but is not a sufficient marker for either family- or genus-level
demarcations. While the majority of genomes analyzed here
have a dicistronic organization (Table 1), HaRNAV and SF-3
have a single predicted polyprotein encoded by their genomes.
HaRNAV is the only representative of the genus Marnavirus, but
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SF-3 is one of four viruses placed within the genus Locarnavirus.
While the remaining isolates and most of the viruses identified
in metagenomes considered here (Table 1) have dicistronic
genomes, other monocistronic genomes that fall within the
Marnaviridae as defined here are known for viruses from the
coastal waters of Hawaii (Culley et al. 2014). Sequences for these
viruses were unavailable and are not included in our analysis.
Furthermore, the Secoviridae, another family within the order
Picornavirales, contains members with both mono- and bipartite
genomes. Similar to our Marnaviridae findings, the Secoviridae

form a monophyletic clade based on RdRp sequences; thus, ge-
nome organization is not a robust criterion for family demarca-
tion within the Picornavirales. We also note that AuRNAV, genus
Labyrnavirus, contains a third annotated ORF that is transcribed
as a sub-genomic RNA (Takao et al. 2006).

With the exception of the sogarnaviruses, all multi-member
genera within the Marnaviridae form independent clades based
on capsid phylogeny (Fig. 2 and Supplementary Fig. S4); how-
ever, there are incongruences between the capsid and RdRp
phylogenies (Fig. 2). Some of this may be due to recombination
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within the family. While it is unlikely that recombination occurs
within the polymerase domain (Greenspan et al. 2004), recombi-
nation has been observed in the genomes of other members of
the Picornavirales (Simmonds 2006; Moore et al. 2011; Elbeaino
et al. 2012). Recombination would also explain the similarity
between the capsid proteins of AglaRNAV and BC-2, as well as
BC-3 and Pal156, but not the rest of the genus Sogarnavirus
(Supplementary Figs. S1 and S4). The structural and non-
structural proteins could also have different evolutionary trajec-
tories that are not evident from the phylogenies. Regardless, the
presence of two groups of sogarnaviruses suggests a sub-genus
classification may be warranted, which may become clearer
with the discovery and addition of new species.

4.2 Derivation of genus names

The names of the three established genera are acronyms based
on a prefix reflecting the host of the ‘type’ virus (e.g.
Labyrnavirus and Bacillarnavirus) or its origin (e.g. Marnavirus),
added to ‘rnavirus’ to reflect the genome type. Labyrnavirus and
Bacillarnavirus refer to the protist classes Labyrinthulomycetes
and Bacillariophyceae (diatoms), which are hosts for the type vi-
ruses, while Marnavirus is derived from the Latin for sea, Mare.
We kept to this general scheme of including ‘rnavirus’ for con-
sistency in naming for the new genera. Locarnavirus is based on
Locarno Beach, where Jericho Pier is located and the first marine
RNA virus metagenome and type virus (JP-B) for the genus origi-
nated (Culley, Lang, and Suttle 2003); JP-B is also basal to the
clade. Salisharnavirus is derived from ‘Salish Sea’, the water
mass around coastal southern British Columbia from which
the first marine RNA virus metagenomes were assembled, in-
cluding the type virus BC-1. ‘Sog in Sogarnavirus is an acronym
for the Strait of Georgia, a major water body within the Salish
Sea that includes the area from which the first marine RNA
viromes were assembled (Culley, Lang, and Suttle 2003, 2007).
Chaetoceros tenuissimus RNA virus type-II (CtenRNAVII) was
selected as the type Sogarnavirus, because it is the better studied
of the two isolates in the genus. Kusarnavirus is derived from the
Afrikaans word for coast, kus, and the only current member of
the genus, Asterionellopsis glacialis RNA virus (AglaRNAV) that
infects a coastal diatom host, by default defines the type spe-
cies. Rhizosolenia setigera RNA virus 01 (CtenRNAV01) is already
established as the type species of the genus Bacillarnavirus.

4.3 Classifying new species

The amino acid divergence of the capsid sequences compared
to that for RdRp makes capsid sequence useful for species
demarcation (Fig. 4 and Supplementary Figs. S1 and S2).
Functional differences likely cause the differences between the
two regions, as capsid proteins are involved in host recognition
and co-evolve with cellular receptors (Nagasaki et al. 2005; Tully
and Fares 2006). This may partly explain the lack of perfect con-
gruence between the two phylogenies (Fig. 2). Thus, the percent
amino acid identities for both the RdRp and capsid proteins
were considered for species demarcation.

For the capsid polyprotein, we suggest a conservative cut-off
of 75 per cent pairwise amino acid identity for species demarca-
tion. This is 15 per cent higher than the lowest observed inter-
species identity (59–60% bin) (Fig. 4). The large genetic distances
among the proposed genera and the high estimates of diversity
suggest that other genera remain to be discovered within
the Marnaviridae, and this is also supported by our expanded
analysis of additional viruses (Fig. 5), which need revisited in

the future for formal taxonomic assignments. Furthermore, a
75-per cent capsid protein sequence identity for species demar-
cation is in accordance with the parameters required for species
classification in the Secoviridae (Sanfaçon et al. 2009, 2011b),
although less stringent than the 90 per cent cut-off for species
in the families Iflaviridae and Dicistroviridae (Chen et al. 2011a,b).

The second parameter we considered in species demarca-
tion is the RdRp amino acid identity. The employed cut-off for
RdRp amino acid identity is 90 per cent, which is higher than
the 77–78 per cent bin that functionally defined the species in
our analyses. The family Secoviridae employs an 80-per cent
identity cut-off for the protease-polymerase region (Sanfaçon
et al. 2009, 2011b). We were not able to employ the protease re-
gion for the Marnaviridae as it is too divergent and is difficult to
identify with confidence. This might reflect greater evolutionary
distance among Marnaviridae hosts compared with plants.

4.4 Testing the classification system on other
metagenomic viruses

A subset of the available potential Marnaviridae genome sequen-
ces was used to establish this taxonomic classification.
The genomes used to test our taxonomic definitions had the
potential to be very different, because they were from freshwa-
ter (López-Bueno et al. 2015), holobiont (Lachnit, Thomas, and
Steinberg 2016) and (meta-)transcriptome (Shi et al. 2016;
Moniruzzaman et al. 2017) studies. An important issue with
transcriptome data from metazoans and phagotrophic protists
is that for RNA virus genomes, particularly those with poly-A
tails that get captured during poly-A selection, it is not possible
to determine whether the viruses are actively replicating within
the study organism or a microbial symbiont, are present inside
food, or are from the surrounding environment. To avoid these
possible complications, we limited our initial analysis to viruses
from culture systems or identified by metagenomics with free
virus particles in aquatic environments.

Most of the additional genomes analyzed could be placed
within the proposed genera based on RdRp amino acid sequen-
ces. The potential expansion of the genera this revealed
may require the subsequent definition of subgenera, especially
for the salisha- and sogarnaviruses, where distinct, deeper-
branching clades are present (Fig. 5).

Recombination can complicate species demarcation.
Because of this, it is important to take both the capsid and RdRp
into account when classifying new species. This is evident from
the expanded dataset results, where seven virus pairs shared
high percent identities for one of the two proteins while the
other shared much lower identities (Supplementary Table S4).
Such viruses would have to be flagged as potential recombi-
nants and require special consideration.

5. Conclusions

In this study, a sequence-based approach was used to expand
the family Marnaviridae to include both viruses discovered
through culturing and metagenomic studies. This places two
previously unclassified genera, Labyrnavirus and Bacillarnavirus,
as well as four new genera within the Marnaviridae. Because of
differences in the levels of sequence conservation for the RdRp
and capsid proteins, we propose the RdRp be used for genus-
level classification, while the capsid and RdRp be used for spe-
cies demarcation. A previous analysis of a ssDNA virus family
employed an approach that deviates from classic taxonomic
methods (Varsani and Krupovic 2017), and we have now
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employed a similar non-classical method to a group of þssRNA
viruses. Although this approach does not take into account
any biological properties such as pathology or host range, it
does provide a means for creating structure and evaluating
relationships within a taxonomic framework for the large pool
of new viruses that are being discovered through metagenomic
analyses.
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López-Bueno, A. et al. (2015) ‘Ecological Connectivity Shapes
Quasispecies Structure of RNA Viruses in an Antarctic Lake’,
Molecular Ecology, 24: 4812–25.

Miranda, J. A. et al. (2016) ‘RNA Viruses as Major Contributors to
Antarctic Virioplankton’, Environmental Microbiology, 18:
3714–27.

Moniruzzaman, M. et al. (2017) ‘Virus-Host Relationships
of Marine Single-Celled Eukaryotes Resolved from
Metatranscriptomics’, Nature Communications, 8: 16054–64.

Moore, J. et al. (2011) ‘Recombinants between Deformed Wing
Virus and Varroa Destructor Virus-1 May Prevail in Varroa
Destructor-Infested Honeybee Colonies’, Journal of General
Virology, 92: 156–61.

Nagasaki, K. et al. (2004) ‘Isolation and Characterization
of a Novel Single-Stranded RNA Virus Infecting the
Bloom-Forming Diatom Rhizosolenia setigera’, Applied and
Environmental Microbiology, 70: 704–11.

et al. (2005) ‘Previously Unknown Virus Infects Marine
Diatom’, Applied and Environmental Microbiology, 71: 3528–35.

Nibert, M. L. et al. (2014) ‘Taxonomic Reorganization of Family
Partitiviridae and Other Recent Progress in Partitivirus
Research’, Virus Research, 188: 128–41.

Olendraite, I. et al. (2018) ‘Polycipiviridae: A Proposed New Family
of Polycistronic Picorna-Like RNA Viruses’, Journal of General
Virology, 98: 2368–78.

Sánchez, R. et al. (2011) ‘Phylemon 2.0: A Suite of Web-Tools for
Molecular Evolution, Phylogenetics, Phylogenomics and
Hypotheses Testing’, Nucleic Acids Research, 39: 470–4.
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