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Abstract: Plasma platelet-activating factor acetylhydrolase (PAF-AH), also called
lipoprotein-associated phospholipase A, (Lp-PLA»), is a group VIIA PLA, enzyme that
catalyzes the hydrolysis of PAF and certain oxidized phospholipids. Although the role of
PAF-AH as a pro- or anti-atherosclerotic enzyme is highly debated, several studies have
shown it to be an independent marker of cardiovascular diseases. In humans the majority of
plasma PAF-AH is bound to LDL and a smaller portion to HDL; the majority of the
enzyme being associated with small dense LDL and VHDL-1 subclasses. Several studies
suggest that the anti- or pro-atherosclerotic tendency of PAF-AH might be dependent on
the type of lipoprotein it is associated with. Amino acid residues in PAF-AH necessary for
binding to LDL and HDL have been identified. However our understanding of the
interaction of PAF-AH with LDL and HDL is still incomplete. In this review we present an
overview of what is already known about the interaction of PAF-AH with lipoprotein
particles, and we pose questions that are yet to be answered. The recently solved crystal
structure of PAF-AH, along with functional work done by others is used as a guide to
develop a model of interaction of PAF-AH with lipoprotein particles.
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1. Introduction

Human platelet-activating factor acetylhydrolase (PAF-AH) is a Ca*" independent phospholipase A,
(PLA;) that was identified in human plasma as the enzyme responsible for the hydrolysis and thus
inactivation of platelet-activating factor (PAF, 1-O-hexa/octadecyl-2-acetyl-sn-glycero-3-phospho-
choline) [1,2]. PAF is a potent pro-inflammatory phospholipid signaling molecule [3]. Specifically,
PAF-AH catalyses the hydrolysis of the acetyl group at the sn-2 position of the glycerol backbone of
PAF converting it to lyso-PAF (Figure 1). Due to its PLA; type catalytic activity the enzyme is also
referred to as group VIIA PLA; [4]. Both intracellular as well as secreted forms of PAF-AH have been
identified [5,6]. One of the intracellular forms, homologous to the secreted PAF-AH, is referred to as
PAF-AH II or group VIIB PLA,; [4]; this article deals with only the secreted plasma PAF-AH.

The enzyme has a classic lipase o/p-hydrolase fold with a Ser, Asp, His catalytic triad, as confirmed
by the recently solved crystal structure of the enzyme [7]. In addition to PAF, the enzyme catalyzes the
hydrolysis of a wide variety of substrates [8], including oxidatively fragmented phospholipids
produced as a result of LDL oxidation (Figure 1).

Figure 1. PAF-AH substrates. Panel A depicts a model of the phospholipid monolayer of
lipoproteins with an oxidatively fragmented phospholipid (shown in blue). The sn-2 chain
of the fragmented phospholipid could be flipped upward or away from the hydrophobic
portion of the interface and thus become accessible to the PAF-AH active site. Panel B
shows examples of different types of PAF-AH phospholipid substrates (PAF; POV-PC: 1-
(palmitoyl)-2-(5-oxovaleroyl)-phosphatidylcholine; PGPC: 1-palmitoyl-2-glutaroyl
phosphatidylcholine) that are hydrolyzed to give the product free fatty acid and either lyso-
phosphatidylcholine (lyso-PC) or lyso-PAF.
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Typically, only phospholipids with a short acyl chain, up to 5 carbons long at the sn-2 position are
hydrolyzed. The enzyme can hydrolyze phospholipids with longer acyl chains, if they have oxidized
functionality at the w-position [9]. Due to this unique substrate specificity the enzyme can circulate
freely in the plasma in the active form without hydrolyzing cellular phospholipids. In the plasma, the
enzyme is bound to lipoprotein particles [10] and is therefore also known as lipoprotein associated
phospholipase A, (Lp-PLA,).

2. Physiological Role of Plasma PAF-AH

A large number of studies have been published over the years since plasma PAF-AH was first
discovered linking an increase in plasma PAF-AH concentration or activity to an increased risk of
various cardiovascular diseases [11,12]. This has prompted many researchers to suggest the use of
plasma PAF-AH as a biomarker for assessing risk of future coronary heart diseases (CHD). The use of
plasma PAF-AH as a biomarker for predicting CHD has been the subject of a number of recent
reviews [12—15] and will not be discussed in detail in this article. Although many studies have found a
correlation between plasma PAF-AH and CHD, it is not clear if plasma PAF-AH is the causative agent
or simply a marker of inflammation. The biological function of plasma PAF-AH in the development of
CHD is controversial, with both anti- and pro-inflammatory roles attributed to it. Plasma PAF-AH is
thought to be anti-inflammatory due to its ability to hydrolyze bio-active, pro-inflammatory
oxidatively fragmented phospholipids produced during the oxidation of LDL. The enzyme is therefore
thought to play a protective role in CHD, preventing the accumulation of these bio-active molecules on
LDL. The observed correlation between plasma PAF-AH concentration or activity and CHD is thought
to be a physiological response to increased vascular inflammation. On the other hand, hydrolysis of the
bio-active molecules by plasma PAF-AH results in the formation of lysophosphatidylcholine and
oxidized nonesterified fatty acids, molecules that have been shown to be highly effective
proatherogenic inflammatory mediators [16—-19]. It is believed that plasma PAF-AH mediated
hydrolysis causes the accumulation of these molecules and aids in atherosclerotic plaque development.
Epidemiological, genetic and animal model studies give varying indications about the role played by
plasma PAF-AH in CHD. There are a number of studies supporting the role of plasma PAF-AH as
both a pro- and anti-inflammatory enzyme [20,21]. A consensus view of prior published work is that
only the LDL-associated plasma PAF-AH is pro-atherosclerotic, while the HDL-associated plasma
PAF-AH is anti-atherosclerotic.

The focus of this review is on the interaction of plasma PAF-AH with lipoprotein particles. The
current understanding is that distinct regions of plasma PAF-AH interact with LDL and HDL particles.
However, it is not clear how the two regions mediate the interaction with LDL and HDL particles. The
crystal structure of plasma PAF-AH has allowed us to further develop the current understanding of its
interaction with lipoprotein particles. We have developed a model of PAF-AH bound to an aqueous-
lipid interface using the methods of the orientation of proteins in membranes (OPM) [22,23]. The
result of the OPM method (prediction performed by A. Lomize) is presented in Figure 2. The plane
represents the interface between polar and nonpolar components, and the polar head groups of the
phospholipids are believed to extend ~10 A above the plane shown. Using the orientation of PAF-AH
predicted by OPM and the surface electrostatic potential view of PAF-AH, we can now propose a
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model of the interaction of plasma PAF-AH with LDL and HDL particles. Both LDL and HDL are
complexes of lipids and proteins, consisting of a core of triglycerides and cholesteryl esters covered by
a surface monolayer composed of phospholipids, unesterified cholesterol and apolipoproteins.

Figure 2. Orientation of PAF-AH on a membrane surface as predicted by OPM. Panel A
shows the orientation of plasma PAF-AH on a membrane surface. The i-face residues are
shown in red. Also shown is K109 and Y205 which display a cation-pi interaction. A list of
all the i-face amino acids is provided in Table 1. The OPM derived plane represents a
region of intermediate hydrophobicity; the hydrophilic head groups extend ~10A above the
plane of spheres. Panel B shows the i-face residues after a ~90° rotation of the view from
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Table 1. Plasma PAF-AH amino acids predicted to interact with lipoproteins LDL and HDL.

i-face amino acids Charged amino acids

Basic Patch Acidic Patch
Helix 114-125: HI114*, W115*, | K55, R58, K363, | D374, D376, D382,
L116* M117*,1120,L123,L124 K101, R122 D401, D403, D406,
Helix 363-369: 1364, 1365, M368*, | H367*, K370* D412, D413, E414
L369%*

This Table lists amino acids predicted to be important for the association of plasma PAF-AH with
LDL and HDL, based on the structure. Residues marked with * have previously been identified as
part of either a HDL binding [41] or LDL binding [33] region.

We believe that distinct amino acids of plasma PAF-AH are involved in its interaction with both the
lipid and protein components of lipoproteins. Two plasma PAF-AH a-helices rich in hydrophobic
amino acids likely interact with the phospholipid monolayer of both LDL and HDL particles. A cluster
of negatively charged amino acids present on plasma PAF-AH is proposed to mediate an interaction
with the protein component (apoB100) of LDL particles. Furthermore, the PAF-AH structure reveals
two regions rich in negatively charged residues, which may mediate its interaction with either the
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protein or lipid component of LDL and HDL. The role played by each of these regions and the type of
interaction mediated by them in the association of plasma PAF-AH with LDL and HDL particles will
be discussed in detail.

3. Plasma PAF-AH Association with Lipoproteins

In the plasma, PAF-AH is bound to lipoprotein particles, a majority to LDL and a smaller
percentage to HDL. The actual percentage bound to each of the two particles seems to vary depending
on the method used for isolating the lipoprotein particle. When ultracentrifugation was used to isolate
lipoprotein particles, about 70% of the plasma PAF-AH activity is associated with the LDL fraction.
The remainder was in the HDL fraction and in the lipoprotein depleted (d > 1.21g/ml) fraction
[10,24,25]. When size-exclusion chromatography was used to separate lipoprotein particles, 85% PAF-
AH was found in the LDL fraction and the remaining 15% in the HDL fraction [24]. This observation
of variable distribution of plasma PAF-AH led to the suggestion that two types of plasma PAF-AH
might exist, one population that binds tightly to LDL and another loosely bound population that
dissociates during ultracentrifugation and moves to higher density fractions.

3.1. Plasma PAF-AH binding to LDL

Within these two classes of lipoproteins, the enzyme has been shown to favor certain subclasses.
Plasma PAF-AH preferentially binds to small dense LDL particles and very-high-density lipoprotein—1
subfraction [26,27]. Also it was demonstrated that PAF-AH is mainly associated with LDL(-) [28], a
LDL subfraction with increased electronegative charge. LDL(-) is elevated in individuals with
increased cardiovascular risk and has been shown to have pro-inflammatory and cytotoxic effects on
endothelial cells (reviewed in [29]). Furthermore, in individuals with elevated Lp(a) levels, plasma
PAF-AH has been shown to have a higher affinity for Lp(a) than to LDL [30]. Lp(a) is a lipoprotein
differing from LDL in having an additional glycoprotein apo(a), linked by a disulphide bond to
apoB100. Lp(a) is proposed to be the carrier of pro-inflammatory oxidized phospholipids and an
elevated Lp(a) level has been shown to be associated with an increased risk of cardiovascular diseases
(reviewed in [31,32]). The reason for increased affinity of plasma PAF-AH for these apparently
atherogenic subfractions has not been determined. ApoB100, the only apolipoprotein present in LDL,
has been shown to mediate the interaction of plasma PAF-AH with LDL [33]. It is possible that the
altered conformation of apoB100 in the LDL subfractions discussed above promotes binding of plasma
PAF-AH. Indeed, the enhanced association of plasma PAF-AH with Lp(a) was shown to be due to the
increased affinity to Lp(a)-apoB100 [30]. The increased affinity of plasma PAF-AH for small dense
LDL as well as LDL(-) has also been proposed to be mediated by an increased affinity to apoB100, as
a result of its altered conformation [26,34]. The physiological significance of enrichment of plasma
PAF-AH in these subfractions is unclear. The preferential association of plasma PAF-AH with these
apparently pro-atherogenic subfractions is considered to be further support for the pro-atherogenic
character of plasma PAF-AH. However, studies demonstrating a clear role of plasma PAF-AH in
atherogenicity are lacking and arguments are presented for both a pro- and an anti-inflammatory role
of the enzyme in these sub-fractions.
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3.2. Plasma PAF-AH binding to HDL

Contrary to the controversial role of LDL-bound PAF-AH, HDL-bound PAF-AH is consistently
reported to be anti-atherosclerotic. PAF-AH was shown to contribute significantly to the protective
effect of HDL in preventing oxidation of LDL [35]. Catalytic activities of three different enzymes on
HDL: plasma PAF-AH, paraoxonase 1 (PON1) and LCAT, are believed to contribute towards its
protective role against oxidation of LDL and inhibition of cell stimulation induced by oxidized LDL
(reviewed in [36]). However it was later demonstrated that the anti-inflammatory role attributed to
PONI1 was actually due to the co-purification of a small amount of plasma PAF-AH [37]. In addition,
adenoviral mediated human plasma PAF-AH gene transfer in apoE” mice has been shown to have
anti-atherosclerotic effects [38,39]; since the majority of plasma PAF-AH in mouse is bound to HDL
[40,41] this was considered as further proof of an anti-atherosclerotic role of HDL-bound plasma PAF-
AH. However, Noto et al. later found that the adenovirus mediated transfer of human plasma PAF-AH
gene to apoE-/- mice resulted in PAF-AH that bound to all the lipoprotein particles and provided
protection against oxidative stress [42].

The ratio of LDL- to HDL-bound plasma PAF-AH has been demonstrated to increase in different
diseases. Patients with paroxysmal atrial fibrillation had an increased amount of LDL bound plasma
PAF-AH and a lower amount bound to HDL compared to the control group [43]. This result can be
thought of as an increased ratio of LDL to HDL bound PAF-AH enzyme. In individuals with
hypercholesterolemia the enzyme activity associated with small dense LDL increased, whereas the
HDL associated activity remained unchanged [44,45]. These observations led to the proposal that the
ratio of plasma PAF-AH bound to HDL versus that bound to the total lipoproteins could be used as a
marker of the severity of inflammation in different diseases. However in a different study, the HDL-
bound concentration of PAF-AH was significantly higher; whereas the PAF-AH concentration not
associated with HDL was lower in hyperlipidemic and diabetic subjects than in controls [46]. Taken
together these studies indicate that the role of plasma PAF-AH on HDL is not clearly established yet
and further studies are required before a conclusion can be reached. The same enzyme is present on
LDL and HDL, and considering that the enzyme activity is not affected by binding to either lipoprotein
particles [8], the reason for the HDL bound enzyme to be anti-atherosclerotic and the LDL-bound
enzyme to be pro-atherosclerotic is not clear.

The factors that influence the distribution of PAF-AH between the two lipoproteins are not clearly
established. However, there are important studies that provide clues to the enzyme favoring one
particle over another. Tselepis et al. demonstrated that the N-linked glycosylation in PAF-AH hinders
its binding to HDL [25]; the removal of glycosylation enhanced the enzyme’s association with HDL.
Thus, the degree of glycosylation appears to be an important factor that influences the distribution of
enzyme among different lipoprotein fractions. In addition, as mentioned above, it has been shown that
the apoB100 present in LDL, but not in HDL, mediates the binding of PAF-AH to LDL [33].
Additional features of PAF-AH that might be influencing its distribution became apparent from its
structure, as discussed below.
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4. Current Knowledge of the Determinants of PAF-AH Binding to Lipoproteins

Distinct regions of plasma PAF-AH have been proposed to be involved in binding to LDL and HDL
[33,41]. Specific N-terminal amino acid residues of PAF-AH were identified to be essential for its
interaction with LDL; these include: Y205, W115, L116 and to a lesser extent, M117. Changing all
these hydrophobic residues to alanine reduced binding to LDL drastically [33]. Mouse plasma PAF-
AH does not have Trp and Leu at positions corresponding to W115 and L116, and does not bind to
LDL. Replacing the residues corresponding to 115 and 116 in mouse to Trp and Leu, rendered the
enzyme capable of binding to LDL. Another mutation that affected binding was H114A. However, it
was shown that H114 is not directly involved in the binding but is present close to the residues
important for binding. The pH dependent binding to LDL that plasma PAF-AH exhibits [10], is due to
the charged state of the H114 present in the binding surface.

More recently, C-terminal amino acid residues HMLK (367-370) were identified as being
important for binding to HDL particles. Among the four residues a more prominent role for M368 and
L369 was suggested while H367 and K370 were suggested to play a moderate role in binding [41]. As
has been mentioned earlier, the carboxy terminal region of apoB100 present on LDL is also believed to
be involved in the binding of plasma PAF-AH with LDL [33]. However, the region in PAF-AH that
interacts with the protein component of LDL has not yet been identified. Each of these regions
involved in PAF-AH-lipoprotein interaction will be discussed below in further detail in light of the
structure of PAF-AH.

5. Molecular Model of Lipoprotein-PAF-AH Association: Hints from the Structure
5.1. Role of Hydrophobic and Aromatic Residues

The recently solved crystal structure of plasma PAF-AH [7] together with the OPM methods of
Lomize et al. [22,23] were used to predict its association with a membrane surface. The OPM method
determines the orientation of membrane proteins in membranes by minimizing their transfer energy
from water to a lipid bilayer. The method can distinguish between membrane proteins and soluble
proteins based on their transfer energy and membrane penetration depths. Figure 2, shows the
orientation of plasma PAF-AH as predicted by the OPM method. This prediction was used as a basis to
develop the model of PAF-AH associating with the phospholipid monolayer of LDL and HDL
lipoproteins. The surface of a peripheral membrane protein that interacts with the membrane is referred
to as the interface binding surface (i-face). The i-face of plasma PAF-AH consists of two short a-
helices rich in hydrophobic residues that presumably insert into the interfacial region of the membrane.
As discussed above many of these i-face residues have been shown by site-directed mutagenesis to be
important for binding to lipoproteins. The amino acids important for binding to LDL are part of the N-
terminal o —helix, while the amino acids involved in binding to HDL are part of the C-terminal o —
helix. The OPM prediction identified additional residues in the i-face o —helices that are likely to be
involved in PAF-AH-LDL association (Table 1).
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As shown in Figure 3, a comparison of plasma PAF-AH sequences from different species showed
that these additional i-face residues are well conserved.

Figure 3. Alignment of PAF-AH amino acid sequences from different mammals. Amino
acid sequence of human PAF-AH II is also included for comparison. Amino acids
comprising the i-face, acidic patch and basic patch regions of plasma PAF-AH are labeled
with the letters — 1, a and b respectively. Glycosylation sites are labeled with the letter g.
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Although the model of PAF-AH bound to a membrane surface predicted by OPM is in agreement
with the functional studies carried out to date, there are two important inconsistencies. As mentioned
above, distinct regions of PAF-AH are believed to interact with LDL and HDL particles. However,
from the structure of plasma PAF-AH, no features are apparent that support the idea that distinct
regions of PAF-AH separately interact with LDL and HDL. We propose that the two i-face a-helices
together are involved in binding to both LDL and HDL lipoproteins. In this regard, it should be noted
that in both the studies that separately identified the LDL and HDL binding regions in PAF-AH, the
binding experiments were done exclusively with one lipoprotein particle only. Unless the effect of
mutating the relevant residues on both the lipoprotein particles is studied in parallel, it cannot be ruled
out that the same regions of the enzyme interact with both the lipoprotein particles.

5.2. Role of Y205

The other disagreement with the current understanding of plasma PAF-AH lipoprotein interaction is
regarding the role of Y205. As mentioned above, Y205A mutation has been shown to abolish the
binding of PAF-AH to LDL. However in the OPM model, the Y205 residue is predicted to be well
above the plane of the membrane, and therefore too far away to be directly involved in binding
(Figure 2, panel B). One possible explanation for the Y205A mutation abolishing the binding to LDL
is that the Y205A mutation causes a conformational transition. The Y205 residue provides an
important interaction between helix 101-111 to the rest of the protein via a cation-pi interaction with
K109. Replacement of Y205 with alanine, disrupts the interaction with K109, as a result helix 101-111
may move relative to the beta-hairpin 186-205. Next to helix 101-111 is helix 115125, which is one
of the i-face helices. Conformational changes, even subtle, of this important helix would explain how
the Y205A mutation abolishes LDL-binding. This hypothesis and a full structural explanation could be
tested by binding studies performed with a K109 mutant and by solution of a crystal structure of the
Y205A mutant. In the absence of experimental data, although unlikely, it cannot be ruled out that
Y205 mediates association with LDL; instead of interacting with the phospholipid monolayer, it could
be interacting with apoB100.

5.3. Role of Glycosylation in the Interaction of Plasma PAF-AH with Lipoproteins

As mentioned earlier, N-linked glycosylation of plasma PAF-AH was shown to hinder its binding to
HDL in humans [25]. The predicted sites of glycosylation in human plasma PAF-AH are, N423 and
N433. It is interesting that these residues are not conserved in other species such as mouse (Figure 3)
in which the enzyme associates exclusively with HDL. It should be noted however that glycosylation
of plasma PAF-AH in species other than humans has not been demonstrated experimentally. Since the
structure of a non-glycosylated form of the enzyme was solved, it is difficult to speculate how
glycosylation might be affecting binding to HDL. In the crystal structure of PAF-AH, N423 lies far
from the i-face region but is close to the acidic patch region, which is described below. The structural
position of N433 is not known, since the structure of a shorter PAF-AH construct lacking N433 was
solved [7]. The current explanation for the observed effect of glycosylation in PAF-AH on lipoprotein
association is that it hinders association with HDL particles. An alternate explanation is that
glycosylation actually promotes binding to LDL particles. In this scenario, the absence of
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glycosylation would take away the ability of LDL to attract PAF-AH preferentially over HDL, and as a
result the enzyme then associates equally with both the lipoproteins.

5.4. Role of Charged Amino Acids in the Interaction with Lipoproteins

In addition to the phospholipid monolayer of the lipoprotein particles, the protein component of
lipoprotein particles are also involved in the interaction with plasma PAF-AH. As already mentioned,
the C-terminal region of apolipoprotein present on LDL — apoB100 has been shown to be involved in
the association of plasma PAF-AH with LDL. The major apolipoprotein present on HDL is
apolipoprotein A-I (apoA-I); some HDL particles also have apolipoprotein A-II (apoA-II) in addition
to apoA-I [47]. A still smaller percentage of HDL particles have other additional proteins such as,
apoCs, apoD, apoE, apoM and apoA-IV. It is possible that the type of interaction between plasma
PAF-AH amino acids and the amino acids of the apolipoproteins are electrostatic in nature.

The region in PAF-AH that is involved in its interaction with apoB100 has not yet been identified.
The crystal structure of PAF-AH reveals a stretch of negatively charged amino acids, an acidic patch,
which could potentially be involved in the interaction with apoB100 (Table 1 and Figure 4).

Figure 4. Acidic and basic patches in PAF-AH. Panel A depicts the surface electrostatic
potential view of PAF-AH showing the acidic and one of the basic patches. Panel B on the
right shows a ribbon diagram of PAF-AH in roughly the same orientation as in panel A.
Amino acids comprising the acidic and basic patches are highlighted in red and blue,

respectively. Three naturally occurring non-synonymous polymorphisms (R92H, 1198T,
A379V) are highlighted in yellow, with the V379 residue shown at the base of the
acidic patch.

ApoB100 is known to contain clusters of positively charged residues that mediate the electrostatic
interaction of LDL with the negatively charged sulfate groups of glycosaminoglycans (GAGs)
[48—50]. These clusters of positively charged amino acids may also mediate an electrostatic interaction
with the acidic patch of PAF-AH. The increased affinity of PAF-AH for small dense LDL, LDL(-) and
Lp(a) is proposed to be mediated by the altered conformation of apoB100. It is possible that a change
in the conformation of apoB100 in these lipoproteins exposes additional regions of positively charged



Pharmaceuticals 2010, 3 551

residues which would increase the affinity towards the negatively charged acidic patch of PAF-AH. In
addition, it is possible that the interaction between apoB100 and plasma PAF-AH also plays a role in
the unequal distribution of PAF-AH between LDL and HDL. Since apoB100 is present only on LDL
and not HDL, this interaction could potentially tip the balance in favor of LDL particles.

Several plasma PAF-AH polymorphisms have been identified in different populations [51,52]. Of
these, only V279F and Q281R have been found to result in loss of enzyme activity and have been
shown to be linked to human diseases [53—55]. Three other mutations that result in active enzyme and
have been studied to determine their correlation with the incidence of several human diseases are,
R92H, 1198T, A379V (reviewed in [56]). Each of these three polymorphic sites are solvent exposed
and are far from the active site. It is possible that the phenotypic differences that are exhibited in
individuals carrying these polymorphic alleles are due to the differences in the interactions with
lipoproteins. Notably, amino acid 379 is located close to the acidic patch region (Figure 4, panel B).
The presence of alanine vs. valine at this position has been suggested to be significant, with correlation
to cardiovascular diseases [57-59]. It is possible that the observed correlation is due to the modulation
of the distribution of the enzyme between LDL and HDL particles.

In addition to the cluster of negatively charged amino acids, two clusters of basic patches are also
apparent from the surface electrostatic map of PAF-AH (Table 1, Figure 4). The basic patch amino
acids could either be interacting with the protein component of LDL or HDL particles, or they could be
interacting with the phosphoryl groups of phospholipids in both the lipoproteins. Basic amino acids are
known to mediate the membrane association of many peripheral membrane proteins, either through
non-specific or specific electrostatic interaction with the negatively charged phosphoryl groups of
phospholipids [60]. They are usually in the vicinity of the hydrophobic residues that insert into the
interface. H367 and K370, as mentioned earlier, form part of a HMLK region that was shown to
mediate the association of PAF-AH with HDL.

As in the case of other peripheral membrane proteins, these electrostatic interactions may be the
first step to bring the enzyme close to the lipoproteins. Once they are in proximity, a more stable
enzyme-lipoprotein complex is formed aided by the membrane insertion of hydrophobic residues.
Long-range electrostatic attraction is believed to increase the probability of a protein-membrane
interaction and helps orient the protein. While the basic and hydrophobic residues might be involved in
the interaction with the lipid component of both lipoprotein molecules, a likely scenario is that the
acidic patch region interacts with solely the protein component of LDL particles. Amino acids of both
the acidic patch and the basic patch are fairly well conserved when compared across mammalian
species, but as expected are not conserved in the cytoplasmic PAF-AH II (Figure 3). The additional
features of glycosylation and electrostatic interaction mediated by the cluster of negatively charged
amino acids in PAF-AH may provide specificity for one type of lipoprotein over another. It is possible
that in the absence of these features, PAF-AH would not distinguish between LDL and HDL.

5.5. Number of Plasma PAF-AH Molecule Per Lipoprotein Molecule

The limiting factor that dictates the number of PAF-AH molecules that can bind to each molecule of
LDL is likely to be the surface pressure in the phospholipid monolayer. The surface of lipoprotein
particles is more rigid than a membrane bilayer due to the presence of lipoproteins and only a
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monolayer of phospholipids instead of bilayer. Due to a steadily increasing surface pressure, the
insertion of each successive PAF-AH molecule is predicted to be more and more difficult. However,
the physiological concentration of PAF-AH is much lower than this limit, as indicated by the molar
ratio of PAF-AH to apoB100. The molar ratio of PAF-AH to apoB100 has been reported to vary from
1:100 to 1:10,000. Even in the LDL subfractions that are enriched in PAF-AH, such as small dense
LDL(-), only 1% of the lipoproteins have a PAF-AH molecule bound, and as a result most particles do
not contain PAF-AH [34]. The equilibrium of PAF-AH with HDL and LDL particles in a
physiologically relevant environment would be further complicated by a complex equilibrium
involving many other membrane associated proteins competing with PAF-AH for a chance to bind the
lipoproteins.

6. Conclusions

In this review we have summarized the current understanding of the interaction between PAF-AH
and lipoproteins. Although regions of PAF-AH that mediate its association with LDL and HDL
particles have been identified, the specific role played by the amino acids had not been clearly
understood. Using the structure as a guide, we have presented a hypothesis on how each of the amino
acids identified earlier interacts with lipoproteins. We have proposed that hydrophobic and aromatic
residues in PAF-AH, which were previously identified as distinct LDL and HDL binding regions,
together form the i-face. Amino acids comprising the i-face insert into the phospholipid monolayer and
anchor the enzyme on the surface of lipoproteins. Additional factors may influence the preference of
PAF-AH for LDL over HDL. Electrostatic interaction between a pronounced acidic patch of PAF-AH
and positively charged amino acids on the surface of apoB100 is potentially one such factor. The
increased affinity of PAF-AH for LDL subclasses, small dense LDL, LDL(-) and Lp(a), can also be
explained by this electrostatic interaction. Additionally, a group of basic amino acids near the i-face
may mediate an electrostatic interaction with the phospholipid head groups or with the protein
component of the lipoproteins. It is likely that distinct amino acids in PAF-AH mediate interaction
with both the lipid and protein components of lipoproteins. Although many questions about the
interaction of PAF-AH with lipoproteins still remain unanswered, with the crystal structure of PAF-
AH now available we are beginning to better understand the association of PAF-AH with lipoproteins.
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