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Since December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been
reported to cause a life-threatening malady with multi-spectrum symptoms, called coronavirus
disease 2019 (COVID-19). As of August 19, 2020, the disease has spread to more than 225 countries
and infected over 20 million people worldwide (Dong et al., 2020), causing upheavals in many
aspects of human life (Harapan et al., 2020). At present, much effort has been given to define the
clinical characteristics of COVID-19 patients and to discover safe and efficacious vaccines and
therapeutics to combat SARS-CoV-2 infection (Dhama et al., 2020). Yet, much more data such as
the characteristics of viral genes responsible in the infectivity, factors accountable in the host
susceptibility to SARS-CoV-2 infection, viral pathogenesis and the subsequent protective role of
host immune responses, and the culmination of host-virus interaction into different types of
symptoms in the COVID-19 patients, remains to be fully elucidated. This knowledge is crucial to
improve the prevention efforts and treatment strategies needed to manage the spread of COVID-19.

In the presence of ethical constraints to perform explorative research on humans, using proper
model organisms to address the above unrequited yet essential aspects of COVID-19 is urgently
required. With the aid of suitable animal models, the pharmacodynamics and pharmacokinetic
profiles as well as the safety of novel pharmaceuticals to treat COVID-19 can be investigated in a
relatively easier, safer, and economical way. Also, identification of the main pathways for COVID-
19 pathophysiology that may provide insights for disease prevention and/or treatment can be
accomplished in relative terms where possible. Already, several animal models have been used to
study SARS-CoV-2 infection. For instance, a study using rhesus macaque, a non-human primate
with close phylogenetic proximity to humans, revealed the significance of immunity to protect the
host from COVID-19 reinfection (Bao et al., 2020a). While non-human primates represent the
strongest ally to solve some COVID-19 enigmatic problems in vivo, it is important to note that
studies using this model were mostly performed using small numbers of animals in their
experiments (e.g., as low as one or two rhesus macaques per group) due to the ethical concerns
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and animal scarcity. Therefore, the results should be interpreted
with caution. To address this issue, several alternative animal
models were proposed (Takayama, 2020; Yuan et al., 2020).

Based on its highly characterized immune system, rapid
breeding cycle, simplicity, and availability of research tools,
mice (Mus musculus) have been regarded as one of the most
common animal models to demonstrate the pathological
properties of viruses and their consequences on the host
respiratory system. However, the spike (S) protein of SARS-
CoV-2 has been suggested to have an insufficient affinity for the
murine ACE2 entry receptor (Wan et al., 2020), which may
explain the limitation to obtain a productive infective state in this
model. Nevertheless, transgenic mice with endogenous
Frontiers in Pharmacology | www.frontiersin.org 2
expression of human ACE2 has been developed to address this
issue (Bao et al., 2020b). Unfortunately, during the times of
COVID-19 pandemic, the low availability of hACE2 transgenic
mice might be difficult to compensate for the increasing demand
for such a model, thus restraining its extensive use in COVID-19
research (Soldatov et al., 2020).

Since its discovery, some basic information about COVID-19
and its causative agent, SARS-CoV-2, has been rapidly revealed
with animal models (Takayama, 2020; Yuan et al., 2020). In this
article, we propose using the fruit fly Drosophila melanogaster as
one of the promising model organisms to unveil specific
COVID-19-related questions based on several considerations.
First, this invertebrate model has been widely used to investigate
TABLE 1 | List of human viruses studied using Drosophila model system.

Genome
type

Virus Diseases in human Experimental systems used in
Drosophila

Lessons learned from Drosophila model Refs

ssRNA
(positive
sense
with RT)

Human immune-
deficiency
virus (HIV)-1

Acquired immune
deficiency syndrome
(AIDS)

In vitro (transfected cell culture),
In vivo (transgenic fly to express
viral proteins)

Inhibition of Toll pathway and induction of JNK pathway
by HIV-1 Vpu are occurred in tissue-dependent manner

(Leulier et al.,
2003; Marchal
et al., 2012)

ssRNA
(positive
sense)

Dengue virus
(DENV)

Dengue hemorrhagic
fever (DHF) and
dengue shock
syndrome

In vitro genome-wide RNAi
screen:
Drosophila cell culture, infected
with DENV serotypes 1-4

-The significance of RNAi to control DENV infection
-Several host factors have been found to be important in
the infection control. These factors are suggested to be
conserved between Drosophila and humans.

(Sessions et al.,
2009; Mukherjee
and Hanley,
2010)

severe acute
respiratory
syndrome
coronavirus
(SARS-CoV)

Atypical pneumonia In vivo (transgenic fly to express
viral proteins)

Possible interactions between the SARS-CoV 3a and M
with cytochrome c and the AKT pathway of the host,
respectively

(Wong et al.,
2005; Chan
et al., 2007)

Sindbis virus
(SINV)

Sindbis fever In vitro and in vivo (natural
infection)

The role of NRAMP family proteins in SINV entry into
Drosophila (and mammalian cells) and the importance of
ERK pathway in the intestinal immunity of Drosophila (and
mosquito)

(Rose et al.,
2011; Xu et al.,
2013)

West Nile virus
(WNV)

West Nile fever
(including meningitis
and
encephalitis)

In vitro and in vivo (natural
infection)

Possible suppression of RNAi in Drosophila (and
mammalian cells) by non-coding WNV RNA

(Chotkowski
et al., 2008;
Schnettler et al.,
2012)

ssRNA
(negative
sense)

Influenza A virus
(IAV)

Flu pandemics In vitro genome-wide RNAi
screen: Drosophila cell culture,
infected with a genetically
modified Influenza A virus

Several host factors have been found to be important in
influenza virus replication and host cell programming.
These factors are suggested to be conserved between
Drosophila and humans.

(Hao et al., 2008)

Vesicular
stomatitis virus
(VSV)

Flu-like illness;
oncolytic virus

In vitro and in vivo (natural
infection)

The role of Drosophila Toll-7 in autophagy induction (in a
manner independent on the NF-kB activity) to limit VSV
infection. This is similar to TLR7 role in mammals

(Nakamoto et al.,
2012)

dsDNA Epstein-Barr virus
(EBV)

Infectious
mononucleosis,
several types of
cancer, and multiple
sclerosis

In vivo (transgenic fly to express
viral proteins)

Identification of relevant human tumor suppressors that
are targeted by the BRLF1 of EBV to induce
tumorigenesis

(Adamson et al.,
2005; Adamson
and LaJeunesse,
2012)

Human
cytomega-lovirus
(HCMV)

Birth defects In vivo (transgenic fly to express
viral proteins)

Potential inhibition of embryogenesis by viral proteins (Steinberg et al.,
2008)

dsDNA Simian virus (SV)
40

Undecided
(oncogenic role in
tumor remains
questionable)

In vivo (transgenic fly to express
viral proteins)

Possible mechanism of oncogenesis by the small tumor
antigen (ST) of SV40

(Kotadia et al.,
2008)

Vaccinia virus
(VACV)

Rash and fever. Used
as a vaccine for
smallpox prevention

In vitro and in vivo (natural
infection),
In vivo (transgenic fly to express
viral proteins)

Identification of host factors required viral entry (Moser et al.,
2010)
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the molecular properties and cellular functions of certain protein
components of human viruses in the in vitro and in vivo
platforms (Table 1) (Hughes et al., 2012; Panayidou et al., 2014)
and to provide basic understandings on the conserved host
antiviral immunity in the metazoan species (Xu and Cherry,
2014; Nainu et al., 2017). Among other aspects, the identification
of host cellular factors required for SARS-CoV-2 replication is
one of the important pillars that could provide valuable insights
into novel targets for anti-COVID-19 therapy. An in vitro
genome-wide RNA interference screen using D. melanogaster
cells demonstrated the value of this approach to identify cellular
host factors required for the replication of influenza A and
dengue viruses (Hao et al., 2008; Sessions et al., 2009). In
addition to that, a binary GAL4/UAS gene expression system
in Drosophila was successfully used as an economical, rapid, and
efficient in vivo platform to characterize the apoptotic role of two
SARS-CoV proteins, protein 3a and M (Wong et al., 2005; Chan
et al., 2007). The two-component GAL4/UAS system is
comprised of the Gal4 gene, encoding the yeast transcription
activator protein Gal4, and the UAS (Upstream Activation
Sequence), a site to which GAL4 binds to activate the
transcription of the transgene of interest downstream of the
UAS (Brand and Perrimon, 1993). Using a similar approach, it
would be reasonably feasible to closely study the function of
SARS-CoV-2 genes in the context of whole Drosophila tissues
in vivo or at different developmental stages.

Second, D. melanogaster retains many essential characteristics
required in a model organism allowing for a straightforward,
robust, and in-depth study of viral gene function in the in vitro
and in vivo settings. Despite size differences, Drosophila shares
around 75% genetic similarity with humans (Pandey and
Nichols, 2011), allowing a robust genetically tractable approach
to investigate the conserved function of viral proteins on host
cells and host factor(s) required for a reproductive infection.
With its relatively simple genetics, the fruit fly is highly amenable
for possible genetic modifications, as demonstrated by an
improved list of transgenic and mutant lines, including those
designed using the latest CRISPR-based method applicable for
human infectious disease models (Pandey and Nichols, 2011;
Ugur et al., 2016). Moreover, D. melanogaster can be maintained
easily and inexpensively in the laboratory, making it convenient
to be used by researchers with limited funding (Pandey and
Nichols, 2011). Its rapid propagation and short lifespan
(approximately one month in length) (Pandey and Nichols,
2011) might serve as beneficial experimental traits that help
reduce time to obtain results, which is certainly essential during
the outbreak.

Undoubtedly, despite its numerous advantages, there exist
several limitations that may pose a challenge to use Drosophila as
a host model in human virus research. Of all, physiological and
genetic differences between Drosophila and humans are two of
the most anticipated constraints (Hughes et al., 2012; Panayidou
et al., 2014). Nevertheless, it is worth noting that such limitations
are typical for other animal models. Hence, a better way to study
human viruses is to verify findings in Drosophila to other
mammalian models as well as in humans. Alternatively,
Frontiers in Pharmacology | www.frontiersin.org 3
Drosophila can also be used as a complementary model system,
together with other animal models, to understand antiviral
immunity against COVID-19. For example, while the lack of
adaptive immune responses in Drosophila has prevented its use
in vaccine-related research, some of the human-homologous
innate antiviral immunity had been first discovered or later
confirmed in Drosophila (Xu and Cherry, 2014; Nainu et al.,
2015), suggesting that fly research may reveal important insights
in the innate immune responses against SARS-CoV-2. Besides,
even though some mammalian viruses need to be modified
before infection experiments in Drosophila, some of them can
naturally enter Drosophila cells and are immediately detected by
Drosophila immune factors and/or cells (see Table 1). This
suggests the conserved infection mechanism(s) and innate
immune responses between fruit flies and mammals. With this
approach, we might provide some additional answers to
remaining COVID-19-related questions in a reasonable,
systematic, and economical manner.

Currently, D. melanogaster has been a leading model system
for studying biochemical and biological aspects of human viruses
and their pathogenic consequences on host cells (Hughes et al.,
2012; Panayidou et al., 2014). The availability of sophisticated
molecular tools for in vitro and in vivo experiments (Pandey and
Nichols, 2011; Ugur et al., 2016), followed by the versatility of the
model system and feasibility of research using human viruses
(Hughes et al., 2012; Panayidou et al., 2014) are some of the
powerful features in Drosophila that shall be beneficial to explore
biological events in a precise detail that may be difficult to
overcome using higher animal models. In the long run, we
believe that D. melanogaster will serve as a convenient model
organism for COVID-19-related research. For example, this
model organism might help us to uncover factors related to
host susceptibility to SARS-CoV-2 infection, as demonstrated in
the case of influenza A and dengue viruses (Hao et al., 2008;
Sessions et al., 2009), and whether those factors are clinically
responsible in the human susceptibility to SARS-CoV-2.
Alternatively, one may try to address the mechanistic basis of
host innate immune activation in response to SARS-CoV-2
infection and whether disruptions in these mechanisms may
yield different outcomes in the infected hosts. Certainly, with the
right questions to ask, D. melanogaster would be a potential ally
in the fight against COVID-19.
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