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ABSTRACT

RNA-seq is a modular experimental and computa-
tional approach aiming in identifying and quantifying
RNA molecules. The modularity of the RNA-seq tech-
nology enables adaptation of the protocol to develop
new ways to explore RNA biology, but this modu-
larity also brings forth the importance of method-
ological thoroughness. Liberty of approach comes
with the responsibility of choices, and such choices
must be informed. Here, we present an approach that
identifies gene group-specific quantification biases
in current RNA-seq software and references by pro-
cessing datasets using diverse RNA-seq computa-
tional pipelines, and by decomposing these expres-
sion datasets with an independent component anal-
ysis matrix factorization method. By exploring the
RNA-seq pipeline using this systemic approach, we
identify genome annotations as a design choice that
affects to the same extent quantification results as
does the choice of aligners and quantifiers. We also
show that the different choices in RNA-seq methodol-
ogy are not independent, identifying interactions be-
tween genome annotations and quantification soft-
ware. Genes were mainly affected by differences in
their sequence, by overlapping genes and genes with
similar sequence. Our approach offers an explana-
tion for the observed biases by identifying the com-
mon features used differently by the software and
references, therefore providing leads for the better-
ment of RNA-seq methodology.

INTRODUCTION

Modularity is both a boon and a burden for RNA-
sequencing (RNA-seq) analysis. At its core, RNA-seq leads
to the identification and quantification of RNA molecules

from a biological extract (1). RNA-seq is in fact an um-
brella term, encompassing a broad diversity of laboratory
and computational design choices, where each choice de-
fines the scope of the study, the questions it might answer
(2). The modularity of RNA-seq has been a steppingstone
in the development of many other techniques, mainly dif-
fering by the way in which the RNA is extracted, and with
consequent modifications of the in silico pipeline. For ex-
ample, ribosome profiling (Ribo-seq) can be summarized
as the RNA-seq of the RNA fragments protected by ribo-
some footprints (3). The modularity of the RNA-seq in sil-
ico pipeline, stemming from the usage of well-defined data
processing steps, each supported by specific file formats,
has led to the creation of specialized software for each of
the different steps, compartmentalizing the data processing.
Having defined data processing steps helps to isolate each
technical problem, creating an ecosystem where research
groups specialize in answering individual steps, and proceed
to benchmark accordingly.

Due to the RNA-seq modular nature, one has to con-
strain many degrees of freedom linked to the experimental
design to be able to generate and process the data. These
degrees of freedom represent protocols, reagents and kits
on the experimental side and software, references and pa-
rameters on the computational side. With a benchmark-
ing point of view, experimental and computational design
choices mainly differ by their permanence. While a spe-
cific RNA extract can only be processed once in the lab-
oratory, sequencing being a destructive method, sequenc-
ing data can theoretically be reanalyzed in a wide va-
riety of ways. This facilitates the creation of large-scale
benchmarking of the RNA-seq in silico pipeline, because
they can be built on a very specific and unique group
of datasets, while benchmarking studies of the RNA-seq
laboratory pipeline have to deal with extra noise and
reproducibility issues coming from biological variability.
RNA-seq in silico pipeline benchmarking studies are also
cheaper to produce since they only require computational
resources.
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Benchmarking the RNA-seq pipeline may take two dif-
ferent approaches, either analytical or systemic. In an an-
alytical approach, the pipeline would be studied in its ir-
reducible form, meaning that each step would be bench-
marked independently. The analytical approach is usually
used when publishing a new tool. To ensure the relevance
of the newly proposed method, authors will compare its
performance to current methods (4). Depending on the po-
sition of the studied step in the overall pipeline, it might
be difficult to meaningfully assess its quality. For example,
alignment software has often been characterized using the
percentage of alignment as a metric to be optimized, even
though such a metric does not hold any biological meaning
(5). To bypass the need for other metrics, it is also possible
to study the effects of a given step on the rest of the pipeline,
using a fixed downstream processing. Conversely, in a sys-
temic approach, the pipeline is studied as a whole. While
the analytical approach is based on the hypothesis that each
step is fully independent, the systemic approach can be used
to study interactions between steps.

In Table 1, we compiled a list of articles benchmarking
the RNA-seq in silico pipeline by considering more than
one step in their analysis (6–15). The main point of inter-
est is the imbalance between the pipeline steps, both in the
number of elements studied per article as well as globally.
These articles often use the term ‘RNA-seq workflow’ to
describe the object of their analysis, while also mainly lim-
iting themselves to the alignment and quantification soft-
ware. As we described earlier, the RNA-seq in silico work-
flow should consider all steps from the raw FASTQ files to
the count matrices (16). Insofar as we do not have any study
highlighting the importance, or lack of, of every workflow
step, overlooking some steps might hide important biases.
In a previous study, we highlighted that the trimming step
and the choice of genomic annotations were often not re-
ported in methodologies of articles performing RNA-seq
(17). Furthermore, we can observe that these steps are also
overlooked in the articles studying the RNA-seq workflow
(Table 1). Only one article included in our analysis reported
using more than one annotation reference, and only used it
to evaluate transcript assembly. Many of those benchmarks
also did not provide any information about trimming. We
now find ourselves before a circular causality problem in
which we are not benchmarking certain steps because they
are not being reported and we are not reporting them be-
cause they are not being benchmarked. In any case, there is
insufficient data for a meaningful answer regarding whether
the overlooked information holds any importance.

Considering the difficulty in obtaining a high-quality
gold standard for all genes in an RNA-seq study, we pro-
pose another strategy to identify biases in the processing
pipeline. Instead of assessing the divergence in relation to
the ground truth, we suggest treating this as a classification
problem. If we process datasets with a variety of different
pipelines, and then find some gene signatures classifying the
processed datasets in accordance to some pipeline choice,
then we would have identified processing biases affecting the
quantification of genes.

Matrix factorization methods are important tools for
data-driven analysis, used to identify the main character-
istics of highly dimensional datasets. Principal component
analysis (PCA) is usually the go-to method used when

confronted with such problems. PCA deterministically ex-
plains the variance of a dataset by projecting it onto de-
creasingly important latent variables, each constrained to
be orthogonal to one another, uncorrelated. However, we
chose to apply another method in this article, namely In-
dependent component analysis (ICA). ICA decomposes a
dataset into a specified number of latent variables of un-
constrained variance, while optimizing for their indepen-
dence, i.e. minimizing their mutual information. Both tech-
niques produce uncorrelated latent variables, but only ICA
produces independent latent variables when the original sig-
nal is non-Gaussian (18). Where PCA highlights the largest
trends present within the dataset, ICA seeks to extract in-
dependent structures, or phenomena, occurring within the
dataset. This is due to a significant difference in the hy-
potheses at the core of these methods. PCA considers the
data to follow a multivariate Gaussian distribution whereas
ICA seeks a linear combination of non-Gaussian distribu-
tions. ICA has previously been applied to RNA-seq quan-
tification results to infer groups of genes displaying a shared
behavior across several datasets (19,20). ICA is a long-
sought answer to the cocktail party problem, where an un-
known number of persons talk in a room where a known
number of microphones are placed (21). The goal of the
problem is to decorrelate the different microphone feeds to
isolate the original speech of each person. The main hypoth-
esis of an ICA is that every observation, microphone input,
is a linear combination of a set of sources, herein the per-
sons. In our case, the expression of genes acts as our micro-
phone feeds, and each person can be thought of as a cellular
process, a level of regulation or a technical bias which has
effect on the expression level of a subset of genes. By decom-
posing RNA-seq datasets generated using different treat-
ments or biological origins, one can identify the sources,
named expression modes in the context of RNA-seq studies
(19), that are important in defining and differentiating our
datasets.

The biological importance of expression modes can be in-
ferred by correlating them with known biological features.
ICA has also been previously used to identify and remove
batch effects by correlating expression modes with exper-
imental features within the datasets (22). We will dub the
expression modes as either biological or technical modes,
based on the types of variables with which they correlate.
While technical modes correlating with sequencing batch
might not hold information of interest for us, we hypoth-
esize that this could be used as a tool to study biases in the
RNA-seq in silico processing pipeline. By analyzing a num-
ber of datasets using a wide variety of different software and
references, we could identify technical modes classifying the
datasets by the pipeline used. These hypothetical technical
modes would not appear in a normal RNA-seq experiment,
where we do not usually use multiple software in parallel to
accomplish the same step.

In this study, we processed biological replicates of dif-
ferent human tissues with a wide range of RNA-seq in sil-
ico pipelines obtained from the exhaustive combinations of
selected software and genome annotations. We primarily
chose software and references that are currently reported as
being used in the RNA-seq literature, in order to represent
the present situation (17). We then decomposed these ex-
pression data into expression modes using an ICA analysis.
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Table 1. Software considered in RNA-seq workflow bencharking studies

[26]
[65]
[28]

[78]
[77]
[76]

[75]
[74]
[28]
[73]
[72]
[71]
[31]
[70]
[30]
[69]
[68]
[29]
[50]
[67]
[66]

[64]
[63]
[62]
[27]
[61]
[60]
[59]
[58]
[57]
[56]

Compilation of software and genome annotations used in articles benchmarking at least two different steps of the RNA-seq insilico pipeline. Software
is classified by steps, where pseudo-aligners are considered separately because they overlap more than one step. Major re-release of software with an
independent publication is considered as a separate software. The last column describes software considered in the present study.
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Figure 1. RNA-seq cartesian product and study design. Illustrations of the main steps of this study. First, all possible combinations of tissue samples,
trimmers, genome annotations, aligners and quantifiers are processed as independent RNA-seq experiments. These results are compiled in an expression
matrix which is decomposed into expression modes using an ICA. Projections, used to identify the information contained in the expression modes, is
generated as the dot product of the expression matrix and the expression mode matrix.

We further characterized these modes as either biological or
technical modes, on the basis of the variables that they can
classify. Technical modes were then studied to explain the
observed bias, identifying the features responsible for a dif-
ferent behavior of the software. A differential gene expres-
sion analysis was also produced for the different pipeline
steps, highlighting the number of genes globally affected by
these steps.

MATERIALS AND METHODS

Cartesian product of RNA-seq workflows

We used previously published unstranded RNA-seq
datasets of human tissues from Array-Express E-MTAB-
2836 (23) (https://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-2836/). Samples used are indicated in Supple-
mentary Table S1. In order to have different levels of
in-group and between-group variability, we chose four
different tissues (colon, heart, testis, thyroid), each repre-
sented by four samples coming from different individuals.
To evaluate the impact of every pipeline step, we processed
all the datasets with a wide variety of RNA-seq workflows.
We chose either recent, or commonly used, software and
genomic annotations for each of the different RNA-seq
steps considered, as defined in Figure 1. To keep every
step independent from one another, we chose to exclude
any software that encompasses more than one step (i.e.
pseudo-aligners that overlap the alignment and quan-
tification steps). We processed each dataset with the full
compendium of Cartesian products of pipeline choices,
meaning every possible unique combination of software
and references. Using a design of experiments (DOE)
terminology, this represents a full factorial experiment. To
keep a basis of comparison, we used gene level counts as the
output of the different pipelines. We only used tools which
directly report gene counts, so there is no transformation
of the final output.

RNA-seq methodology

We performed RNA-seq using only methods that rely on
genome-based alignment, and software that are restricted

to a single methodological step. We kept default param-
eters for most of the options, as to mimic what is being
done in the literature (17). FASTQ files were downloaded
from the SRA repository and trimmed independently us-
ing Cutadapt (24) v2.3 and Trimmomatic (25) v0.36. For
the trimming parameters, we used a minimal Phred qual-
ity score of 15 and kept only reads that were at least 75
nt after trimming, knowing that we are working with un-
stranded paired-end reads of 100 nt. The alignment was
performed independently using TopHat2 (26) v2.1.1 (wrap-
ping Bowtie2 v.2.3.4.3), HISAT2 (27) v2.1.0 and STAR (28)
v2.5.3a. The aligners were run with default settings for un-
stranded data. It is important to note that only STAR re-
quires an annotation file at this point. The other two soft-
ware were not provided an annotation file for the alignment.
The quantification was performed independently using Cuf-
flinks (29) v2.2.1, featureCounts (30) (Subread v1.6.4) and
HTSeq (31) v.0.11.2. Quantification was summarized as
gene-level counts. Ensembl (32) version 92 and 98, and Ref-
Seq (33) release 109 were used as the different genome an-
notations. Ensembl 92 and RefSeq 109 were both released in
April 2018, making them temporally comparable. Ensembl
92 and Refseq 109 are both built upon the GRCh38.p12
genome, while Ensembl 98 uses GRCh38.p13 genome. Be-
cause the primary assembly of both these reference genome
versions is the same, and because we restricted our studied
genes to the primary assembly, only GRCh38.p13 was used.
Every time that a genome annotation was needed in a step,
this step was processed three times, one with each annota-
tion. The detection of differentially expressed genes (DEGs)
was performed with DESeq2 (34) v1.26. All software tools
were installed locally through Bioconda (35). The depen-
dencies and parameters for each pipeline steps are accessi-
ble in a Snakemake (36) project.

Data preprocessing

Raw counts from the different pipelines were combined in
one expression matrix. Due to the fact that we are using
more than one genome annotation, we require a common
identifier to compare genes from Ensembl and RefSeq. To
do so, we used the HUGO Gene Nomenclature Committee

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2836/
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(HGNC) resource (37). We considered data in the HGNC
resource that were provided by Ensembl and the NCBI,
while prioritizing information for HGNC in case of conflict.
This also means that all results presented in this work are
only drawn upon genes that are present in HGNC, ignor-
ing genes that are unique to a specific genome annotation.
After filtering for genes present in HGNC and quantified
through the several pipelines, we are left with 26 713 genes.
Raw counts were also preprocessed before being fed into
the ICA model. For the first preprocessing step, we used the
varianceStabilizingTransformation (fitType = ‘local’) func-
tion from the DESeq2 project (38). This step scales the dif-
ferent experiments so that they all have the same weight, and
ensures the homoskedasticity of the genes, meaning that
the variance of the genes is not function of their expression
level. Homoskedasticity is important because the biological
importance of a gene is not directly linked to its absolute ex-
pression value, and without this correction, the dataset fea-
tures would be largely driven by a small number of highly
expressed genes. The expression matrix is then transformed
by a Mahalanobis whitening, rotating the dataset to decor-
relate the different dimensions (39).

ICA model

We used the scikit-learn implementation of FastICA to pro-
cess our dataset (40). FastICA maximizes the neg-entropy,
a measure of the non-Gaussianity of the components (21).
This optimization is performed using an iterative method,
requiring the user to specify a tolerance, i.e. the minimum
change of neg-entropy needed to stop the iterations. Be-
cause we need to perform FastICA with different numbers
of components and due to the fact that the neg-entropy
measure scales with the number of components, choosing a
sensible tolerance is not trivial. A tolerance that is too large
would end the optimization early, without attaining the real
maximum, while a tolerance too small would never end the
optimization. In order to avoid obtaining spurious maxima,
we choose to force the FastICA algorithm to work with a re-
ally small tolerance (iteration step tolerance of 1e-18), and a
large number of maximum iterations (1e5 iterations). While
preventing the algorithm from stabilizing, we ensure that
the optimization does not stop prematurely.

ICA stability and independence

We then confirmed the robustness of the optimization max-
imum and the independence of the components. To do so,
we ran the FastICA multiple times (n = 25), using differ-
ent starting points for the optimization. Afterward, we com-
puted the correlation matrix for the different components.
In theory, an optimal correlation matrix for this problem
should be a block identity matrix, where each block is a
square with the same length as the number of replicates. Fig-
ure 2A contains an example of a near optimal matrix (with
M = 18), and two inadequate matrices (M11 and M26).
The uniformity of the blocks confirms that the FastICA
has found the same maximum for the different runs, and
the identity matrix, where off-diagonal elements are zero,
confirms the independence of the components. We scored
the correlation matrix by quantifying its divergence from

Figure 2. ICA decomposition of the RNA-seq data into expression modes.
General information about the processed ICA model. (A) represents the
Mean Square Error (MSE) for ICA model computed with different num-
bers of expression modes (M). The MSE is calculated using the theoretical
optimal block diagonal matrix. Covariation matrix for models with M of
11, 18 and 26 are shown. (B) illustrates the information given by each ex-
pression mode. The heatmap is separated into five different blocks, each
representing one variable choice. A high KNN score means that the vari-
able is well clustered and well separated from the other variables. (C) Illus-
trates distribution and pairwise distribution for four biological modes, one
for each tissue type.
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the optimal correlation matrix using the mean squared er-
ror (MSE).

Identifying expression modes

To identify what information an expression mode is pro-
viding, we used a k-nearest neighbour (KNN) classification
approach. We first needed to generate projections of the
pipelines along the expression modes. As in Figure 1, the
projections are calculated as the dot product of the expres-
sion matrix by the expression modes matrix. This provided
us with a one-dimensional distribution of the pipelines
along each expression mode. Supplementary Figure S1 is
an example of what the projections look like. The same pro-
jection along an expression mode is shown multiple times,
colored according to a different pipeline variable each time.
Our objective here is to determine if one of these variable
colorings enable the identification of clearly defined clus-
ters. In Supplementary Figure S1, we can identify visually
that the EM2 (Expression Mode 2) is clustered according
to the aligner used (i.e. in the aligner step, the TopHat2 pro-
file is completely distinct from STAR and HISAT2 profiles.
No other step displays such a clearly separated profile.). To
quantify the extent of the profile separation, we calculate
the proportion of the 50 nearest pipelines, in terms of dis-
tance along the expression mode projection, that share the
same label as the pipeline of interest for a specific biolog-
ical or technical variable. This was done for all the differ-
ent methodological choices from the different pipeline vari-
ables, taking the average percentage for each choice. This
score informs us about the uniformity of the clusters found
in a projection.

Each expression mode is defined by attributing a weight
to each gene (Figure 1C), where genes with extreme val-
ues contribute more to the definition of the mode. In or-
der to work with a list of genes, we needed to find a weight
threshold at which genes would be considered as a part of
the expression mode. We selected genes that were farther
than four standard deviations from the distribution average,
which creates gene groups with ∼30–300 genes. The selected
genes and their weights for all expression modes are avail-
able in Supplementary Data 1 for the original model and
Supplementary Data 2 for the Cufflinks-only model. Only
weights outside the four standard deviations were kept, the
remainder were transformed to a zero value.

ICA replication study

To assess whether the technical components we found were
specific to the dataset used, we replicated the study with an
independent expression dataset. We used stranded RNA-
seq datasets generated by the Thomas Gingeras laboratory
for the ENCODE project (41). Specific samples used are
described in Supplementary Table S1. To have similar set-
tings to the original model, we chose four different human
tissues, each with four replicates. The tissues are, however,
different from those of the initial datasets, using adrenal
gland, spleen, stomach and tibial nerve samples. Because
these datasets were generated using a stranded protocol,
the RNA-seq pipeline was modified to take this informa-
tion into account. We also took the opportunity to test the

impact of strandedness by also processing these datasets in
a parallel manner, while ignoring the strand information of
the reads.

RESULTS

ICA highlights biological and technical differences between
the RNA-seq pipelines

To run an ICA decomposition, one has to specify a number
of expression modes (M) to be generated. This number is an
unknown parameter and varies according to the underly-
ing structure of the dataset. In order to identify the optimal
number of expression modes to represent our dataset, we
performed the ICA with a wide range for M (6–35), and we
quantified the stability and the independence of the expres-
sion modes for these models. Figure 2A illustrates the dis-
tribution of the MSE over the different number of expres-
sion modes used. Several values of M seem to be suitable
for analysis, with a MSE of approximately zero. We chose
to analyze the model with M = 18, being the model with the
largest number of expression modes, while having the small-
est MSE found. We favored the largest number of stable ex-
pression modes with the hypothesis that decomposing the
same dataset into more components would mean that the
resulting components would be simpler, less convoluted.

We then identified the information given by each expres-
sion mode using the KNN score, displayed in Figure 2B.
The heatmap is separated in five different blocks, each rep-
resenting a pipeline variable, with the different choices, in-
cluded in this study. For each block, the minimum possi-
ble score is 100% divided by the number of elements in that
block, which is a score equivalent to random guessing. The
heatmap should be read in a column-wise manner, looking
at what information each expression mode is providing. The
higher the score, the more clustered this information is in
the projections. For example, looking down the EM2 col-
umn, we can see that this component distinguishes itself by
having a high score for TopHat2 and a somewhat notable
score for the testis samples. By looking at the Supplemen-
tary Figure S1, which displays the projections along EM2,
one can draw the same conclusions, by observing the clus-
ters for TopHat2 and parts of the testis samples. While there
is some kind of tissue-specific effect, the main driver of EM2
clustering is the alignment software used.

The majority of the expression modes seem to be driven
by biological information, which are the modes that are usu-
ally studied when using ICA with RNA-seq data (20,42)
and the modes of interest for researchers using RNA-seq
to gain insight into biology. To confirm the informational
value of the biological modes, we illustrated the distribution
of the pipelines along four selected biological modes, one for
each tissue, in Figure 2C. We can observe that each distribu-
tion offers a clear separation for a specific tissue, meaning
that the underlying gene weights can be used as a biological
gene signature for tissue classification. The pairwise com-
parisons also confirm that the modes are independent from
one another because the pipelines are distributed as two per-
pendicular lines. We further characterized these gene groups
using a gene ontology (GO) enrichment analysis provided
in Supplementary Figure S2. These figures show that the
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genes used to classify the different tissues are also biolog-
ically related to the tissues, meaning that we have learned
from biologically relevant features of the dataset. While the
first block of Figure 2B represents the general use of ICA,
i.e. studying biological features of a dataset, and serves as
a positive control for our approach, our interest lies in the
four other blocks.

The choice of trimming software, studied here using Cu-
tadapt and Trimmomatic with the same set of parameters,
does not have any impact on the dataset that could be iden-
tified by the ICA. The trimming block in Figure 2B shows
a uniform block of value 50% for every expression mode,
meaning that the distribution of the pipeline along the ex-
pression modes is purely random. While this does not prove
that the trimming software does not have any impact, it
shows that this impact would be smaller than, and there-
fore hidden by, the other expression modes.

The choice of alignment software is captured in the ex-
pression mode 2 (EM2), where TopHat2 is shown to be
fully separated from the other software, whereas HISAT2
and STAR seem to be indissociable from one another, due
to their similar scores. Genome annotations and quantifi-
cation software are interlinked in three different technical
modes (EM3, EM5 and EM16). Detecting technical modes
is only the first part of the problem. Having shown that
an ICA decomposition can be used to extract gene groups
that seem to be specifically differently reported by different
software, we next investigated whether a common feature in
these gene groups can explain the differences.

Discordant alignment of reads on gene-pseudogene pairs

Expression mode 2 (EM2) is composed of genes that differ
in quantification in regard to the alignment software used in
the analysis. Based on the KNN score of Figure 2B, these
genes are similarly quantified when using either HISAT2 or
STAR, but differently when using TopHat2. In Figure 3A,
we can observe the EM2 weight distribution for all genes,
where the genes considered significant (more than four stan-
dard deviations from the mean) are colored in blue and red,
for positive and negative weights, respectively. In Supple-
mentary Figure S1, we can observe the distribution of the
pipelines along EM2. Seeing that HISAT2 and STAR have
bigger projection scores than TopHat2, we can infer that the
genes with a positive weight are more highly expressed when
using STAR and HISAT2 than when using TopHat2, and
vice versa.

Figure 3A also displays results from a GO-enrichment
analysis of the significant genes. This analysis was done sep-
arately for the genes with positive and negative weights.
Only results of the enrichment for the positive genes are
shown since the analysis of the negative genes led to no sig-
nificant enrichment. Interestingly, we found a strong enrich-
ment for ribosome and translation related GO terms in the
positive genes group. For this to happen, the common fea-
ture of the positive genes that is considered differently by
the alignment software must also be linked to some biolog-
ical characteristics of the genes. By exploring the average
alignment statistics for the positive genes in EM2, we found
that TopHat2 has a significant percentage of mapped read
pairs with a mate aligned to another chromosome, as dis-

played in Figure 3B. For the same genes, STAR reports no
read pairs mapped to different chromosomes, and HISAT2
has an average of 1% (in comparison to 25% for TopHat2)
of mapped read pairs in this situation. In order to iden-
tify whether the observed effect is expression mode depen-
dent, we used another unrelated expression mode as a con-
trol. By comparing these results to genes from a biological
thyroid-related expression mode (EM10), we do not find the
same effect. In EM10, the three software tools have a similar
and a nearly null number of read pairs mapped to different
chromosomes. Having identified a divergent characteristic,
we then analyzed the discordant read pairs, by comparing
alignments from STAR and HISAT2 to alignments from
TopHat2.

Metagene plots in Figure 3C and D illustrate the aggre-
gation of read profiles for all exon acceptor and donor sites
for the gene groups of interests. While Figure 3D shows a
very similar read profile for all alignment software, Figure
3C shows a dissimilar profile for TopHat2. Thus, HISAT2
and STAR profiles are similar in EM2 and EM10 but the
TopHat2 profile in EM2 lacks reads around the exon–exon
junctions. A theoretical exon–exon junction profile would
show a perfectly square profile at the acceptor and donor
sites. In our case, the progressively smaller profile, as we
approach the edge of the exon, is a sign of a difficulty to
align reads spanning across an exon-exon junction. Because
we are aligning on the genome, alignment software must
be able to map reads in a discontinuous manner across an
exon–exon junction, namely gapped alignment. All three
tested aligners are known to perform gapped alignment,
but TopHat2 seems to fail to do so in the specific situa-
tion highlighted by the ICA expression mode. The biologi-
cal particularity of the EM2 positive genes is that they pos-
sess a significantly higher number of processed pseudogenes
in comparison to the other genes, as illustrated by Figure
3E. The gene–pseudogene relationship used is described by
the PsiCube project (43). Processed pseudogenes are defined
as the product of the retrotranscription of spliced RNA in-
serted back into the genome. This means that they have the
genomic sequence of the transcribed product of their parent
gene, i.e. continuous exon-exon junction sequence. In our
situation, TopHat2 prefers using a distant already spliced
junction than using a local junction that needs splicing. The
creation of processed pseudogenes has been shown to favor
highly conserved genes that are widely expressed (44), with-
out any detectable sequence bias (45). This definition fits
well with the ribosomal proteins and translation associated
machinery found in the GO enrichment analysis.

Expression modes each identify gene groups with opposite be-
haviors

Having demonstrated that the positive genes in EM2 have
lower read mapping in TopHat2 due to the presence of pseu-
dogenes, we turned our attention back to EM2 negative
genes. Due to the two-tailed distribution of gene weights, we
would expect an opposite effect, meaning that the negative
genes should have a higher read mapping in TopHat2 than
HISAT2 and STAR. We should also point out the abnormal
(when compared to the other weights distributions) shape
of the negative gene weights, harboring a very steep change
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Figure 3. Technical mode linked with alignment software. Description of the features explaining the alignment software classification. (A) Illustrates
the gene weights distribution of EM2, along with their GO enrichment analysis. Genes with a weight that is at least four standard deviations from the
mean were considered significant and were colored in the distribution. The GO enrichment analysis was performed using only the significant genes, and
no enrichment was found in the negative genes. (B) Shows the percentage of reads with mates that have been aligned onto another chromosome for the
significant genes in EM2 and EM10, which is the negative control. The circles are the outliers of the boxplot. (C) It is a metagene plot of the acceptor
and donor sites of exon–exon junctions in EM2, with the profiles being separated by alignment software and (D) is generated using the EM10 genes. (E)
Quantifies the number of processed pseudogenes originating from the significant genes in EM2 in comparison to those in EM10. The plot is scaled using
the inverse hyperbolic sine transformation. (F) Describes the read profiles for each aligner along ANXA2 and ANXA2P2, the latter being the pseudogene
of the former. The profiles are the averaged profiles of each considered pipeline and tissue combination. The exons are scaled accordingly to the 100 nt
reference in the legend. The introns were all truncated to a fix length in order to enhance readability. The mapping of the exons onto the pseudogenes was
done using local sequence alignment, and position of the original splicing junctions are marked with dashed lines on the pseudogene. The pseudogene read
profile is presented upside-down, and the two read profile plots are presented using the same scale.



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 9

of weight, instead of the progressive asymptotic-like shape
of the distribution. Using Ensembl 98 biotypes, we found
that the majority of the negative genes are pseudogenes
(44/62) and the remainder are protein-coding genes (18/62)
and those are primarily mono-exonic (13/18). In Figure 3F,
we illustrate a pair of genes, AXNA2 and AXNA2P2, that
were both found in EM2, both in opposite gene groups.
AXNA2P2, as its symbol indicates, is a pseudogene origi-
nating from AXNA2, and the correspondence between the
two, established with local alignment of their mature RNA
sequences, shows that the pseudogene is a truncated intron-
less copy of a transcript from the original gene. Averaged
read profiles from all considered RNA-seq pipelines, sep-
arated by alignment software, are shown for both genes.
TopHat2 profiles are obviously quite different from the
other aligners, but more interestingly, both of its profiles
seem to overlap, where the sum of the two profiles is sim-
ilar to HISAT2 and STAR profiles of the principal gene.
For example, the peak of TopHat2 reads on the ANXA2
fourth exon is related to the minimum value found in the
ANXA2P2 corresponding section. This figure provides ad-
ditional proof that TopHat2 shares the reads between a gene
and its pseudogenes, while HISAT2 and STAR do not. Sup-
plementary Figure S3 provides three other pairs of genes il-
lustrating the same situation. To further our argument, we
can observe that the exon length is responsible for part of
the TopHat2 profile. In the RPL13A profile, the exons are
too short for reads to be mapped exclusively onto one exon,
creating a situation where the pseudogene is getting nearly
all the reads. Conversely, GLUD1 has longer exons, and we
can observe the same exon profile as found in the metagene
plot Figure 3C. GLUD1 also shows, looking at its last exon,
that as soon as we are in an exon long enough to map entire
reads, the three aligner profiles converge. We believe that the
steep change observed in the weight distribution originates
from having a binary feature which is being a product of a
spliced retrotranscription or not.

Genome annotations and quantifiers interact in RNA-seq
quantification

Expression modes 3, 5 and 16 offer a more convoluted story,
because both the genome annotations and the quantifica-
tion software have above random score in the Figure 2B
heatmap. This means that these two steps, for the genome
annotations and software selected in this study, are interact-
ing (e.g. specific combinations of an annotation and a quan-
tifier produce specific biases). In Supplementary Figure S4,
we can observe the distributions of the different pipeline
projections along the three technical modes of interest, col-
ored by their annotation and quantification software. The
same pattern can be seen in the three technical modes. In
both steps, we can find two different, loosely defined but
clearly separated, clusters. Looking at the quantification
step (Supplementary Figure S4A), we can observe that fea-
tureCounts and HTSeq results are always split in two differ-
ent clusters, while Cufflinks is always present in only one of
these clusters. While the three highlighted technical modes
show the same trend for the quantifiers, the genome an-
notations tell another story (Supplementary Figure S4B).
In each of the mode, it is a different annotation which is

present in only one cluster. Our hypothesis here is that the
three technical modes have learned to differentiate between
the three annotations using specific genes, one mode for
each possible grouping of genome annotations. However,
Cufflinks treats these genes differently than featureCounts
and HTSeq. In fact, according to Cufflinks, there is no dif-
ference between these annotations in terms of quantifica-
tion, shown by the fact that all Cufflinks results are always
clustered together.

Expression modes may hide other gene groups with similar
quantification power

This situation lets us test a hypothesis that we spelled out
earlier, which is the fact that some expression modes can
hide other, smaller, expression modes. To test this, and to
also put Cufflinks to the test, we generated another ICA
model, in which we only used expression datasets that were
generated using Cufflinks. This ICA model was processed
in the same way as previously described, with M = 16 being
the model with the smallest MSE and the highest number
of expression modes. The KNN score heatmap of this ICA
model can be found as Supplementary Figure S5A. In this
Cufflinks-only ICA model, we can find two different techni-
cal modes, independently related to the annotation and the
aligner blocks. Both modes seem to have the same classifica-
tion power (KNN score pattern over the different tools in a
block) as another technical mode found in the original ICA
model. To verify whether we have found the same expression
modes in two different models, or expression modes based
on different gene groups displaying the same classification
power, we can compare the overlap of significant genes in
both expression modes. This overlap is shown in Supple-
mentary Figure S5B, where M2 is compared to MC7, both
being similar alignment technical modes, and where M16 is
compared to MC14, both being similar annotation techni-
cal modes and both able to separate Ensembl from RefSeq.
In the first case, we can observe that the genes from the two
alignment technical modes largely overlap, which means
that they have probably learned from the same gene groups,
using the same features. Conversely, the technical modes de-
scribing the annotations have a small overlap, meaning that
the two modes have been built on mainly independent gene
groups, which also means different features. The overlap
might be explained by genes having features that let them
be part of both groups. We therefore have two different ex-
pression modes, dependent on the quantification software
used, that have classification power over RefSeq and En-
sembl genome annotations.

A gene quantification is affected by its definition and its
neighboring gene definitions

Figure 4 explains the main features used by expression
modes 16 and C14 to drive the clustering. Expression mode
10, the thyroid-related biological mode, was also used as a
negative control, because it is not expected to be enriched
for the annotation classifying features. First, we looked at
the extent of exon overlap for the genes considered, within
each annotation. To do so, we measured the proportion of
exonic nucleotides that overlap any other gene in the given
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Figure 4. Technical modes linked with Ensembl versus RefSeq classification. Description of the features leading to an Ensembl versus RefSeq classification
in our expression datasets. Panels (A) and (B) are technical modes linked with genome annotation classification and (C) is a negative control, a biological
mode linked with thyroid-related gene groups. The middle plots describe the distribution of gene weights in the mode, highlighting the genes considered
to be significant (more than four standard deviations from the mean). On both sides of the middle plot, sets of similar plots are found. The plots on the
left show metrics calculated from the significant genes with a negative score, and conversely for the right plots. The outer most plots show the distribution
of the percentage of a gene exons, by nucleotide length, that are overlapped by exons from other genes. Overlapping genes from the sense and antisense
strands were both considered. The inner flanking plots show the average of shared and unique exon sequences for each pairwise combination of genome
annotations. Sections drawn in an annotation color represent the percentage of sequence not found in the other annotation, while the shared section can
be found in both annotations. The black lines represent the error bars. For both flanking plots, each individual genomic position was only considered once,
independently of the number of individual exons of the same gene that may overlap that position.

annotation, considering both sense and antisense strands
(outer most plots in Figure 4). These analyses indicate that
negative and positive significant genes in M16 are exhibit-
ing an opposite pattern which is not found in MC14 and
M10. The negative M16 genes are highly overlapped in Ref-
Seq while being marginally overlapped in Ensembl 92 and
98, and inversely for the positive genes. Next we compared
the annotations pairwise and measured the percentage of

unique and common sequences for the genes of interest
when two annotations are compared (flanking inner plots).
These analyses show that MC14 is now also exhibiting a
mirroring pattern, where its negative significant genes are
longer and have more unique sequence in Ensembl than
RefSeq, while the opposite is true for its positive genes. M10
shows that some baseline of sequence differences might be
expected, with Ensembl having more unique sequences than
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RefSeq, but only C14 has a clearly defined mirror effect.
This brings us to the observation that, because the ICA
generates two-tailed distributions for the gene weights, we
are able to see genes exhibiting both extremes of a feature,
as clearly shown by the mirroring effect in Figure 4. While
it is clear that both technical modes have a main feature,
where M16 is mainly affected by overlapping annotations
and MC14 by different gene definitions, we can also see as-
pects of the other feature in both sections. This might be due
to the fact that the two technical modes share some of their
genes, leading to genes contributing in both sections. One
can also easily imagine how having a longer gene sequence
might also result into having more overlapping sequences,
showing that these two features are not completely indepen-
dent.

Extrinsic and intrinsic factors of genome annotations affect
quantification differently

Interestingly, the quantification software behavior classifies
them by the approach that they use to solve the quantifica-
tion problem. Both featureCounts and HTSeq are count-
based quantifiers, whereas Cufflinks quantifies through
transcript assembly and quantification. We have observed
that the main bias of count-based quantification is the def-
inition of neighbouring genes, seen through the metric de-
scribing the percentage of exon overlap, whereas transcript
quantification is primarily affected by the definition of the
gene itself. We will describe the former bias as originating
from the extrinsic factors, and the latter from the intrin-
sic factors. By projecting expression datasets from feature-
Counts and HTSeq onto the technical mode C14, as seen
in Supplementary Figure S5C, we can see that these two
tools are also being affected by the intrinsic factors, because
they are shown to cluster in the same way as Cufflinks does.
The fact that MC14 does not appear in the original ICA
model means that M16, the extrinsic factors affecting fea-
tureCounts and HTSeq, exhibits a stronger bias that is hid-
ing the bias caused by intrinsic factors. We can also pose
that the intrinsic factors are independent, meaning that all
quantification software behave the same way toward them,
whereas the extrinsic factors are the ones responsible for the
interaction between genome annotations and quantifiers,
because they are treated differently by the software.

Supplementary Figure S6 illustrates three groups of ex-
ample genes that were found to be significant in at least one
of the two technical modes classifying Ensembl and RefSeq.
All three genes of interest are protein-coding genes with
conserved consensus coding sequence (46) across all three
genome annotations. The first gene, ARPC1A, was found
in EM16 and is a good example of a gene being overlapped
by a read-through gene that is unknown from RefSeq. The
second example, GOLGA8M, was found in EMC14 and is
shown to have major differences in annotation from En-
sembl to RefSeq. There are also some overlapping genes
that are not the same, but they are smaller in comparison
to the overall gene. Intriguingly, Ensembl possesses two dif-
ferent genes (ENSG00000188626 and ENSG00000261480)
that have the same gene symbol and reported HGNC ID,
while HGNC only lists the first as being GOLGA8M.
Moreover, the first has two transcripts which are named

GOLGA8M-201 and GOLGA8M-202, while the second
gene only has GOLGA8M-203. The last example, KCNA6,
was found in both EM16 and EMC14 and exhibits both a
change in overlap and a change in definition across Ensembl
and RefSeq. This figure provides a better understanding of
the separation between extrinsic and intrinsic factors.

ICA can correctly classify different versions of the Ensembl
genome annotation

We have shown that it is possible to classify RNA-seq quan-
tification results with respect to their source of genome an-
notation. To delve deeper into this issue, we have also in-
cluded in the study two different versions of the Ensembl
genome annotation, versions 92 and 98, which were respec-
tively published in April 2018 and September 2019, ∼18
months apart. We wanted to see whether we could also clas-
sify them, and if applicable, identify the way they diverge
from one another. The ICA model has identified two tech-
nical modes, EM3 and EM5, that differentiate between the
two Ensembl versions, with RefSeq pairing with a different
Ensembl version in each technical mode, as seen in Supple-
mentary Figure S4. Once again, Cufflinks does not behave
as the two other quantifiers, affecting the global clustering
of the annotation projections. From our previous observa-
tions on EM16, we can hypothesize that EM3 and EM5
classifications will also be driven by extrinsic factors, mean-
ing genes with overlapping loci. Supplementary Figure S7
presents the data supporting our explanations of the cluster-
ing, with the same plot representations as used with the pre-
vious technical modes. However, both technical modes do
not offer the same prominent mirroring effect as observed
in Figure 4. If these modes are also driven by extrinsic fac-
tors, it would be expected that the outer plots show a clear
difference in the percentage of exon overlap. In EM5 (Sup-
plementary Figure S7B), positive genes display a clear sepa-
ration between Ensembl 98 and the other annotations when
quantifying the percentage of exon overlap. Notably, the
distribution of scores for the two other annotations is ap-
proximately the same, as it was for the same plots in Figure
4. With the mirroring hypothesis, we would expect that En-
sembl 98 would exhibit a smaller percentage of overlapped
exon in the negative genes, which it does. However, its dis-
tribution is not clearly different from Ensembl 92, and En-
sembl 92 and RefSeq distributions do not look alike. Both
of these points show a divergence from the previously ob-
served data. In order to explain this discrepancy, we char-
acterized the difference in percentage of exon overlap for
each gene in the components, across the genome annota-
tions. Supplementary Figure S7C shows this characteriza-
tion for both EM3 and EM5, the plots being relative to the
annotation that is clustered alone, which is respectively En-
sembl 92 and Ensembl 98. Positive and negative genes are
split into three groups, with respect to their difference in
exon overlap with the reference annotation. If both scores
of a gene are within 10% of the reference annotation score,
the gene will be put in the middle group, being approxi-
mately the same as the reference annotation. If the gene has
a score of at least 10% higher or lower in at least one an-
notation, it will be classified accordingly in the bigger than
or smaller than group, while also being colored relative to
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which, or both, annotation diverges from the base case. If
both scores are outside the 10% threshold in opposite direc-
tions, the gene will be classified as similar to the reference
annotation. Looking at the results for EM5, we can see a big
difference between the positive and negative genes. Based on
the mirroring, it was expected that the genes would be sepa-
rated mainly in a diagonal fashion, but the new information
that we gain from this representation is the unequal separa-
tion of the exon overlap score across the two annotations.
While the positive genes are mainly below the threshold for
both annotations, the negative gene group is dominated by
genes that are only differing in RefSeq. The same kind of
grouping can be observed in EM3, where the majority of the
genes contributing to the exon overlap score are only posi-
tive for one annotation. The positive genes plot displaying
percentage of unique gene sequence in EM3 also shows that
there might be some influence of intrinsic factors as well,
with Ensembl 98 and RefSeq having more unique sequence
compared to Ensembl 92. Finding large enough differences
to enable classification of two different genome annotation
versions is a much more difficult task than for two differ-
ent annotations, and the technical modes demonstrate this
by using different sets of genes to be able to cluster differ-
ently. We believe that these gene groups are heterogeneous
groups, with each subpart contributing to differentiate with
one annotation at a time.

Ensembl distinguishes itself by a higher, and growing, number
of overlapping loci

EM3 and EM5 let us explore the differences in Ensembl,
and posit in the way that Ensembl is currently evolving
through time. Interestingly, the clarity of the gene groups
observed in Supplementary Figure S7C may be used to in-
terpret the evolution of the annotations. Based on the pro-
jections, Ensembl 98 is less expressed in the positive genes,
and to achieve that, we only need to find genes that have
gained overlapping loci in Ensembl 98 and that are not over-
lapped in RefSeq. Conversely, to be more expressed in EM5
negative genes, Ensembl 98 needs to lose an overlapping
loci from Ensembl 92, loci that must be present in RefSeq.
From the results, we can conclude that it is easier for En-
sembl 98 to gain new overlapping annotation than to lose
some from Ensembl 92, and we can also conclude that Ref-
Seq seems to globally possess fewer overlapping genes, be-
cause it is mainly responsible for the EM5 negative genes.
In order to explore this, we quantified the percentage of
overlapped exon across all of the 26 713 genes considered
in this study. This quantification is shown in Supplemen-
tary Figure S7D, as distributions only including genes that
have a non-null overlap. Quite surprisingly, the distributions
for the different genome annotations are essentially that
same, made from a different number of genes. While anec-
dotally looking at the genes responsible for the new over-
laps in Ensembl 98, we stumbled upon many read-through,
that were not necessarily identified as such, and set forth to
quantify them in Supplementary Figure S7E. We defined a
read-through as a gene having at least a transcript that has,
for a least two different genes, a perfectly matching exon,
based on the genomic coordinates, and not the sequence
alone. These matching exons must also be distinct exons

in the overlapping transcript. We also only quantified read-
throughs that are overlapping at least one gene included in
our study. When comparing Ensembl 92 and RefSeq, based
on the last two plots, we can acknowledge that Ensembl has
far more genes with overlapped loci (38% against 27% for
RefSeq), and about three times more read-throughs than
RefSeq. We can also see that Ensembl 98 is straying fur-
ther away from RefSeq, with Ensembl 98 having even more
overlapped genes and read-through genes.

Technical modes are reproducible across independent ICA
models

An important question to answer is whether the technical
modes found are generalizable, or simply an artifact of our
dataset. To answer this, we reproduced the experiments us-
ing an independent RNA-seq dataset composed of four dif-
ferent tissues, each with four replicates. These new datasets
went through the same RNA-seq pipeline and ICA genera-
tion model as the previous dataset, differing only in the in-
clusion of the strand information. Supplementary Figures
S8A and S8B illustrate the information given by the differ-
ent expression modes found. A is the result when treated us-
ing the strand information (MS) and B when ignoring the
strand information (MU). We can observe the same general
trends as with the original model of Figure 2B. The major-
ity of the modes are biological modes. As per the technical
modes, none is linked to the trimming, one is linked to the
aligners and some are both linked to the annotation and
quantifiers. An unexpected finding is MS8, which is a tech-
nical mode linked to only the quantifier tool, separating fea-
tureCounts from the other tools.

To assess whether the similar-looking technical modes
represent equivalent groups of genes as in our original
model, we proceeded to a hierarchical clustering of the
modes from the original ICA model and the two described
here (Supplementary Figure S8A and B) in Supplementary
Figure S8C. By highlighting the modes by the variables they
inform, we can clearly observe that the technical modes
cluster according to their similar information. This means
that similar genes are making up these expression modes.
Only MS8 is clustered alone with the biological modes clus-
ter, showing that this is new information from this dataset.
The fact that this mode is only included in the stranded ver-
sion of the new dataset might explain why we have not ob-
served it previously with our original unstranded data.

Differential expression analyses describe the same extent of
methodological step biases

A differential expression analysis (DEA) is usually used
to identify whether gene expression is varying accordingly
to an experimental variable (47). In comparison to the
ICA analysis that we performed, DEA reports all genes in-
dependently, whereas gene groups in the ICA have some
shared expression patterns. In order to compare the genes
found through the ICA to a more commonly used tech-
nique in the RNA-seq field, we performed several DEA us-
ing the pipeline variables and their choices as respectively
experiments and conditions. For example, to generate a
DEA on the impact of the trimming, we compared expres-
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sion datasets processed using Trimmomatic to those pro-
cessed using Cutadapt, using all the corresponding datasets
as replicates. This means that our replicates are very het-
erogeneous, having expression datasets grouped together
that were generated using the whole spectrum of the other
pipeline steps. In a DEA, negative results do not mean that
the genes were not impacted by the condition, but that such
an impact could not be observed within the variance of the
datasets. Because some pipelines do have a significant im-
pact on the quantification, other steps might suffer from
large within-group variance, which makes them less likely
to have significant results. Our multiple DEA have very het-
erogeneous within-group variance due to the fact that we
are reanalyzing the same expression datasets, with differ-
ent groupings of the samples with respect to the different
methodological steps.

The number of replicates is usually a variable worth opti-
mizing in DEA, since more replicates means more sequenc-
ing, and sequencing is still a costly task (48). In our case, the
replicates are mainly generated through processing the same
dataset using a different in silico pipeline, meaning that we
have an abnormally large number of replicates for the differ-
ent experiments. These replicates translate into abnormally
small p-value, and we even hit the number limit of a 64-bit
system, where numbers smaller than approximately 10e-308
are considered as 0 and reported by DESeq2 as such (34). In
the volcano plots, any gene with a p-value of 0 was displayed
as having (in -log10 form) the maximum possible value.

Figure 5 displays volcano plots for the different techni-
cal DEA, grouped by pipeline step. Using a p-value of 10e-
35 and a log2(fold change) of 2 as our significance thresh-
olds, we have identified the significantly DEGs for the dif-
ferent experimental choices using their colors and displayed
their counts on the lower edge of the volcano plots. It is
apparent from an overview of the different pipeline steps
that the methodological choices do not bear the same im-
portance in the definition of the results. We can also im-
mediately see strong resemblance with the ICA results. The
trimming step is the only step not highlighted by the ICA,
and all of its genes in the volcano plot are centered around
the null coordinates, nowhere near significance. The align-
ment step, which was captured by only one technical mode
in the ICA model, has the second-lowest number of DEGs.
It can also be observed that HISAT2 and STAR generate
results that are more similar than TopHat2. And at last,
genome annotations and quantifiers have the largest num-
bers of DEGs, and the same tool clustering as found in the
ICA is observable. The DEA between the different pipelines
thus supports the ICA findings, namely that the choice of
trimmer does not influence RNA-seq expression quantifi-
cation, while the choice of annotation and quantifier affect
the most the quantification.

The impact of the processing software on DEGs calling
has already been investigated for current software. Williams
et al. (11) have shown that the use of different aligners and
quantifiers has an impact on the DEA results, although
their impact was deemed as being overshadowed by those
of differential expression tools. Here we describe gene spe-
cific quantification biases that lead to DEGs between the
software used. These biases can contribute to a wrong bi-
ological interpretation of the data, with some genes being

Figure 5. DEA of RNA-seq methodological choices. A DEA was per-
formed for each pairwise combination of choices for each pipeline step.
The volcano plots of these analyses are presented here, where significantly
DEGs (P-value < 10e-35 and log2(fold change) ≥2) are colored accord-
ingly to the choice in which it is overexpressed. Numbers on the lower edge
of the plots quantify the number of colored genes.

consistently over- or under-represented. Hundreds of genes
are found to have their expression level at least 4-fold higher
or lower depending on the software or annotation used. In-
sofar as DEGs calling is a function of gene expression levels,
it is fair to make the assumption that methods resulting in
different quantification will produce differences in DEGs.

Differential expression analysis describes genes, whereas
ICA describes groups of genes

To better assess the information overlap and the differences
between the two methods, we compare the genes found
through the ICA analysis and the DEGs in Supplemen-
tary Figure S9. By looking at the section for the aligner,
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one can see that EM2 explains a majority of the DEGs
found between the alignment software (i.e. 112 of the 163
genes found differentially expressed between the aligners
are included in EM2). Concomitantly, EM2 also identifies
a great number of genes that have a high significance or fold
change value, but without them being important enough to
overcome the selected thresholds. This highlights one im-
portant point of an ICA. While genes are considered, and
scored, independently and against a user-selected threshold
in a DEA, the ICA identifies genes that share an expression
pattern throughout the different conditions. Here, it leads
to the identification of more genes that are affected by the
software bias. One major limitation of analysis based on bi-
ological samples is the lack of potential generalization of the
results. A gene that is shown to be differentially expressed
here could be non-significant in another tissue with a differ-
ent expression level, or a different expression balance of its
isoforms. The ICA lets us identify more genes that share a
specific bias, being less affected by individual gene expres-
sion levels, and more by general trends in the expression
amongst genes.

The Supplementary Figure S9 for quantifiers and anno-
tations draws a more complex picture of the expression dif-
ference. While the DEGs that were not part of the expres-
sion mode were the smallest subgroup in the aligners UpSet
plot, they represent the biggest subgroup of both the quan-
tifiers and annotations. This means that even though we can
observe an overlap between the ICA genes and the DEGs,
there are more expression biases occurring than those we
found.

We also performed GO enrichment analysis of the DEGs
as displayed in the Supplementary Figure S10. As expected,
the only pairwise comparisons of software that provide us
with a strong enrichment are when TopHat2 is compared to
either HISAT2 or STAR. These enrichments are very sim-
ilar to those drawn in Figure 3A, and the list of genes is
much the same. The differential expression of these genes
when TopHat2 is used is explained by the fact that they have
many pseudogenes, as explained above. The fact that no ad-
ditional strongly enriched gene groups are found in these
DEA comparing software supports the idea that the genes
that are differentially quantified by the different RNA-seq
pipelines are not related in terms of function, biological pro-
cesses and cellular component.

DISCUSSION

To our knowledge, the community has overlooked the
‘what-to-benchmark’ question regarding the RNA-seq
quantification pipeline (49). This question might be more
akin to a manufacturing context, where optimization of re-
sources is directly linked to the metric of success, whereas
it can be more fuzzily linked in research. The ‘what-to-
benchmark’ question is in fact of utmost importance in any
resource-limited context, such as research, to correctly iden-
tify the most pressing questions. In the context of RNA-seq,
the ‘what-to-benchmark’ question is related to the action of
benchmarking the sensitivity of the pipeline as a whole, in
order to identify the greatest source of variability in the re-
sults.

Between software biases identification is a truth-independent
benchmarking method

In this study, we described quantification biases found in the
whole RNA-seq in silico workflow, using an ICA decom-
position on expression datasets created through reprocess-
ing of RNA-seq experiments by a wide variety of method-
ological choices. We put forward the idea of technical re-
processing to identify biases between different choices of a
specific methodological step, instead of assessing the devia-
tion from the ground truth, which is a difficult value to find.
Biases in a specific methodological step are proof that devel-
opers either used different biological hypotheses or have en-
countered unknowns. While this approach is not a panacea,
since it will fail to identify any problematic shared by all the
methodological choices, it can be an interesting technique
to characterize the current landscape of quantification dis-
crepancies concerning tools presently used in the literature.
Such landscape can be characterized in a within step man-
ner, which is the usual analytical benchmarking approach,
but also a between step manner, which highlights the rel-
ative importance of the different methodological choices.
The idea of gene specific bias identification in a method-
ological context is not new, but we extend this approach
by being able to link similarly affected genes together, lead-
ing to an easier identification of impactful characteristics of
problematic genes (7).

ICA is a useful tool to study bioinformatics software biases,
and it should be applied more broadly

Our ICA approach to identify gene group-specific biases
has proven itself useful, but must be used thoroughly and
interpreted by a knowledgeable user. Removing quantifi-
cation software from the model has produced a technical
mode that was unseen in the first model. This means that
generating ICA models using exhaustive combinations of
inclusion and exclusion of software might reveal more tech-
nical biases that were hidden by present technical modes. In-
cluding a broader diversity of software would probably also
deliver a larger diversity of technical modes. Transcriptome-
based software and pseudo-aligners, despite the added dif-
ficulty of the combined steps, should be studied considering
their growing place in the literature.

The community needs to phase out of older and reimple-
mented software

While the format of this study does not let us provide direct
recommendations regarding what methodological choices
to prefer, we can highlight choices that we would not rec-
ommend. For example, Tophat2 is still one of the primary
aligner software in use in the literature (17), but we can-
not recommend its usage due to its bias toward genes with
processed pseudogenes. Furthermore, HISAT2 is a reimple-
mentation of TopHat2, correcting some issues that have be-
come apparent through the years. Authors of TopHat2 have
also published many times, as seen in TopHat2 and HISAT
manuals, and on the twittersphere, about the need to move
toward newer software. However, the community seems to
be somewhat resistant to the change of software. Supple-
mentary Figure S11 quantifies the number of citations per
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year for the major splice-aware read alignment software.
One can observe that no software demonstrates a clear re-
duction in usage throughout the years. While citation count
is not a perfect metric to quantify software usage, since not
every usage will be accompanied by a citation and citations
can also originate from benchmarking or general discus-
sion, it still represents the current interest in the software.
TopHat2 is still the second-most cited splice-aware aligner
as of 2019, even though HISAT is catching up. As long as
older software is being used, critics of these software should
have an important place in the literature. As for the other
aligners studied here, while further models might highlight
discrepancies between STAR and HISAT2, the data shown
here cannot point toward the superiority of one over the
other.

Transcript-based quantifiers enable better gene-level quantifi-
cation

We cannot recommend using count-based quantifiers, such
as featureCounts and HTSeq, since, as stated by themselves
(30), they are not able to give accurate estimation of iso-
form quantification. The issue is that the isoform quantifi-
cation problem is actually an overlapping transcripts prob-
lem, which means that it is not limited to transcripts of a
single gene. If no genes were overlapping, every read falling
into the region of a certain gene could be trivially assigned
to it. But, as demonstrated by the technical modes linked
to the quantification software, gene-level quantification for
count-based quantifiers fails when the genes are overlapped
by other genes. This also means that count-based quanti-
fiers have overlooked the fact that genes may share some
genomic coordinates. Even using stranded datasets does not
remove this observed behavior. Based on that information,
it would make sense to recommend using quantifiers that
quantify the transcript level through techniques trying to
infer the transcripts from which each read could have been
produced, a class of quantifiers which is represented by Cuf-
flinks in this study (50). As we have demonstrated, such soft-
ware seems to be less affected by genome annotation extrin-
sic factors.

Genome annotations are data structures that need to be
adapted to our new biological understandings

As for the choice of genome annotations, the recommen-
dations are not as clear. Genome annotations do not hold
the same place as the other software tools in the RNA-seq
pipeline. Performance of software can be tested under spe-
cific conditions, and divergence from the expected behavior
can be assessed. This was highlighted by technical modes,
for example the lack of reads on exon–exon junctions for
some genes when using TopHat2 contradicts our under-
standing of gene expression and the hypothesis of uniform
distribution of reads along a gene. But genome annotations
are information resources, having the dual purpose of be-
ing a repository of our gene biology knowledge, and a re-
search tool, leveraging high-throughput techniques. While
the technical modes associated with genome annotations in-
formed us of differences in the annotation of different genes
(differences that have a variety of impact on the basis of the

quantification software used), it is difficult to assess which
genome annotation is closer to the truth. Learning about
differences that are driving the main biases in quantification
is important for our understanding of the place of genome
annotations in the RNA-seq pipeline. And while it does not
give a clear answer about which annotation to use, it informs
users about the non-triviality of choosing an annotation,
and about features that are important to look for. On the
other hand, even if annotations converged on a similar de-
scription of the structure of a specific gene, this description
is not necessarily in phase with our current understanding
of biology (i.e. it is not because an annotation is present
in several references that this guarantees that the annota-
tion represents accurately a true biological entity). To illus-
trate this, we can take the extreme example of the GDF1
and CERS1 genes that individually have an identical gene-
level structure across Ensembl92, Ensembl98 and RefSeq,
while also sharing the vast majority of their exons, as seen in
Supplementary Figure S12. Overlapping loci are difficult to
quantify, which makes these genes susceptible to unreliable
quantification across the methodological landscape, but it
also raises the question of whether these two entities are re-
ally independent genes. GDF1 and CERS1 even share an
identical CDS in Ensembl through two transcripts (GDF1–
201 and CERS1–205) that only differs by some nucleotides
in both UTR extremities. It was proposed that GDF1 pro-
duces a polycistronic mRNA (51), but the two proteins dis-
cussed in the paper are now products of the two different
genes. Genome annotations are not a data structure that is
currently able to support polycistronic RNA, and it might
be what justified the separation into two different genes. But
knowing that overlapping genes cause issues in quantifica-
tion, and that, if they are truly polycistronic, there is only
one RNA to quantify, we should review the genome an-
notation information structure. There have been multiple
projects exploring the polycistronic nature of human mR-
NAs (e.g. 52,53). The inclusion of such data would requires
allowing transcripts to possess multiple CDS elements. This
is simply an example that biological understanding and hy-
potheses evolve, and that our software, and usage of them,
must follow accordingly.

Reliable comparison of genome annotations is hindered by
lack of overlap

To compare the genome annotations, we had to limit our-
selves to genes that have some basis of comparison and
HGNC was used to bridge the gene identification between
RefSeq and Ensembl. Since not all genes are annotated into
HGNC, and since not all HGNC genes have an identifier for
both genome annotations, our number of comparable genes
is smaller than the total number of genes, and one could
hypothesize that the remaining genes (i.e. those that we did
consider) are better described and are probably more similar
than the other genes. Furthermore, some of the remaining
genes were not reported by the pipelines when using RefSeq.
These genes, the 37 mitochondrial genes and 10174 pseudo-
genes (list available as Supplementary Data 3), are present
in the RefSeq GTF annotation file, but are described us-
ing a single ‘gene’ feature, instead of the expected hierarchy
where each gene possesses one or more transcript, them-
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selves having one or more exon. In the RefSeq GFF3 file,
some of these genes appear to have the expected hierarchy,
but they do not respect the same naming scheme as the other
genes (NM and XM identifiers for transcripts), and they
are always mono-exonic. This issue has many implications.
First, one would expect to have the exact same information
within the different file formats distributed by a centralized
resource. Second, deviating from the expected data format
can create unexpected behavior for data processing soft-
ware, seen here as genes not being quantified. Third, pseu-
dogene is a very wide RNA category which includes mono-
exonic processed pseudogenes, but also intron-bearing un-
processed pseudogenes. This makes for an unfair compar-
ison if we were to compare quantifications of unprocessed
pseudogenes between Ensembl and RefSeq. Supplementary
Figure S13 provides such a visual comparison for the differ-
ence in gene structure. But because we do not have RefSeq
quantifications for those genes, we cannot produce a quan-
titative comparison. Fourth, genes classified as pseudogenes
in RefSeq may not be pseudogenes in all annotations. As de-
scribed in Supplementary Data 3, Ensembl considers some
of the RefSeq pseudogenes as having a different biotype,
such as protein-coding, snRNA, lncRNA. This means that
these genes might have had a proper annotation, and not
simply a gene start and end coordinates, if RefSeq would be
to consider them as a different biotype.

There is a lack of consensus regarding what should be included
in genome annotations

The differences between Ensembl versions also highlight
the important question of what needs to be annotated.
Adding information to an annotation can have an impact
on already existing annotations. As an example, Ensembl
is seen as having more read-through transcripts than Ref-
Seq, and this number is getting bigger. Some of these tran-
scripts have been shown to only be expressed in a cancer
cell line, such as the HHLA1-OC90 read-through transcript
in teratocarcinoma (54), while very few are actually found
to be expressed more than anecdotally in non-cancerous
cells (55). As soon as a read-through annotation is added,
count-based quantifiers will redistribute the counts of the
overlapping genes. This should prompt users to move to-
ward more appropriate software, but it also raises questions
about the suitability of a ubiquitously used genome annota-
tion, where annotation of rare events might affect the anal-
ysis. As per the ‘what-to-benchmark’ question, the ‘what-
should-be-annotated’ question also seems to be lacking ex-
plicit direction and consensus.

Genome annotations are an impactful experimental variable
and should be benchmarked accordingly

We believe that our approach contributes in answering the
‘what-to-benchmark’ question. Our study provided data
supporting the concept that the choice of a genome anno-
tation plays an important role in gene quantification. This
bias, like the others observed through the ICA for several
pipeline steps, is not global, but affects specific gene groups
sharing common features. We must emphasize the genome
annotations because we believe that, in opposition to align-

ment and quantification tools, they have not received an ap-
propriate amount of interest with respect to their impor-
tance in the definition of the results. We call for a better
methodological use of genome annotations and a recogni-
tion of their impact on RNA-seq quantification results.
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