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Abstract

Unlike spiking neurons which compress continuous inputs into digital signals for transmitting

information via action potentials, non-spiking neurons modulate analog signals through

graded potential responses. Such neurons have been found in a large variety of nervous tis-

sues in both vertebrate and invertebrate species, and have been proven to play a central

role in neuronal information processing. If general and vast efforts have been made for

many years to model spiking neurons using conductance-based models (CBMs), very few

methods have been developed for non-spiking neurons. When a CBM is built to characterize

the neuron behavior, it should be endowed with generalization capabilities (i.e. the ability to

predict acceptable neuronal responses to different novel stimuli not used during the model’s

building). Yet, since CBMs contain a large number of parameters, they may typically suffer

from a lack of such a capability. In this paper, we propose a new systematic approach based

on multi-objective optimization which builds general non-spiking models with generalization

capabilities. The proposed approach only requires macroscopic experimental data from

which all the model parameters are simultaneously determined without compromise. Such

an approach is applied on three non-spiking neurons of the nematode Caenorhabditis ele-

gans (C. elegans), a well-known model organism in neuroscience that predominantly trans-

mits information through non-spiking signals. These three neurons, arbitrarily labeled by

convention as RIM, AIY and AFD, represent, to date, the three possible forms of non-spiking

neuronal responses of C. elegans.

Introduction

Spiking neurons are often considered as the major information processing unit of the nervous

system. Nonetheless, not all neurons elicit spikes. While spiking neurons compress continuous

inputs into digital signals for transmitting information via action potentials, non-spiking neu-

rons modulate analog signals through graded potential responses. More specifically, the ampli-

tude and waveform of the action potentials are essentially invariant with respect to the
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amplitude, duration, and waveform of the stimulus, unlike graded potentials which are stimu-

lus-dependent (see S1 Fig) [1]. An advantage of the non-spiking response type is that it allows

not to sacrifice information content [2]. A large variety of nervous tissues in both vertebrate

and invertebrate species have revealed that a number of sensory, inter- and motorneurons

function without eliciting spikes. Some examples are the human retina neurons [3], numerous

interneurons in insects and crustaceans [4], the motorneurons of the Ascaris worm [5, 6], or

most of the C. elegans neurons [7]. Non-spiking neurons have been found in sensorimotor

and central pattern generator circuits, and proven to be central in neuronal integration [4] and

to provide a determining mechanism for the control of motor behavior [8–10].

Despite their differences, non-spiking neurons use similar mechanisms to those of spiking

neurons to transmit neuronal information: they both rely on the active and passive propaga-

tion of electrical signals. The cell membrane is also composed of similar ion channels, i.e. a

large diversity of classical voltage-dependent ion channels have been experimentally and

genetically identified in non-spiking neurons of different cell types [4]. As a consequence, sev-

eral studies have already proposed conductance-based models (CBMs) as a means to charac-

terize the non-spiking behavior of some neurons, such as retina neurons [11, 12] or C. elegans
neurons [13]. These works are however built in an ad-hoc manner by combining both experi-

mental measurements and results from different species and neurons. Unfortunately, such a

procedure can easily fail to yield reliable conductance-based models [14, 15]. To the extent of

our knowledge, this paper is a first attempt to propose general and systematic methods to char-

acterize this type of neurons’ behavior using CBMs.

CBMs have become one of the most powerful computational approaches for characterizing

the behavior of neurons [16]. In simple terms, a CBM is a biophysical representation of a neu-

ron in which the ion channels are represented by conductances and the polar membrane by a

capacitor [17, 18]. In such models, every individual parameter and state variable has an estab-

lished electrophysiological meaning so that their role in the neuron dynamics can be unequiv-

ocally identified. However, due to the difficulty to perform some experimental recordings (e.g.

ionic conductances [19]), many modeling studies suffer from the lack of sufficient physiologi-

cal data to determine all the parameter values. As a consequence, parameters are often tuned

in an ad-hoc manner. Furthermore, when new biological recordings come into play, these

models can typically suffer from good generalization capabilities (i.e. the ability to predict

acceptable responses to stimuli not used while building the model) [20, 21]. In order to over-

come these issues, we propose a new approach in which all the model parameters are simulta-

neously determined, from macroscopic data, by trading off the accuracy and the capability of

generalization of the model.

To obtain a CBM that characterizes the neuron behavior accurately and with a good gener-

alization capability, one needs to capture the right underlying bifurcation structure of the neu-

ron, i.e. the qualitative changes that the neuron behavior undergoes as a result of a change in

stimuli. In a sense, neurons are dynamical systems [22]. In this paper, we show that the steady-

state current (depicted in Fig 1) plays a pivotal role in the dynamics of non-spiking CBMs by

determining: (i) the number of equilibria as well as their values, and (ii) all the bifurcations of

the resting state along with the values to which they occur. Therefore, this paper adopts a

multi-objective optimization approach so that, in addition to fitting the membrane potential

evolution, it also captures the underlying bifurcation structure of non-spiking neurons by con-

sidering an additional objective: the fitting of the steady-state current.

In the present work, we apply our proposed approach on three non-spiking neurons (RIM,

AIY and AFD) of the nematode C. elegans. Non-spiking neurons can display two typical

behaviors: (i) near-linear, with a smoothly depolarization or hyperpolarization from the resting

potential, and (ii) bistable, with nonlinear transitions characterized by a voltage jump between
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the resting potential and a depolarized potential of higher voltage. In particular, RIM and AIY

neurons display a near-linear behavior (Fig 1A) while AFD exhibits a bistable one (Fig 1B). In

this way, our approach is applied on experimental behavior representative of the known types

of non-spiking neurons.

Materials and methods

This paper is primarily based on the experimental data obtained in [23] for the three neurons

under study. Nonetheless, we also provide new unpublished experimental data on the evolu-

tion of the AFD membrane potential and a description of the conducted experimental proto-

col. In order to find accurate models from these data with generalization capabilities, we need

to capture the right underlying bifurcation structure of neurons [22]. In this section, we

describe the important role that the steady-state current plays when trying to capture the bifur-

cation dynamics of non-spiking neurons, and therefore the importance of considering it dur-

ing the optimization process. That is why we introduce a novel multi-objective approach that

takes into account both the evolution of the membrane potential and the steady-state current

of the neurons.

Electrophysiology

The used C. elegans strain was PY1322 oyIs18[gcy-8::GFP] X with GFP exclusively expressed

in AFD neurons. Experiments were performed on young adult hermaphrodites (3–4 days old)

maintained at room temperature (22–23˚C) on nematode growth medium (NGM) plates

seeded with E. coli OP50 bacteria as a food source [24]. Electrophysiological recording was

Fig 1. In-vivo recordings of three different non-spiking neurons of C. elegans which represent, to date, the three forms of possible non-spiking

neuronal responses of the nematode. (Top) Evolution of membrane potential for a series of current injections, in spans of 5 seconds, starting from

-15pA and increasing to 35pA by 5pA increments. (Bottom) I-V relationships obtained from averaged whole-cell current traces induced by a series of

voltage steps in voltage-clamped RIM, AIY and AFD neurons (RIM: n = 3; AIY: n = 7; AFD: n = 3). Peak currents are measured by the absolute

maximum amplitude of currents within the first 100 ms of each voltage step onset, while steady-state currents are measured by the averaged currents of

the last 50 ms of each voltage step. (A) Near-linear behavior. Published in [23] (reproduced with the consent of the authors). (B) Bistable behavior. New

unpublished results for AFD.

https://doi.org/10.1371/journal.pone.0268380.g001
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performed as previously described [23]. Briefly, an adult was immobilized with cyanoacrylate

adhesive (Vetbond tissue adhesive; 3M) on a Sylgard 184-coated (Dow Corning) glass cover-

slip and dissected to expose AFD. Recordings were performed using single-electrode whole-

cell current clamp (Heka, EPC-10 USB) with two-stage capacitive compensation optimized at

rest, and series resistance compensated to 50%. The standard pipette solution was (all concen-

trations in mM): [K-gluconate 115; KCl 15; KOH 10; MgCl2 5; CaCl2 0.1; Na2ATP 5; NaGTP

0.5; Na-cGMP 0.5; cAMP 0.5; BAPTA 1; Hepes 10; Sucrose 50], with pH adjusted with KOH

to 7.2, osmolarity 320–330 mOsm. The standard extracellular solution was: [NaCl 140; NaOH

5; KCL 5; CaCl2 2; MgCl2 5; Sucrose 15; Hepes 15; Dextrose 25], with pH adjusted with NaOH

to 7.3, osmolarity 330–340 mOsm. Liquid junction potentials were calculated and corrected

before recording. Data analysis were conducted using Fitmaster (Heka) and exported to Origi-

nPro 2018 (OriginLab) for graphing.

Conductance-based model description

Conductance-based neuron models, based on the Hodgkin-Huxley formalism, were first

introduced in a series of seminal works in the 1950s [25]. They describe the neuronal dynamics

in terms of activation and inactivation of voltage-gated conductances. In particular, the

dynamics of the membrane potential V is described by a general equation of the form

C
dV
dt
¼ �

X

ion
Iion þ I ð1Þ

where C is the membrane capacitance, ∑ion Iion is the total current flowing accross the cell

membrane, and I is an applied current.

The dynamics of every Iion are governed by gating particles (gates) sensitive to the changes

in the membrane potential (voltage). These gates can be of two types: activation gate and inac-

tivation gate, each of which can be in an open or a closed state. The probability of an activation

or inactivation gate being in the open state is denoted respectively by the variables m and h.

Thus, the current generated by a large population of identical ion channels is given by

Iion ¼ gionm
a
ionh

b
ionðV � EionÞ

where gion is the maximal conductance (namely the conductance of the channel when all the

gates are open); Eion is the reverse potential, that is, the potential at which the ion current

reverses its direction (a.k.a. equilibrium potential); and a and b respectively refer to the num-

ber of activation and inactivation gates. Channels that do not have inactivation gates (b = 0)

induce a persistent current (i.e. current that does not inactivate) noted by Iion,p, while channels

that do inactivate (b = 1) induce a transient current (i.e. current that inactivates) noted by Iion,t.

The dynamics of variables m and h are described by the following equation:

dx
dt
¼

x1ðVÞ � x
tx

; x 2 fm; hg:

where τx is the constant time for which x reaches its respective equilibrium value x1. The latter

is expressed by a Boltzmann sigmoid function:

x1ðVÞ ¼
1

1þ exp
Vx

1=2
� V

kx

� � ; x 2 fm; hg:

where Vx
1=2

satisfies x1ðVx
1=2
Þ ¼ 1=2 and kx is the slope factor with km> 0 and kh< 0 as to rep-

resent activation and inactivation respectively, i.e., smaller values of |kx| lead to a sharper x1.
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Conductance-based models for the RIM, AIY and AFD C. elegans neurons

From vertebrate to invertebrate species, non-spiking neurons are ubiquitous in nervous sys-

tems [4]. Experimental and genetic evidence supports the existence of various types of ion

channels in these types of neurons. For instance, a large number of ion channels have been

identified in non-spiking retinal networks [26]. Regarding the C. elegans neurons, there is

extensive biological evidence (refer to [16] and references therein) supporting the existence of

calcium, inwardly rectifying potassium and potassium channels. In more detail, C. elegans
genome sequencing [27], electrophysiological measurements [7], and calcium imaging [28,

29], combined with a series of in-silico experiments, identified the most suitable models for

electrophysiology of RIM, AIY and AFD neurons [16] that we use in this paper as base models.

Specifically, ICa,p + IKir + IK,t + IL-model was identified for RIM and AFD neurons, and ICa,t +

IKir + IK,p + IL-model for AIY. A complete mathematical description of these models is pre-

sented in S1 Table.

Bifurcation dynamics of non-spiking neurons

In typical voltage-clamp experiments, the membrane potential is stabilized at several values VH

(H stands for hold) for which the resulting currents are measured. Asymptotic values (t!1)

of those currents, depending only on VH, are called steady-state currents and noted I1(VH).

Mathematically, the steady-state current I1 is the total current ∑ion Iion flowing accross the cell

membrane when gating variables m and h are at their equilibrium, i.e. x = x1 where x 2 {m,

h}. Therefore, its analytical expression is defined as follows:

I1ðVÞ ¼
X

ion

Iion1ðVÞ ð2Þ

where

Iion1ðVÞ ¼ gionm
a
ion1ðVÞh

b
ion1ðVÞðV � EionÞ

In non-spiking CBMs, we show that the curve V! I1(V) defined in (2) plays a pivotal role

in the system dynamics by determining: (i) the number of equilibria as well as their values, and

(ii) all the bifurcations of the resting state along with the values of I to which they occur.

Indeed, any stationary point of gating variables x 2 {m, h} must satisfy x� = x1(V�). Replacing

this into the first equation on V, fixed points V� of such models are those that satisfy the equa-

tion

I1ðV�Þ ¼ I: ð3Þ

In other words, equilibria V� correspond to the intersections between the steady-state curve

I1 and a horizontal line I = c where c is a constant. There are two standard shapes of the

steady-state curve I1, monotonic and cubic (Fig 2), each involving fundamentally different

neuro-computational properties for non-spiking neurons:

• As shown in Fig 2A, CBMs with a monotonic steady-state current only have one equilibrium

for any value of I. Non-spiking neurons with such a steady-state current display a near-linear

behavior characterized by smoothly depolarization or hyperpolarization from the resting

potential, such as the RIM and AIY neurons (Fig 1A and Table 1).

• As shown in Fig 2B, a N-shape curve leads to a saddle-node bifurcation. When I = c1, there

are 3 equilibria, noted Vc1
1�, V

c1
2� and Vc1

3�. Increasing I results in coalescence of two equilibria

(the stable Vc1
1� with the unstable Vc1

2�). The value I = c2, at which the equilibria coalesce, is

called the bifurcation value. For this value of I, there exist 2 equilibria. For I> c2, for example
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I = c3, the system has only one equilibrium. In summary, when the parameter I increases, a

stable and an unstable equilibrium approach, coalesce, and then annihilate each other. Non-

spiking neurons with a N-shape steady-state current display a bistable behavior character-

ized by a voltage jump between the resting potential and a depolarized potential of higher

voltage, such as the AFD neuron (Fig 1B and Table 1).

As a consequence, it can be stated that the steady-state current determines: (i) the bifurca-

tion structure of non-spiking neurons when I is considered as the bifurcation parameter, and

(ii) the equilibrium values of their graded responses to a particular stimuli.

Objective functions

Primary objective: Membrane potential. The primary objective of the proposed conduc-

tance-based models is to reproduce the evolution of the membrane potential depicted in Fig 1

for the different neurons under study. To that end, we employ the cost function fV as being the

root-mean-square error normalized to the noise level (i.e. standard deviation) of each experi-

mental voltage trace. The noise level, noted σI, is estimated as in [30], that is, we choose a time

window at the end of each trace where the curve is relatively flat for calculating the standard

Fig 2. Two typical shapes of the steady-state current V! I1(V), in red. Intersections of I1 and horizontal line I = c (with c constant) correspond to

equilibria of the system. We denote stable equilibria as filled circles ●, unstable equilibria as open circles � and saddle-node equilibria as . (A)

Monotonic steady-state current. Vc1
�

and Vc2
�

correspond to equilibria for a current injection I = c1 and I = c2 respectively. (B) N-shape steady-state

current. The number of equilibria of the system depends on the value of I. For the sake of readibility, we highlight equilibria only for I = c1, noted Vc1
1� ,

Vc1
2� and Vc1

3�.

https://doi.org/10.1371/journal.pone.0268380.g002

Table 1. Numerical values of the steady-state current of the RIM, AIY and AFD neurons displayed in Fig 1.

mV -120 -110 -100 -90 -80 -70 -60 -50 -40

RIM / / -12.2 -9.13 -6.57 -4.91 -3.57 -2.13 -0.807

AIY -13.1 -10.4 -7.92 -5.89 -4.11 -2.69 -1.02 0.0211 1.17

AFD / -68.6 -49.5 -18.2 -5.06 2.19 3.37 2.52 2.68

mV -30 -20 -10 0 10 20 30 40 50

RIM 0.229 1.46 4.27 7.46 11.8 17.2 21.6 27.1 32.5

AIY 3.1 7.32 14.2 22.4 31.5 43.2 54.5 69.5 82.4

AFD 5.97 14.6 33.4 60.2 85 114 152 208 254

https://doi.org/10.1371/journal.pone.0268380.t001
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deviation. Therefore, fV takes the following form:

fVðyVÞ ¼
1

jIj

X

I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X

t
ðVexpðI; tÞ � VyV

ðI; tÞÞ2
r

sI
ð4Þ

where Vexp(I, t) are the experimental voltages depicted in Fig 1 and VyV
ðI; tÞ the voltages esti-

mated by the model where θV is the vector containing all the model parameters (see S1 Table);

t 2 [0, 50ds] corresponds to the biological real time with a sampling period of Δt = 0.004ds;
N = 12500 is the number of data points in the measurement record, and I corresponds to suc-

cessive step values of current injections starting from -15pA and increasing to 35pA by inter-

vals of 5pA.

Secondary objective: Steady-state current. As the primary objective alone may fail to

predict generalized responses to novel stimuli, the secondary objective aims to fit the mean of

the experimental responses of the steady-state current (RIM: n = 3; AIY: n = 7; AFD: n = 3)

displayed in Fig 1. The fitting of the steady-state current is carried out by minimizing the root-

mean-square error normalized to the standard deviation, noted σ. Therefore, the cost function

denoted f1 is defined as follows:

f1ðySSÞ ¼
1

jVHj

X

VH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðIexp1 ðVHÞ � IySS1 ðVHÞÞ
2

q

sVH

ð5Þ

where Iexp
1
ðVÞ is the experimental mean (Fig 1) and IySS

1
ðVÞ the estimated one; θSS is the vector

containing the parameters related to the steady-state current (see S1 Table); VH corresponds to

a series of voltage clamped starting from -100mV and increasing to 50mV by 10mV incre-

ments, and sVH
the experimental noise level (standard deviation).

Initial conditions. About the initial conditions of the model, V0 is set to the biological val-

ues determined by Liu et al. [23]: V0 = −38mV for RIM, V0 = −53mV for AIY, and V0 =

−78mV for AFD. Meanwhile, m0 and h0, because of the lack of biological information, are con-

sidered as two additional parameters to be estimated within the optimization procedure (i.e.
along with ionic conductances and the other parameters). This is relevant for multistable sys-

tems, such as the bistable AFD neuron, which has two stable asymptotic states. For such sys-

tems, the convergence to a stable state depends on the initial conditions and a bad

initialization choice could result in the inability of the system to fit data. Therefore, by consid-

ering m0 and h0 as parameters to be estimated within the optimization procedure, the choice

of these initial conditions is robust as the unique equilibrium point of non-spiking CBMs is

necessarily globally asymptotically stable [31].

Conflicting cost functions. Both primary and secondary objectives can be considered

conflicting. In principle, there is no biological reason behind such a conflict, however, the dif-

ferent nature of the data employed in each of the functions, which are obtained from different

experimental procedures with their own intrinsic and extrinsic sources of experimental noise,

prevent finding a single optimal parameterization that optimizes both objectives at once.

Therefore, the multi-objective approach proposed in this paper provides a natural mechanism

for both objectives to be treated simultaneously.

Differential evolution

Originally proposed by Storn and Price [32], differential evolution (DE) is a simple yet power-

ful evolutionary algorithm for global optimization, successfully applied in many practical cases

[33]. In the context of parameter estimation in conductance-based models (as it is the case in
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this paper), it has not only been shown to be an effective method [16, 34], but also superior to

other optimization methods such as genetic algorithms, simulated annealing and particle
swarm optimization algorithm in terms of convergence speed, simulation time, and minimiza-

tion of the cost function [35].

As every population-based metaheuristic, DE is an optimization method that iteratively

optimizes a problem by trying to improve a set of NP candidate solutions, so-called individu-

als, that are initially set at random within a given solution space of D parameters. At each itera-

tion, new individuals (called trial vectors) are constructed by means of two operations: so-

called mutation and crossover. Then selection determines which individuals will survive into

the next iteration. Every individual of the population has to serve once as target vector, so that

there are NP competitions in one generation and the population size is kept constant at NP
with NP� 4. During the mutation operation, if a component of a mutant vector falls out of the

bounds of the feasible region (depicted in Table 2), we set this component to the closest

boundary value. This approach is particularly efficient if the optimum lies near bounds and

produces feasible solutions by making as few alterations to the mutant vector as possible;

unlike other techniques consisting in random reinitialization or penalty [36].

Multi-objective proposal

In this paper, the conflicting nature of the proposed primary and secondary objectives imposes

a multi-objective treatment of the problem since, under two or more conflicting objectives,

there is not a single optimal solution that can optimize all objectives simultaneously. Instead,

in a multi-objective setting, solutions can be compared by using the notion of dominance: a

solution A is said to be dominant over another solution B if A is superior to B in at least one

objective while B is not superior to A in the rest of objective functions. Using this notion, the

multi-objective outcome is not one but a set of non-dominated optimal solutions, so-called the

Pareto front.

Out of all variants of DE for solving multi-objective optimization problems [37], the

DEMO (Differential Evolution for Multi-objective Optimization) approach [38] is selected

because it provides a good trade-off between the simplicity of the implementation and the

good results on benchmarks compared to several state-of-the-art methods in terms of conver-

gence and quality of the obtained solutions [37, 38].

Using DEMO as baseline algorithm, the proposed multi-objective approach has been tai-

lored to best suit the nature of the problem, where the primary objective (membrane potential)

must prevail over the secondary one (steady-state current). In other words, the primary

Table 2. Parameter bounds, determined to be biologically relevant [16, 22, 23].

Parameters Minimum value Maximum Value

gCa, gKir, gK, gL 0nS 50nS
ECa 20mV 150mV

EK -100mV 0mV

EL -80mV 30mV

Vm
1=2
;Vh

1=2
;VKir

1=2
-90mV 0mV

km 0mV 30mV

kh, kKir -30mV 0mV

τm, τh 0ds 15ds

x0
m, x0

h 0 1

C 0 10

https://doi.org/10.1371/journal.pone.0268380.t002
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objective must be favored as it is the one that guarantees quality in the neuronal response

while the secondary objective is aimed at capturing the bifurcation structure of the neuron

model as to improve its generalization capabilities. We denote the proposed approach DEMO/

rand/best/biased.

Inspired by multi-objective guided search [39], the DEMO/rand/best/biased variant tries to

guide the search towards an optimal region on the primary objective. To that end, in a prelimi-

nary step, a standalone single-objective DE is executed to yield a good candidate solution on

the primary objective. This solution is then used to bias the multi-objective approach by inte-

grating it into the initial randomly generated population. In order to reinforce this bias, the

algorithm incorporates a rand/best strategy [40] that greedily uses the best individual on the

primary objective to form the trial vector. The aim of this variant is therefore to concentrate

and explore the Pareto front region around the best found primary objective solution. The

consequence is that the algorithm provides a set of solutions that reproduce the evolution of

the membrane potential with high fidelity due to the bias, while taking into account the bifur-

cation structure of the neuron guided by the secondary objective.

The DEMO/rand/best/biased algorithm was run with different values of control parameters

NP, F and CR in order to fine-tune its search capabilities. The values that we recommend are

NP = 600, F = 1.5 and CR = 0.3 with a number of 2000 iterations. The algorithm was run 10

times for each neuron model and combination of control parameters.

Automated decision-making process. The result of a multi-objective optimization pro-

cess is a set of non-dominated solutions which constitute the best found trade-offs between the

conflicting objective functions. If the aim is to adopt one of these solutions as a global solution

to the problem, a decision-making process need to be put in place in order to discriminate the

selected solution under some criteria. In order to automate this process, we propose a four-

stage method that automatically selects a solution capable of reproducing adequate neuronal

responses to new stimuli.

• Step 1: Split the membrane potential dataset into three sets.

Procedure: The membrane potential dataset depicted in Fig 1 is split into three sets: the

training set, the validation set, and the test set [41]. The training set, from which the model

parameters are estimated, is composed of all the traces of membrane potential for the series

of current injections going from -15pA to 25pA by 5pA increments and also the steady-state

current. The validation set, used to select a solution with a good predictive capability, is com-

posed of the voltage trace relative to 30pA. The test set, composed of the voltage trace relative

to 35pA, is used to assess the model performance from data not used in any part of learning

or decision-making process. The different sets are summarized in Table 3.

The validation and test sets are selected from the voltage traces relative to the highest stimu-

lus values for the following reasons:

1. While simultaneously optimizing the steady-state current and the experimental voltage

traces, the empirical evidence suggests that the conflicting nature of both objectives max-

imizes at the upper extreme values (refer to the Results section and Figures therein). In

Table 3. Training, validation and test sets.

Training set Validation set Test set

• Voltage traces for stimuli going from −15pA to

25pA.

• Voltage trace relative to

30pA.

• Voltage trace relative to

35pA.

• Steady-state current.

https://doi.org/10.1371/journal.pone.0268380.t003
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other words, the most aberrant behavior that can occur is for stimuli higher than those

considered during the training procedure.

2. We select high traces for validation or test, the deterioration of a voltage trace between

two traces is necessarily constrained and cannot be as large as the one observed for sti-

muli higher than those used during the parameter estimation procedure.

• Step 2: Determining the set of non-dominated solutions.

Procedure: 10 runs with different random seeds of the multi-objective optimization

approach DEMO/rand/best/biased are conducted using the training set. The final set of solu-

tions (that we denote as S) is composed of all non-dominated solutions found during these

independent runs.

Input: 6000 solutions (600 solutions per run × 10 independent runs).

Output: A set S composed of all non-dominated solutions.

• Step 3: Selecting solutions with a correct bifurcation structure.

Procedure: This step aims at eliminating from the set S the solutions that do not display the

right expected shape of the steady-state current I1, i.e. monotonic for the RIM and AIY neu-

rons, and N-shape for AFD. To do so, we first compute the first-order derivative of I1,

noted I0
1

. For the RIM and AIY neurons, we then verify that I0
1
ðVÞ > 0 for any values of V

2 [−100mV;50mV] to ensure the monotonicity of I1. For the AFD neuron, I0
1

has to be pos-

itive, then negative, and positive again to ensure the N-shape of I1. These are the conditions

we verify to select solutions with a correct bifurcation structure.

Input: The set S composed of all non-dominated solutions.

Output: A set S1 composed of all non-dominated solutions displaying appropriate bifurca-

tion structure.

• Step 4: Selecting the best solution according to the validation trace.

Procedure: Using Eq (4), compute the numerical scores of all solutions in S1 by only consid-

ering the validation trace. The solution with the lowest score, i.e. minimal cost function, is

the one selected.

Input: The set of non-dominated solutions S1 and the validation trace.

Output: The final selected solution.

The proposed decision-making process does not take into account the test trace. The aim is

to reserve a trace that has not been used in any part of the learning or decision-making process

to assess the quality of the solution found.

Results

A series of in-silico experiments is conducted with the purpose of showing the predictive capa-

bilities of the proposed multi-objective approach (see Materials and methods). In addition to

the fitting of the membrane potential, the proposal aims to capture the bifurcation dynamics

of the neuron by considering the fitting of the steady-state current as a second objective. This

section illustrates first the problems that a single-objective approach encounters when trying

to generalize the responses of a neuron model to new stimuli. Then, the multi-objective

approach is analyzed and shown to be capable of predicting adequate responses to the same

new stimuli.
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Single-objective optimization may fail to determine a model with

generalization capabilities

Single-objective optimization experiments are conducted using stimuli from -15pA and

increasing to 25pA by 5pA increments, for the RIM, AIY and AFD neurons. The obtained

parameter values for the three neurons are shown in S2 Table. The generalization capability is

then assessed from the voltage trace relative to 30pA and 35pA.

The AFD case. Fig 3 shows the results obtained for the AFD neuron using the single-

objective approach. The high quality of the fitting, which takes into account current injections

in the interval [−15pA;25pA], can be observed in Fig 3A. Nonetheless, when considering the

resulting steady-state currents of the model in Fig 3B, it can be observed that the model deteri-

orates for values higher than 25pA, involving a non-physiological dramatic change in the neu-

ronal dynamics. Fig 3C confirms this non-physiological response in the evolution of the

Fig 3. Results of single-objective optimization (evolution of AFD membrane potential). (A) Experimental data (represented in green) and ICa,p +

IKir + IK,t + IL-model (represented in blue) overlap for a series of current injection starting from -15pA and increasing to 25pA by 5pA increments. (B)

Experimental steady-state currents (represented by green circles) and estimated steady-state currents (represented by blue crosses) resulting from the

fitting of membrane potential evolution in (A). Red lines delineate the interval [-15pA; 25pA]. (C) Dark blue curves represent the evolution of

membrane potential for the same values of current injection than in (A) (i.e. stimuli starting from -15pA and increasing to 25pA by 5pA increments),

whereas light blue ones represent the drastic non-physiological change of voltage traces for novel stimuli (30pA and 35pA). Note the difference of scale

regarding y-axis between (A) and (C). (D) Bifurcation diagram. Four saddle-node bifurcations occur at I� −0.66pA, I� 1.36pA, I� 3.19pA, and I�
28.4pA.

https://doi.org/10.1371/journal.pone.0268380.g003
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membrane potential for the 30pA and 35pA traces that are not taken into account during the

parameter estimation phase. In fact, as the steady-state current displays a second aberrant and

unexpected N-shape for I> 25, another saddle-node bifurcation occurs at I’ 28.4 (see Fig

3D), explaining the drastic rise of the membrane potential trajectory to a new stable state of

higher voltage. Thus, it can be concluded that the model fails to predict neuron responses to

stimuli not encountered during the parameter estimation process, making it not acceptable

and inadequate for the description of the AFD neuron behavior.

The near-linear RIM neuron. As in the case of AFD, Fig 4A illustrates that the model fits

well with experimental data for all series of current injections considered during the optimiza-

tion process (i.e. traces relative to stimuli from -15pA to 25pA by 5pA increments). Addition-

ally, Fig 4B reveals that the steady-state current does not heavily deteriorate for stimuli higher

than 25pA, so that the model should obtain relative good predictive capabilities for new sti-

muli. This fact is confirmed by Fig 4C which shows a good fitting for the validation traces

Fig 4. Results of single-objective optimization (evolution of RIM membrane potential). (A) Experimental data (represented in green) and ICa,p + IKir
+ IK,t + IL-model (represented in blue) overlap for a series of current injection starting from -15pA and increasing to 25pA by 5pA increments. (B)

Experimental steady-state currents (represented by green circles) and estimated steady-state currents (represented by blue crosses) resulting from the

fitting of membrane potential evolution in (A). Red lines delineate the interval [-2pA;8pA] in which the steady-state current deteriorates. (C) Dark blue

curves represent the model traces relative to stimuli from -15pA to 25pA by 5pA increments, whereas light blue experimental traces represent

experimental traces relative to 30pA and 35pA. (D) Evolution of membrane potential for a series of current injection starting from -5pA and increasing

to 15pA by 1pA increments. Numerous voltage jumps occur due to the two N-shape of the steady-current displayed in (B) between the red lines.

https://doi.org/10.1371/journal.pone.0268380.g004
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(depicted in light blue). Nonetheless, if we analyze the steady-state current in the interval I 2
[−2pA;8pA] (i.e. space between the two red lines in Fig 4B), we can observe a deterioration of

the steady-state current shape: instead of a monotonic shape, two N-shape appear. As a conse-

quence, two saddle-node bifurcations occur so that the membrane potential of the model does

not display a near-linear behavior as expected, but various jumps arise (as illustrated in

Fig 4D) making the model inadequate for the description of the RIM neuron behavior.

The near-linear AIY neuron. As can be seen in Fig 5A, the model is capable of predicting

accurate responses for traces relative to 30pA and 35pA. However, one can observe a relatively

high deterioration of the steady-state current for stimuli higher than 35pA (Fig 5B). One can

then hypothesize that the model may not describe adequately the voltage responses for these

stimuli.

Obtaining non-spiking conductance-based models with generalization

capabilities

In order to obtain a model with generalization capabilities, we follow the approach developed

in the previous section. The DEMO/rand/best/biased algorithm is run with different values of

control parameters NP, F and CR in order to fine-tune its search capabilities. The values that

we recommend are NP = 600, F = 1.5 and CR = 0.3 with a number of 2000 iterations. For the

three neurons, the model parameters obtained from the automated decision-making process

described in the previous section are displayed in S2 Table.

Generalization capability of models. For each neuron under study, it can be observed in

Fig 6A that the curves of the models fit well with experimental data in all series of current

injections, including the test trace not used in any part of the model learning. The quality of

the fitting is maintained throughout the entire evolution of the membrane potential. Further-

more, the steady-state current shape (Fig 6B), which determines the underlying bifurcation

structure of non-spiking neurons, is captured for all neurons: a monotonic steady-state current

for the RIM and AIY neurons, and a N-shape one for AFD. In this way, we constrain the RIM

and AIY models to a near-linear behavior, and the AFD neuron to a bistable one, even in

Fig 5. Results of single-objective optimization (evolution of AIY membrane potential). (A) Experimental voltages for stimuli starting from -15pA

and increasing to 35pA by 5pA increments are represented in green. Estimated voltages resulting from the ICa,t + IKir + IK,p + IL-model for stimuli going

from −15pA to 25pA are represented in dark blue, whereas those relative to 30pA and 35pA are represented in light blue. (B) Experimental steady-state

currents (represented by green circles) and estimated steady-state currents (represented by blue crosses) resulting from the fitting of membrane

potential evolution in (A). Red lines delineate the interval [-15pA;25pA].

https://doi.org/10.1371/journal.pone.0268380.g005
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response to novel different stimuli not used during the model’s building. In the light of these

results, it can be concluded that the proposed approach allows to get models with good gener-

alization capabilities.

The steady-state current objective requires a relatively small deterioration to get models

with predictive capabilities. Both objectives cannot be simultaneously optimized due to

their conflicting nature. On the one hand, the steady-state curve for each neuron is obtained

from the average of several different cells, while the membrane potentials are representative

recordings from a single cell without averaging. On the other hand, the steady-state current

and the voltage data are obtained from different experimental procedures with their own

intrinsic and extrinsic sources of experimental noise [42–45]. Therefore, obtaining a perfect

fitting of both objectives simultaneously is not feasible. Furthermore, the relative deterioration

of the fitting for high steady-state currents in Fig 6B is correlated with higher values of the

standard deviation at this level. Actually, these deteriorations are necessary to obtain models

able to characterize voltage behavior. Indeed, as shown in Fig 7, a model that perfectly fits the

steady-state current (Fig 7A) does not accurately reproduce the given voltage traces and fails to

get the predictive capability (Fig 7B).

Fig 6. Results of multi-objective optimization for the RIM, AIY and AFD neurons. (A) Green traces represent the experimental membrane potential

evolution for a series of current injections, in spans of 5 seconds, starting from -15pA and increasing to 25pA by 5pA increments. The light blue traces

represent the validation and test set (i.e. traces relative to 30pA and 35pA). The dark blue traces represent the respective model for each neuron. (B)

Experimental steady-state currents (represented by green circles) and estimated steady-state currents (represented by blue crosses) resulting from the

multi-objectif optimization.

https://doi.org/10.1371/journal.pone.0268380.g006
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Discussion

Some experimental techniques, such as ionic conductance measurements [19], are generally

hard to perform. In the case of C. elegans, this difficulty is even higher due to the challenge of

dissecting a one-millimeter long worm and then patching its small size neurons (1μm in the

soma) [46]. The consequence is that obtaining detailed biological microscopic data from C. ele-
gans neurons is a challenging task, and many neuronal parameters of C. elegans remain

unknown to this day. In this paper, parameters are set to their biological values whenever they

are known but, for the most part, they are simply bound to remain biologically plausible.

Therefore, the optimization conducted in this paper aims to determine biologically plausible

parameterizations that, formulated as hypotheses, would require future empirical validations.

Despite the lack of such microscopic data, the macroscopic behavior of the model is equivalent

to that of the neuron. Indeed, the methodology proposed in this paper, based on theoretical

mathematical development and experimental validation, provides a systematic approach to

endow the model with the same bifurcation structure as the neuron. As a consequence, and

paraphrasing Eugene M. Izhikevich [22], “we can be sure that the behavior of the model is

equivalent to that of the neuron, even if we omitted a current or guessed some of the

Fig 7. Solutions obtained from multi-objective optimization with perfect fitting of the steady-state current. (A) Experimental steady-state currents

(represented by green circles) and estimated steady-state currents (represented by blue crosses). (B) Green (resp. blue) traces represent the experimental

(resp. estimated) membrane potential evolution for a series of current injections, in spans of 5 seconds, starting from -15pA and increasing to 35pA by

5pA increments. Solutions with a perfect fitting of the steady-state current fail to describe the behavior voltage of neurons, showing that its deterioration

is necessary to get adequate models.

https://doi.org/10.1371/journal.pone.0268380.g007
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parameters incorrectly”. In this section, we discuss both the biological and modeling implica-

tions of this methodology.

On the modeling of non-spiking neurons in general

In this paper, our proposed approach was applied on various non-spiking C. elegans neurons,

representative of the behavior of known types of non-spiking neurons (near-linear and bis-

table). Such neurons are not specific to C. elegans so that the proposed method could be

straightforwardly applied to other non-spiking neuronal cell types. As stated in the introduc-

tion, this type of neurons are ubiquitous in a large variety of nervous tissues in both vertebrate

and invertebrate species, e.g. in the human retina neurons [3], numerous interneurons in

insects and crustaceans [4], the motorneurons of the Ascaris worm [5, 6], or most of the C. ele-
gans neurons [7]. They have been found in sensorimotor and central pattern generator cir-

cuits, proven to be central in neuronal integration [4] and to provide a determining

mechanism for the control of motor behavior [8–10].

On the modeling of the C. elegans’ neuronal diversity

Numerous recordings of C. elegans’ neuronal activity have already been performed [7, 23, 47–

55]. Liu et al. [23] classify the recorded neurons into four large distinct classes based on the fea-

tures of the I-V curve (Fig 1). This classification is described in detail in Table 4. Among the

different classes, the authors enumerate three types of non-spiking neurons, of which RIM,

AIY and AFD are representative examples, and a fourth type involving the spiking neuron

AWA. However, the electrophysiological properties of many C. elegans neurons are unknown

yet, suggesting that additional types of neurons could be discovered in the future. The results

presented in this paper show that the proposed method is capable of capturing the behavior of

the current non-spiking neuronal diversity of C. elegans, and could be successfully applied to

model new non-spiking neurons.

On the modeling of the C. elegans’ nervous system

Due to its fully mapped connectome and its small number of neurons, the C. elegans nervous

system serves to investigate how behavior emerges from its underlying physiological processes

[56–58]. Modeling the nervous system of C. elegans involves two fundamental stages [59]: one

relative to the modeling of the neuronal connectivity (connectome) and the other relative to

the modeling of the neuronal dynamics. Nowadays, the vast majority of modeling works on C.
elegans nervous system employ the well-established connectome but they do not take into

account the specificities of the neuronal dynamics [59–69]. Typically, these works rather

Table 4. Classification of the three types of non-spiking neurons in C. elegans, according to their current-voltage relationships. RIM, AIY and AFD neurons are repre-

sentatives of class 1, 2 and 3 respectively.

Neuron classes Class 1 Class 2 Class 3

Inward current

features

Near-zero inward currents under hyperpolarizations. Near-zero inward currents under

hyperpolarizations.

Large sustained inwardly currents under

hyperpolarizations.

Outward current

features

Rapid inactivating outward currents under depolarizations:

lack of large sustained currents.

Non-inactivating outward currents

under depolarizations.

Large inactivating outward currents

under depolarizations.

Neurons RIM [23]

AVA [50, 51, 54]

PLM [47]

AVE [51]

AIY [23, 48]

VA5 [53, 54]

VB6 [53, 54]

AFD [23, 49]

ASER [7]

RMD [50]

AWC [49]

ASH [52]

AIA [55]

https://doi.org/10.1371/journal.pone.0268380.t004
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consider: (i) homogeneous model parameters for each neuron of the network (while C. elegans
neurons display a large repertoire of behaviors), and (ii) a neuron model that do not corre-

spond to the behavior of C. elegans neurons. The discordance between the accuracy of the con-

nectome and the inaccuracy of the neuronal dynamics considered is explained by the lack of

biophysical information for most neurons, making the building of conductance-based model

adapted to C. elegans’ neuronal dynamics currently challenging [57]. As pointed out by Sarma

et al. [57], building such neuron models is a key remaining component to make C. elegans ner-

vous system modeling studies adequate for biological research.

In particular, we would like to emphasize an open problem where computational works

could play an important role in order to fully understand the flow of information within the

nematode’s nervous system [70]. If one wants to deepen further our understanding of the C.
elegans nervous system, it is of paramount importance to gather information about the fea-

tures of its synaptic connections, such as their intrinsic nature (excitatory or inhibitory) and

their strength [70]. Actually, the connectome does not unveil such information [71]. To

address that issue, some computational studies [60, 62, 64, 66–68] adopt an evolutionary

approach in which the algorithm determines both the strength and nature of connections in

order to obtain observable, realistic worm behavior. In such studies, the functional circuits

studied are made up of identical neuron model parameters irrelevant to characterize the het-

erogeneity of C. elegans neurons and to represent acceptably their behavior (e.g. the homoge-

neous Izhikevich spiking model [72] is considered in [64, 66], or the Hindmarsh-Rose

spiking model in [68]). Therefore, even if the macroscopic behavior of C. elegans is accu-

rately reproduced, the results on the strength and nature of neuron connections may not be

biologically adequate. We argue that the current paper provides a systematic approach and

method to build conductance-based models capturing the dynamics of non-spiking C. ele-
gans’ neurons, so that the second stage relative to the C. elegans neuronal dynamics modeling

can be fulfilled.

On the multicompartmental conductance-based modeling

It is worth noting that characterizing a neuron as “spiking” or “non-spking” is only relative to

the site of recording. The fact that a neuron is spiking in one part of its anatomy does not

exclude that it may have non-spiking activity in other parts. For example, even in spiking neu-

rons, the integrative life of the cell is predominantly performed through graded electrical activ-

ity via the dendrites [4, 73]. The complex geometry of the dendritic tree, combined with its

active and passive membrane properties, play a key role in the way neurons integrate synaptic

inputs. Therefore, dendrites strongly influence both the timing and probability of neuronal

output [74, 75]. In order to take into account the heterogeneity of the dendritic morphology as

well as the different electrical characteristics between the regions (a.k.a. compartments) of the

neuron, numerous modeling studies [76–78] use multicompartmental conductance-based

models, which allow to develop more realistic and morphologically accurate models. More

specifically, in such a multicompartmental description, the structure of a neuron is divided

into separate compartments such as the dendritic tree, soma, axon, and axon terminal. Each of

these compartments have their own membrane potential and gating variables that determine

the membrane current within the compartment. The dynamics for the membrane potential of

each compartment follow an equation of the form (1) as the one in this paper, and the com-

partments are coupled via conductances that depend on the relative sizes of dendritic and

somatic compartments [17]. In this context, the parameters of the CBMs composing the differ-

ent compartments of the neuron could be straightforwardly estimated following the methodol-

ogy presented in this paper, provided that multicompartmental data are available.
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