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n controls the phase equilibrium
in fusogenic liposomes

Laura Maria Schmitt,a Georg Dreissen,a Rejhana Kolasinac,a Agnes Csiszára

and Rudolf Merkel *b

Fusogenic liposomes have been widely used for molecule delivery to cell membranes and cell interior.

However, their physicochemical state is still little understood. We tested mechanical material behavior by

micropipette aspiration of giant vesicles from fusogenic lipid mixtures and found that the membranes of

these vesicles are fluid and under high mechanical tension even before aspiration. Based on this result,

we developed a theoretical framework to determine the area expansion modulus and membrane tension

of such pre-tensed vesicles from aspiration experiments. Surprisingly high membrane tension of 2.1 mN

m�1 and very low area expansion modulus of 63 mN m�1 were found. We interpret these peculiar

material properties as the result of a mechanically driven phase transition between the usual lamellar

phase and an, as of now, not finally determined three dimensional phase of the lipid mixture. The free

enthalpy of transition between these phases is very low, i.e. on the order of the thermal energy.
1 Introduction

Liposomes with extraordinarily high fusion potential were
described rst by Csiszár et al. ten years ago.1 They are formed
by a 1 : 1 mixture of a cationic lipid and a neutral phospholipid
and the addition of a few percent of an aromatic compound.1,2

Owing to their unique ability to rapidly fuse with cell
membranes they have been widely used for the delivery of
molecules to cells.3–5 However, their physicochemical properties
remain largely unexplored. In a rst attempt to clarify the
structure of these unique lipid particles Kolasinac et al. used
small angle neutron scattering.6 They report coexistence of
a usual lamellar phase (i.e. a bilayer) with ellipsoidal inclusions
of a size of about 20 nm and unknown inner structure whereas
themembranes of usual phospholipid bilayers are exclusively in
the lamellar phase.6 Due to this distinction in structure,
unusual physicochemical properties of fusogenic liposomes are
expected.

Seminal experiments on basic physicochemical properties
and processes of ordinary lipid membranes have been per-
formed on Giant Unilamellar Vesicles (GUVs).7–10 These micron-
sized structures are closed shells formed by single lipid bilayers.
Their surface area is mostly determined by the number of lipid
molecules within the membrane. Such GUVs can be conve-
niently studied by light microscopy and micromanipulation. An
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overview of the present state of this dynamic research eld can
be found in the book by Dimova and Marques.11

Here, we focus on mechanical material parameters. For
a graceful and enlightening review by a pioneer of the eld see.12

Because the thickness of biomembranes is negligible compared to
the overall size of vesicles, their mechanics is best described by
membrane theory where mechanical stress (units force per area) is
replaced by membrane tension, s, (units force per length) and the
usual linear elastic constants (Young'smodulus and Poison's ratio)
by bending rigidity, kc, and area expansion modulus, kA. As the
bilayers of cell membranes are in the uid phase, they exhibit no
rigidity against in plane shear. We will show evidence that the
same holds also for fusogenic liposomes.

Typical phospholipid membranes in the uid phase exhibit
area expansion moduli of about 250 mN m�1 and bending rigid-
ities in the range from 10 kBT to 40 kBT.10,12–14 Because water readily
permeates biomembranes while hydrophilic solutes are retained,
the volume of GUVs is determined by the osmotic pressure
difference between the enclosed medium and the external
medium which balances against the Laplace pressure caused by
mechanical tension of the curved membrane shell. Thus, volume
can be regulated by changing the osmolarity of the external
medium. Upon osmotic deation, membrane tension is reduced
to extremely low values of some few mN m�1. As a consequence,
vesicle shapes undergo thermally driven uctuations, oen
described as ickering.7,10,15,16 Alternatively, ickering is induced by
even modestly increased temperature due to the high thermal
expansivity of lipid bilayers.17,18 When such accid GUVs are
aspirated by a micropipette, their fractional area expansion can be
reliably determined as a function of the acting membrane
tension.8,14,19 In the low tension regime, thermally driven
© 2022 The Author(s). Published by the Royal Society of Chemistry
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uctuations are progressively suppressed or attened out by
tension whereas in the high tension regime the membrane area
proper, that is the distance between individual lipid molecules, is
increased. Therefore the bending rigidity is determined from the
low tension regime of the aspiration curve and the area expansion
modulus from the high tension regime. This approach was pio-
neered by the group of Evan Evans.8,12,14 Later work pointed out
complications that arose due to the different possibilities to dene
the seemingly simple quantity “membrane tension”.20 Neverthe-
less, in-depth theoretical analyses validated the original
approach.21,22 With respect to our results, it is noteworthy that
initial aspiration of vesicles required extremely low suction pres-
sures in all these experiments.

The present work focuses on the mechanical properties of
large, unilamellar vesicles from a fusogenic lipid mixture, also
called FL-GUVs. Even though the membrane of FL-GUVs is
uid, there are marked differences to usual GUVs with uid
membranes. On one hand, the nanosized inclusions observed
by Kolasinac et al.6 point at the coexistence of two different
thermodynamic phases. On the other hand, we will show indi-
cations for signicant membrane tension even aer osmotic or
thermal “deation”. This unusual property necessitated to
adapt the well-established frame work for the determination of
membrane mechanical properties by micropipette aspiration.

Starting from experimental observations and the hypothesis
that the number of osmotically active molecules within a given
FL-GUV is constant, we analyze area expansion and volume
change of a FL-GUV aspirated by a micropipette and derive
equations to determine area expansion modulus as well as
tension of the free vesicle. Along the way, we justify the choice of
linear elastic area expansion as material law. Analyzing experi-
mental results, we nd unusually small area expansion moduli
and surprisingly high tension which we interpret as the result of
a mechanically driven phase transition.

2 Materials and Methods
2.1 Chemicals

Lipids 1,2-dioleoyl-3-trimethylammonium-propane (chloride
salt) (DOTAP), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
(DOPE), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-
[methoxy(polyethylene glycol)-350] (DOPE-PEG350), 1,2-dio-
leoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly-
ethylene glycol)-2000] (DOPE-PEG2000), 1,2-dioleoyl-sn-glycero-
3-phosphoethanol-amine-N-[(dipyrrometheneboron diuoride)
butanoyl] (TF-DOPE), 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC) were purchased from Avanti Polar Lipids, Inc.
(Alabaster, AL, USA). Avidin (from egg white) and bovine serum
albumin (fraction V) for coating were purchased from Merck
KGaA (Darmstadt, Germany). Sucrose and glucose were ob-
tained from Carl Roth (Karlsruhe, Germany). N-2-Hydrox-
yethylpiperazine-N-2 ethane sulfonic acid (HEPES) was bought
at VWR (Darmstadt, Germany). All chemicals were used without
further purication. Ultra pure water was produced by ion
exchange (Milli-Q Gradient A10, Merck Millipore, Darmstadt,
Germany).
© 2022 The Author(s). Published by the Royal Society of Chemistry
2.2 Vesicle preparation

For the preparation of FL-GUVs DOTAP, DOPE, and TF-DOPE
were dissolved in chloroform (Merck Millipore, Darmstadt,
Germany) at a concentration of 10 mg mL�1 and mixed at
a mass ratio 1 : 1 : 0.1 (m m�1). Lipid solution (15 mL) was
deposited on indium tin oxide (ITO) coated glass slides. Elec-
troswelling was performed at 2.5 �C as follows. The dried plates
(15 min under vacuum) were mounted in a Teon chamber
containing 2 mL of 150 mM sucrose solution. The distance
between the plates was 1 mm. Vesicles were swollen applying an
alternating electric voltage of 2.1 V (peak to peak) at 800 Hz for
3 h and kept at 4 �C until the measurement.

For some control experiments 1.25% (per mass of total lipid)
of DOPE-PEG were added to the lipid mix. GUVs were prepared
as described before besides that drying of was performed over
night. GUVs from DOPC stained with 1% (m m�1) TF-DOPE
were produced by electroswelling at 1.5 V, 10 Hz, and room
temperature. All other parameters were kept identical.

Small unilamellar vesicles for differential scanning calo-
rimetry (DSC) were prepared by the hydration method. Lipids
dissolved in chloroform were mixed at the desired ratio and
disposed in glass vials. Solvent was removed by drying under
reduced pressure (30 min). For FL the dry lipid lm was
hydrated by 300 mM sucrose in water; for DPPC 20 mM HEPES
was used instead. Aer 15 min the solution was vortexed. Final
lipid concentration was 10 mg mL�1.
2.3 Differential scanning calorimetry

Samples were lled in dedicated vials from Hastelloy and
inserted into a multi-cell differential scanning calorimeter (MC-
DSC, TA instruments, New Castle, DE, USA). Thermograms were
recorded at a heating rate of 1 �C min�1 and corrected against
a baseline measured on an identical, solvent-lled vial.
Enthalpy and entropy of transition were determined by the
manufacturer's soware (NanoAnalyze 3.4.0).
2.4 Fluctuation analysis

Giant unilamellar vesicles were prepared as described above and
dispensed into a measurement chamber from acrylic glass lled
with 150mM glucose solution. A cover glass, passivated for 10min
with a 1mgmL�1 solution of either avidin (for FL-GUVs) or bovine
serum albumin (for GUVs from DOPC), formed the chamber
bottom. Giant unilamellar vesicles were imaged by a confocal
uorescence microscope (LSM 710, Carl Zeiss microimaging, Jena,
Germany) equipped with an EC PlanNeouar 40/1.3 oil Ph3 lens
(Zeiss). Excitation was 488 nm, emission was detected in the range
from 490 nm to 539 nm. Image sequences were captured with
focus on the equatorial plane (50–150 frames, total length 12 s to
44 s, pinhole 1 Airy unit). Measurements were done aer heating to
37 �C in the microscope incubator (type XL, Zeiss).

Fluctuation amplitudes were characterized by the following
routine implemented in Python (version 3.8). Each frame was
rst smoothed by a Gaussian kernel (width 3 pixel; pixel size
90 nm throughout). In the central step, the watershed algorithm
(as implemented in the community-maintained image
RSC Adv., 2022, 12, 24114–24129 | 24115
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processing toolbox scikit-image version 0.19.0. dev0) was used
on the gray scale image to separate inner and outer area. This
algorithm needs one starting point for ooding in each of the
nal areas. For the outer area the upper le corner of the image
was selected. For the inner area the smoothed image was
intensity segmented (mean intensity as threshold) and the
center of gravity of the resulting mask area was used as starting
point. The resulting border line between inner and outer area
was used as vesicle contour. For each frame, the distance of
each point to the center of gravity of this contour was calculated
and divided by the average distance. The variance of these
normalized distances was determined for each time step and
averaged over the whole image series.
2.5 Fluorescence recovery aer photobleaching (FRAP)

Preparation for FRAP measurements was identical as for uc-
tuation analysis. The only exception was that 100 mL phosphate
buffered saline (PBS, diluted with water to an osmolality of 150
mOsm kg�1) was added to the 1.5 mL glucose solution that
lled the measurement chamber to promote weak adhesion of
FL-GUVs to the avidin-covered glass. The same confocal laser
scanning microscope was used equipped with a C-Apochromat
40�/1.2 W lens (Zeiss). Fluorescence was detected from 495 to
599 nm, detection pinhole 1 Airy unit. Excitation (1% laser
power) and bleaching (100% laser power) were done with the
built in argon ion laser (488 nm). Round regions at the bottom
(radius r ¼ 1.2 mm) were bleached and the average intensity in
these regions recorded over time (10 points before bleaching, 40
aerwards, time increment 39.3 ms). Intensities were normal-
ized by division with the average pre-bleach intensity. Diffusion
constants were determined as proposed by Soumpasis.23 The
time point of half-recovery, t1/2, was determined using linear
interpolation between the neighboring measurement points
and the diffusion constant, D, calculated via

D ¼ 0.224r2/t1/2 (1)
Fig. 1 Thermogram of fusogenic liposomes measured with differen-
tial scanning calorimetry (full line). For comparison to usual lipids DPPC
in 20 mM HEPES is shown as well (dashed line).
2.6 Micropipette aspiration technique

Micropipettes were pulled from borosilicate glass capillaries
(outer diameter 1 mm, inner diameter 0.5 mm; Hilgenberg,
Malsfeld, Germany) using a pipette puller (model P-97, Sutter
Instruments, Novato, CA, USA) and opened on a microforge
where they were rst inserted into a molten drop of glass solder
and aer cooling retracted whereupon the originally needle-
shaped raw pipettes broke open into a cylindrical shape. For
passivation the micropipette was lled with avidin solution
(1 mg mL�1 for 10 min) using a hollow quartz capillary (Microl
MF28G, World Precision Instruments, Sarasota, FL, USA). In the
next step, the micropipette was mounted in a three-axis
micromanipulator (Narishige Scientic Instrument Lab,
Tokyo, Japan) connected to a light microscope (Axiovert 200,
Carl Zeiss Microimaging, Jena, Germany) equipped with a long
distance lens (LD-Achroplan 40/0.6 korr, Carl Zeiss) and
a metal-halide light source (X-cite 120, EXFO, Mississauga,
Ontario, Canada). The micropipette was hydraulically
24116 | RSC Adv., 2022, 12, 24114–24129
connected to a height-adjustable water-reservoir for control of
the aspiration pressure.24 The measurement chamber was from
acrylic glass with cover slips on top and bottom. One side was
open for micropipette access. The bottom cover slip was
passivated with avidin (1 mg mL�1 for 10 min) and the chamber
lled with 150 mM glucose solution. A small amount of vesicle
solution was added and allowed to sediment for 10 min. Vesicle
aspiration was observed with uorescence microscopy (lter set
13, Carl Zeiss; CCD-camera sensicam qe, PCO, Kehlheim, Ger-
many). Neutral aspiration pressure was found by observing
vesicle motion during height adjustment of the reservoir. All
geometric parameters were measured interactively using Fiji.25
2.7 Further soware

Symbolic calculation and numerical evaluation of expressions
was done with Maple (version 2020.2, Mapleso, Waterloo
Maple Inc., Waterloo, Ontario, Canada). Curve tting was done
with Maple, Igor Pro (Igor Pro 8, version 8.0.4.2, Wavemetrics,
Lake Oswego, Oregon, USA) or Origin (2019 pro, version 9.60;
Originlab Corp. Northampton, MA).
3 Results and discussion
3.1 Thermal analysis

Fusogenic giant unilamellar vesicles (FL-GUVs) were success-
fully prepared in the cold and remained stable upon gentle
warming up to room temperature. Because FL-GUVs could not
be produced at room temperature or above, we expected the
existence of a phase transition below room temperature.
Therefore we used differential scanning calorimetry to search
for transitions accompanied by changes in heat capacity, cf.
Fig. 1. However, no clearly discernible transitions were found.
For comparison we also measured DPPC in a weak buffer
(20 mM HEPES) because the thermodynamics of this system is
rmly established. These samples showed a pretransition at
35.5 �C (transition enthalpy 3.9 kJ mol�1, entropy
0.012 kJ mol�1 K�1) and a main transition at 41.5 �C (transition
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 Analysis of membrane fluidity. Time courses of fluorescence
recovery after photobleaching measurements on 14 different vesicles
are overlayed. Diffusion constant was on average 1.5 mm2 s�1 (standard
deviation 0.17 mm2 s�1). For details of measurement and analysis see
Materials and methods.

Paper RSC Advances
enthalpy 31.8 kJ mol�1, entropy 0.101 kJ mol�1 K�1), that is,
a thermal behavior in full agreement with literature.26
3.2 Membrane uidity and undulations

Membrane uidity of FL-GUVs was tested by FRAP. Measure-
ments on 14 different vesicles gave very similar results with fast
and almost complete recovery. The diffusion constant amoun-
ted to 1.5 mm2 s�1 (standard deviation 0.17 mm2 s�1), cf. Fig. 2.
Because of the modest size of FL-GUVs (radius of about 5 mm),
only a small spot (radius 1.2 mm) could be bleached. Under
these conditions FRAP measurements are inuenced by the
nite resolution of the light microscope. Thus the true value
might differ by some 20%, but the rapid diffusion and the high
level of recovery clearly indicate a uid state of the membrane.
Fig. 3 Analysis of membrane fluctuations. (A and B) Fluorescence mic
contours (red lines). (C) Radii were normalized tomean radius of the vesic
function of the angle (black FL, blue DOPC). (D) Time course of varianc
measurements at 37 �C.

© 2022 The Author(s). Published by the Royal Society of Chemistry
In the light microscope FL-GUVs always appeared as
perfectly spherical objects. They frequently exhibited patches of
higher uorescence intensity but never showed any non-
spherical forms or dynamic shape uctuations. To quantify
this observation we prepared GUVs from FL and from DOPC,
respectively, and heated them to 37 �C. Shapes were recorded
over 50 to 150 frames and analyzed by the algorithm described
in Section 2. The variances of the normalized distances between
border and center were signicantly larger for DOPC vesicles
(average over eight GUVs 29 10�5) as compared to FL-GUVs
(average over ve GUVs 6.7 10�5), cf. Fig. 3. A closer inspec-
tion of FL-GUV results showed that the remaining variance was
not primarily caused by dynamic shape uctuations but mostly
by some bright inclusions that frequently occurred in FL-GUVs.
Even osmotic deation, which is a proven way to induce shape
transformations and pronounced shape uctuations for giant
unilamellar vesicles from ordinary lipids, did not induce any
visible shape uctuations in FL-GUVs.

3.3 Micropipette aspiration

Micropipette aspiration of FL-GUVs turned out to be possible,
albeit the pipette had to be changed aer each lysis of an
aspirated vesicle. A typical measurement is shown in Fig. 4.
Compared to the aspiration of normal GUVs, see Fig. 5,
remarkably high aspiration pressures were needed to form
a visible dome in the pipette, cf. the micrographs in Fig. 4. In all
experiments the aspirated length, h, as measured from the apex
of the aspirated dome to the mouth of the pipette, rst
increased little upon increasing aspiration pressure, DP, then
rose with a pronounced curvature and only entered a linear
regime upon the formation of a half-spherical cap connected to
a cylindrical membrane piece within the pipette. In contrast to
this, GUVs from DOPC displayed a cylindrical portion within
the pipette even at smallest aspiration pressures (see Fig. 5).
rographs show GUVs from FL (A) and DOPC (B) with superimposed
le (here, 5.7 mm for FL and 4.9 mm for DOPC, respectively) and plotted as
es of normalized radius (black FL, blue DOPC). (E) Results of repeated

RSC Adv., 2022, 12, 24114–24129 | 24117



Fig. 4 Exemplary result of micropipette aspiration. (A) Fluorescencemicrographs at indicated aspiration pressures. Scale bar applies to all. (B) h¼
h/RR. Dashed line indicates cross-over from Geometry 1 (aspirated membrane forms spherical cap, e.g. A 2.6 kPa) to Geometry 2 (a cylindrical
part exists in addition, e.g. A 4.9 kPa), i.e. h ¼ r or h ¼ RP. (C): 3 ¼ 1 � R0/RR, both as function of the aspiration pressure DP. Abbreviations: h
aspirated length, RR vesicle radius before aspiration which is the reference state, RP pipette radius, r ¼ RP/RR, R0 vesicle radius upon aspiration.
Here RR was 6.4 mm and RP 1.25 mm.

RSC Advances Paper
Moreover, the aspirated lengths rose fast at small pressures and
much less at higher pressures as is well documented for GUVs
from ordinary phospholipids.8,12,14

We never observed wrinkles, folds or non-spherical shapes in
any aspiration experiment on FL-GUVs. Such structures would
be typical for the large scale deformation of vesicles with stiff-
ness against in plane shear or, in other words, with rigid shells.
For micrographs of aspirated rigid vesicles see e.g. ref. 27. This
again supports our conclusion with regards to the absence of in
plane shear stiffness.

Overall, 31 measurements on FL-GUVs could be evaluated.
Despite our efforts to improve micropipette passivation, we
frequently observed irregularities like the hump between 1 kPa
and 2 kPa in the displayed example, Fig. 4B. These irregularities
were suppressed by addition of 1.25% PEG-DOPE to the lipid
mixture which conrmed insufficient passivation of the glass
pipette as source. Unfortunately, pegylated FL-GUVs were much
more fragile than normal FL-GUVs. Therefore all measurements
displayed here were performed on normal FL-GUVs.
Fig. 5 Aspiration of a GUV from DOPC. Top row, fluorescence
micrographs at indicated aspiration pressures. Scale bar applies to all.
Bottom, as before, h¼ h/RR. Here RR was 9.3 mm and RP 2.7 mm, i.e. r¼
0.29. Please note, even at the lowest aspiration pressure, 22 Pa,
exclusively Geometry 2 was realized.
3.4 Mechanical analysis of micropipette aspiration

As described in the previous section, FL-GUVs never showed any
indication of excess area like non-spherical shapes, form uc-
tuations or instabilities. Moreover, the slope at high pressures
was much lower than is usual for GUVs from normal lipids and
the curvature of the length versus pressure curve was opposite,
compare Fig. 4 and 5. For these reasons the standard analysis of
GUV aspiration that relies on tension-induced suppression of
shape uctuations and, at high aspiration pressures, extension
24118 | RSC Adv., 2022, 12, 24114–24129
of the membrane could not be used here and had to be
replaced.

From the above observations we concluded that the
membrane of FL-GUVs is always under signicant membrane
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 Sketch of the basic geometry of the membrane in all three states and definition of abbreviations. The reference state is a perfect sphere,
radius RR. Geometry 1 consists of two connected spherical caps, one outside the pipette, radius R0, and one inside, radius R1. Geometry 2 also
consists of two spherical caps but connected by a cylindrical element. The radius of the outer spherical cap is again denoted by R0; the inner
spherical cap and the connecting cylinder are of the same radius as the pipette, RP. In the aspirated states, h denotes the distance between the
mouth of the pipette and the apex of the aspirated spherical cap. In Geometry 2, h0 is the distance between the center of the outer spherical cap
and themouth of the pipette. Pressure inside the vesicle is denoted by Pin, outside of vesicle and pipette Pout, and inside the pipette PP. Note, Pin >
Pout > PP. Concentration of buffer in the outside medium and in the pipette is in all cases identical, cR, within the vesicle it amounts to cin with cin >
cR.
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tension, s. As will be shown later, membrane extensibility had to
be included. Rigidity against in plane shear can be excluded
because the membranes of FL-GUVs are in a uid state, cf.
Fig. 2. We also neglected membrane bending rigidity because
we never observed any smoothly curved shapes neither at the
mouth of the pipette nor in free vesicles upon increasing
osmolarity of the outside medium.

In the course of an aspiration experiment a given FL-GUV
assumes three distinctly different geometries, cf. Fig. 6. Before
the aspiration, the vesicle is perfectly spherical. In the
following, we call this state the “reference state”. Upon forma-
tion of a seal between membrane and pipette, the vesicle shape
consists of two spherical caps that are fused at the pipette
mouth. We call the radii of these two spherical caps R0 (outside
the pipette) and R1 (inside the pipette), respectively. In this
phase of aspiration only spherical shapes are compatible with
the above described assumption because membrane tension
and internal pressure are the only forces that act. Two different
radii form because the hydrostatic pressure difference across
the membrane differs between the aspirated part (R1) and the
free part (R0). This state of the aspirated vesicle is termed
“Geometry 1”.

With increasing suction pressure R1 decreases until a hemi-
spherical cap is formed. This hemisphere has the same radius
as the pipette, RP, and stays stable upon further aspiration.
Now, a cylindrical membrane piece is formed that connects the
hemispherical cap with the free part of the membrane. This
shape is called “Geometry 200 in the remainder. The shape of the
cylindrical membrane piece is stabilized by counterforces of the
pipette wall. Please note, in micropipette experiments on GUVs
from normal lipids in the uid phase excess area of the GUV is
caused by osmotic deation and the GUV immediately assumes
Geometry 2.

Please note that our classication of the geometry is just
a device to facilitate calculations. It is based on the boundary
conditions of membrane aspiration by a cylindrical pipette. No
sudden changes of membrane parameters or states are
involved.
© 2022 The Author(s). Published by the Royal Society of Chemistry
The mechanical analysis of FL-GUV aspiration relies on two
very likely assumptions. First, the number of osmotically active
particles enclosed remains constant and, second, membrane
area is increased by membrane tension. The rst assumption is
unavoidable because otherwise a given FL-GUV would shrink
under the inuence of its membrane tension and the internal
pressure generated by it. The observation that FL-GUVs are
stable for hours or even days proves this assumption. The
second assumption corresponds to standard linear elastic area
expansion which is the norm for bio- and model membranes.
However, as FL-GUVs are composed of a standard lamellar lipid
phase in coexistence with a three-dimensional lipid phase, they
are in a thermodynamic two phase state. Therefore, deforma-
tion at constant membrane tension is conceivable. Neverthe-
less, we will show later that this is not compatible with
observation.

In the end, each geometry contains two unknown variables
(R0 and R1 for Geometry 1 and R0 and h for Geometry 2). We can
solve for these two variables by an analysis of the forces acting
on the membrane. Micropipette suction results in an increased
mechanical membrane tension and, because the membrane is
curved, also increased internal pressure. The total surface area
of the membrane is then calculated assuming a linear relation
between membrane tension and area. Because water can easily
permeate biomembranes while hydrophilic solutes, here
glucose and succrose, are retained, the enclosed volume is set
by a balance of osmotic and hydrostatic pressures across the
membrane. In view of the high aspiration pressure needed here,
cf. Fig. 4, a noticeable increase of the osmolality of the inner
medium must be expected whereas this effect can be mostly
neglected for the aspiration of normal lipid bilayers, cf. Fig. 5.

Overall, area balance and volume balance yield two inde-
pendent equations and thus enable calculation of the aspiration
curve for known membrane tension in the reference state, sR,
and area expansionmodulus, kA. However, our task is a bit more
complicated because these two material parameters are not
known. We decided to base our method to determine kA and sR
on the aspiration pressure where Geometry 1 converts to
RSC Adv., 2022, 12, 24114–24129 | 24119



Fig. 7 Exemplary data analysis. A straight line (full line) was fitted to the
measured aspiration lengths, h (filled dots), in the range where they
exceeded the pipette radius, RP (dashed line). The pressure at which
this fitted line reached the pipette radius was taken as the cross-over
pressure DPL. In this example RP ¼ 1.25 mm, RR ¼ 6.4 mm, DPL ¼ 2.90

kPa, and
vh
vDP

¼ 2.28 mm kPa�1 which resulted in kA ¼ 53 mN m�1 and

sR ¼ 1.4 mN m�1.

Table 1 Measured material parameters, all in units mN m�1 sR
membrane tension before aspiration, kA area expansion modulus

sR
numerical

sR
eqn (26) kA numerical

kA eqn
(26)

Median 2.1 3.0 63 53
Average 2.3 3.1 64 56
SD 0.97 1.0 36 33
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Geometry 2 (DPL) and the slope of h versus DP in Geometry 2.
This choice was made because artifacts were less frequent at
higher suction pressures.

The calculation proceeds in several steps. In the beginning
we assume that all material parameters are known and rst
calculate the number of particles enclosed in the vesicle at the
reference state. Then we derive equations to connect membrane
tension and suction pressure and put up area and volume
balance which are mathematically expressed as root of the
difference between area (volume) as determined from geometry
and from forces and material laws. For volume balance osmotic
activity is included.

These calculations are easiest done in dimensionless vari-
ables. To this end we relate all lengths to the vesicle radius in
the reference state, area is normalized by the surface area of the
reference sphere, and volume to its value in the reference state.
Analytical approximations are derived for the aspiration pres-
sure where Geometry 1 converts to Geometry 2 and the deriva-
tive of dimensionless aspiration length with respect to
dimensionless pressure. In the nal step physical parameters
are reintroduced and the resulting equations solved for the
material constants sR and kA.

For the sake of readability the explicit calculations and
equations are presented in an appendix aer the discussion of
results.
Fig. 8 Measured material parameters. Each point represents one
vesicle. Shown are the results of the numerical evaluation (filled circles)
and of the analytical approximation, eqn (26) (open circles). Moreover,
for the numerically determined values medians are indicated by full
lines (kA 63 mN m�1, sR 2.1 mN m�1) and averages by dashed lines (kA
64 mN m�1, sR 2.3 mN m�1).
3.5 Mechanical properties of FL-GUVs

As mentioned before, membrane tension before aspiration, sR,
and area expansibility modulus, kA, were determined in
Geometry 2 (h > RP) from a line t of the aspirated lengths h as
function of the suction pressure DP. An example is shown in

Fig. 7. The slope of this tted line was taken as
vh
vDP

����
h¼RP

and the

suction pressure where the tted line assumed the value RP was
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taken as cross-over pressure DPL. Together with the osmolality
of the measurement buffer (150 mM kg�1), the measured
pipette (RP) and vesicle radius (RR), these formed the input data
for numerical determination of kA and sR for each vesicle. To
this end we solved area and volume balance by the “fsolve”
utility of Maple stabilized by entering the approximate values of
kA and sR, cf. eqn (26), as initial values for the algorithm. Here,

the series expansions of pL, eqn (24), and
vh

vp

����
p¼pL

, eqn (25),

including fourth order terms in r were used. For equations see
the Appendix 4.

In total 31 measurements were successfully evaluated. For kA
we obtained a median value of 63 mN m�1 and for sR 2.1 mN
m�1. For average and standard deviation see Table 1. The
individual results are presented together with the approximate
values (eqn (26)) in Fig. 8.
3.6 Uncertainty and error analysis

The analyses described in Sections 3.5, 4.1, and 4.1.1 are limited
by two different sources of error. On one hand, we made broad
use of approximations in the derivation of eqn (24) and (25) and,
on the other hand, measurement uncertainties cause a difficult
to estimate scatter in the resulting material parameters. We
analyzed the former by numerical solution of area and volume
balance in both geometries. For the latter, we simulated
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 9 Behavior of the important parameters as expected from theory. Parameters for this calculation were RR 5.32 mm, RP 1.59 mm, sR 2.1 mN
m�1, and kA 62.5 mNm�1. Full lines: osmolality of experiment (150 mM kg�1), dotted lines: limit of infinite osmolality (fixed volume), dashed lines:
low osmolality (15 mM kg�1). The gap at about 2.5 kPa originates from a numerical instability in Geometry 1 near the cross-over. Analysis of h
versus DP as before yields sR 2.13 mN m�1 and kA 60.7 mN m�1.
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measurement curves by adding noise to all parameters of the
measurements (all measured lengths, RR, RP, and h, as well as
lysis pressure) and analyzed these synthetic measurements just
as the real ones.

We calculated the “ideal” aspiration curve separately for
both geometries. As input we selected median material
parameters kA and sR and average geometrical parameters RR

(5.32 mm) and RP (1.59 mm). Moreover, the osmotic strength of
the measurement buffer of 150 mM kg�1 was used. In Geometry
2 we solved for each aspiration pressure the fully non-linear eqn
(16) and (19) (see Appendix) for 3 and h using Maple's fsolve
routine.

In Geometry 1, this straightforward approach turned out to
be numerically unstable. Therefore, we expanded the volume
balance, eqn (30), to rst order in 3 (around 3¼ 0) and solved the
resulting linear equation for 3. Then, we increased the param-
eter that describes the dimensionless radius of curvature of the
aspirated membrane piece, d (see Section 4.1.1), stepwise and
calculated to each preselected d the corresponding 3 in the
aforementioned rst order approximation. For each couple of
(3, d) aspiration pressure DP and aspirated length h were
calculated and stored. This algorithm converged rapidly for
small and moderate values of d but became unstable as soon as
the radius of curvature of the aspirated membrane section, R1,
approached the pipette radius. This is not surprising because
© 2022 The Author(s). Published by the Royal Society of Chemistry
here the arguments of the square root terms w1 and w2 in eqn
(29) and (30) approach zero, the value where the square root
function exhibits innite slope. Nevertheless, this instability
caused only the small gap in the synthetic data that is visible in
Fig. 9.

We analyzed these synthetic data with the same algorithms
used for measurements. As there, we tted a straight line to the
part of the synthetic data where h > RP, interpolated the pressure
DPL where h¼ RP and treated this and the tted slope just as any
other pair of measured values. For sR we obtained a value of 2.13
mNm�1 instead of 2.1 mNm�1 and for kA 60.7 mNm�1 instead
of 62.5 mNm�1. That is, sR was by 1% too large and kA by 3% too
small which is by far within the uncertainty of the experiment.

A possible source of systematic error in the calculation is the
use of van't Hoff's law for the osmotic pressure. This law holds
only for dilute, ideal solutions. If this is not the case, e.g.
because of very high concentrations, van't Hoff's law must be
replaced. However, for the solutions used in our experiments
the activity coefficients differ little from the value of an ideal
solution (1.0). We nd values of 1.05 for 150 mM sucrose and
1.02 for 150 mM glucose.28 Moreover, as can be seen in Fig. 9,
volume changes are most pronounced for very low concentra-
tions of the medium where van't Hoff's law is generally a very
good approximation. At higher concentrations volume changes
are so low that deviations from ideal behavior can be easily
RSC Adv., 2022, 12, 24114–24129 | 24121



Fig. 10 Simulatedmeasurements (open hexagons) andmeasured data
(filled circles). Parameters for this simulation were adjusted to exper-
iment RR 5.32 mm, RP 1.59 mm (averages of measured GUVs), sR 2.1 mN
m�1, kA 62.5 mN m�1, (median results, indicated by full lines) and an
osmolality of 150 mM kg�1. An exact curve was calculated for
Geometry 2 in steps of 330 Pa (the most frequent step size in exper-
iment). Gaussian noise with 200 nm standard deviation was added to
all geometrical parameters (RR, RP, and all aspiration lengths h(DP)).
Lysis pressures were drawn from a uniform distribution of values
between 3 kPa and 5.9 kPa (adapted to experiment). Analysis was done
exactly as for themeasured data. Only the numerical solution is shown.
This simulation resulted for sR in a median value of 1.83 mN m�1 and
for kA 68.7 mN m�1.
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accounted for by using the measured osmolality of the solution
instead of its molarity.

An obvious and familiar source of scatter in the results are
measurement uncertainties of the input data. To estimate the
impact of experimental noise on the results we simulated
measurements. Here, we rst calculated an ideal aspiration
curve, h(DP), and then added random numbers to each aspira-
tion length, h, and to the geometrical parameters, RR and RP. In
detail, for the material parameters, kA and sR, we used the
median measurement results and for the geometrical ones, RR

and RP, averages. Step width in pressure was selected to be 0.33
kPa, the most frequently used value in the experiments. The
exact equations, eqn (16) and (19) (see Section 4.1), were solved
for Geometry 2 just as described above. In the next step, we
calculated 256 synthetic data sets as follows. First, to model the
spread of lysis pressures, a random number was drawn from
a uniform probability density in the range from 3 kPa to 5.9 kPa
(adapted to experimental observations) and the ideal aspiration
curve cut off at this pressure. Second, a random number drawn
from a Gaussian distribution with standard deviation 0.2 mm
centered around zero was added to each remaining value of h.
Table 2 Material parameters from simulated experiments, numerical
solution, all in units mN m�1

sR kA

Median 1.8 69
Average 1.9 73
SD 0.67 18
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Third, random numbers (again normal distribution 0.2 mm
standard deviation centered around zero) were added to the
correct values of RP and RR. These “noisy” values were used in
the following. Fourth, the curve was again limited to aspiration
pressures where h > RP. In the last step, the remaining noisy
curve was analyzed for kA and sR exactly as any measured curve.
The results are displayed, together with the measured values, in
Fig. 10; numerical values are shown in Table 2.

In these simulations, a standard deviation of 0.2 mm was
used for all geometrical parameters, because diameters were
determined in uorescencemicroscopy with a lens of numerical
aperture of 0.6. Overall, these synthetic data result in a little bit
less scatter in the results than found in the measurements. This
is not surprising because the simulations could not model
experimental artifacts like vesicle adhesion to the pipette (cf. the
“hump” at about 1.5 kPa in Fig. 4B). Intriguingly, the results did
not scatter uniformly around the input values but deviated
systematically. The median value of kA turned out to be 10% too
large whereas themedian of sR was 13% too small. Moreover, we
noted a weak correlation of the values of sR with RP that was not
present for kA. It can be understood from eqn (26) and cautions
against the use of large pipettes.

From these simulations we concluded that our measurement
results are compatible with all FL-GUVs exhibiting the same
material parameters kA and sR. Moreover, we must accept the
possibility that our results are systematically shied with
respect to the true material parameters with kA being probably
about 10% smaller and sR about 10% larger.
3.7 Mechanically driven phase separation

From our micropipette aspiration experiments on FL-GUVs we
must conclude that these vesicles are under high tension of 2.1
mN m�1 even before aspiration and exhibit a surprisingly low
area expansion modulus of 63 mN m�1. Vesicles from ordinary
lipids, for example phosphatidylcholines, display area expan-
sion moduli that are at least twice as large, typical values are
even higher.8,19 Moreover, vesicles from normal lipids can be
osmotically deated. Aer this procedure, they exhibit only
minute membrane tensions in the range of some ten mN m�9.
This holds also for GUVs from positively charged lipids, as was
demonstrated convincingly by Seth and coworkers29 who used
micropipette aspiration to determine the mechanics of
membranes from the unsaturated double-tailed cationic
surfactant diethylesterdimethyl ammonium chloride (diC18 : 1
DEEDMAC). They found normal osmotic deation of these
cationic giant unilamellar vesicles and report a bending
modulus, kc, of 6–10 kBT and an area expansion modulus, kA, of
100 mN m�1.

In striking contrast, FL-GUVs are taut spherical structures
without any visible shape uctuations even aer a substantial
increase of the osmolarity of the outside buffer. Their
membrane tension before aspiration is at least hundredfold
higher than for ordinary lipid vesicles. These differences lead us
to the hypothesis that vesicles from fusogenic lipid mixtures
react to membrane tension by a different mechanism than
ordinary lipid bilayers.
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 11 Sketch of the proposed thermodynamic mechanism. The
membrane is composed of two coexisting phases, the standard bilayer
structure of biomembranes (2D) and a three-dimensional phase (3D)
of not yet determined structure. The gray overlay indicates this
uncertainty. Membrane tension acts identical on both phases.
However, for each molecule (different colors) the specific area
increase of the membrane per molecule added, a, is significantly larger
for the standard bilayer than for the three-dimensional phase or a2D
[ a3D.
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Further support for this hypothesis comes from small angle
neutron scattering6where a coexistence of ellipsoidal inclusions
of about 10 nm size with a bilayer phase was observed. There-
fore, the visible membrane of FL-GUVs is likely composed of two
different phases, one where the lipid forms the usual lamellar
phase and one where a 3D phase with high local curvatures is
formed. In thermodynamic equilibrium such a system exists in
a conformation that minimizes the overall free enthalpy, also
called Gibbs' free energy, G. If one molecule crosses the phase
boundary from the lamellar phase (henceforth indicated by the
index 2D) to the 3D phase (index 3D), the area occupied by each
phase will change. If these area changes are different in
magnitude, that is, if the total surface area of the GUV changes,
this, in turn, will result in mechanical work performed on the
system by the micropipette. Therefore, increasing membrane
tension will alter the phase equilibrium. In essence, we
hypothesize that the exceptional properties of FL-GUVs origi-
nate from a mechanically driven phase transition.

Throughout the whole aspiration process, the membrane is
in a two-phase region of the thermodynamic phase diagram.
Increased membrane tension moves the system a small
distance towards the lamellar phase but the border of the two-
phase region is never reached. This basic idea is also illus-
trated in Fig. 11.

A related effect was observed by Kwok and Evans in GUVs
from neat dimyristoylphosphatidylcholine (DMPC) for the
lipid's main phase transition.30 Upon heating through this
transition, membrane area increases by approximately 12% and
therefore elevated membrane tension shis the transition
temperature to lower values. Because this transition is con-
nected to a signicant heat, the shi is rather small.30

The observation that FL-GUVs can be only prepared at low
temperatures hints at a reversal of roles between lamellar and
3D phase at a certain temperature. At very low temperatures the
usual lamellar (2D) phase exhibits a lower Gibbs free energy
than the three dimensional phase whereas at room temperature
© 2022 The Author(s). Published by the Royal Society of Chemistry
this is the case for the three dimensional phase. Once a GUV is
formed from a fusogenic lipid mixture at low temperature and
heated towards room temperature, the three dimensional phase
grows at the expense of the lamellar phase. Because the specic
area increase per molecule is much lower in the three dimen-
sional phase than in the lamellar one, the surface area of the
GUV shrinks upon heating until this is stopped by the
mechanical surface tension of the membrane caused by the
osmotic pressure of the enclosed solutes. In this scenario FL-
GUVs at room temperature are metastable objects that can
only exist as long as their shell is under signicant mechanical
tension which also explains why FL-GUVs cannot be osmotically
deated.

Moreover, the observations that membrane tension could be
increased by aspiration and that FL-GUVs are stable in a whole
range of temperatures indicates that this thermodynamic two-
phase system exhibits at least two thermodynamic degrees of
freedom (tension and temperature). Therefore Gibbs phase rule
indicates that at least two different components must be
present.

For a more formal treatment we observe that the total
molecule number of each molecular species, nti, where i denotes
any of the three species (DOPE, DOTAP, and TF-DOPE), is
constant within a given vesicle. Nevertheless, each molecule can
distribute between both phases (2D and 3D), or

n2Di + n3Di ¼ nti c i ˛ {1, 2, 3} (2)

Here and in the following, molecular species are indicated by
subscripts and thermodynamic phases by superscripts. Molar
fractions, xPi , are given for each species i in phase P by

x2D
i ¼ n2DiP3

j¼1

n2Dj

; x3D
i ¼ n3DiP3

j¼1

n3Dj

: (3)

The chemical potential of molecular species i in phase P,
mPi , is given by

mP
i ¼ m

0;P
i þ kBT ln

�
xP
i

�� saPi (4)

where s denotes membrane tension, m0,Pi the reference chemical
potential of molecule i in phase P and aPi the specic area
increase of the membrane due to the addition of one molecule
of species i into phase P. The term�saPi arises from the fact that
the system receives mechanical work of this magnitude from
the pipette. In the reference state, that is before aspiration, this
work is delivered by the osmotic pressure of the enclosed
medium. Please note, eqn (4) implies the assumption that all
molecules in all phases form an ideal solution which is a far
reaching simplication.

In thermal equilibrium the chemical potential of a given
molecular species is identical in all phases, m2Di ¼ m3Di , from
which follows directly the tension dependent partition coeffi-
cient ai of molecules between the two phases:

ai ¼ x2D
i

x3D
i

¼ exp

�
� m

0;2D
i � m

0;3D
i

kBT
þ s

�
a2Di � a3Di

�
kBT

�
: (5)
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Fig. 12 A Maple code that will give explicit solutions for hfoa(p, a, b), pL, and
vh

vp

����
p¼pL

.
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The physical meaning of this equation is simple: increasing
membrane tension drives molecules into the phase where their
area is larger. This is counteracted by the specic free enthalpy
of transfer Dm0i ¼ m0,2Di � m0,3Di and the entropy of mixing.

Eqn (2), (3), and (5) combined yield an equation for the
overall molecular number ratio of the 2D phase to the 3D phase,
b

X3

i¼1

nti
ai � 1

1þ bai

¼ 0 with b ¼

P3
j¼1

n2Dj

P3
j¼1

ntj � n2Dj

: (6)

If the free enthalpies of transfer, Dm0i , and the change in
specic membrane area per molecule, a2Di � a3Di , were known
for each molecule, eqn (6) could be solved for the number ratio
of the phases b. Unfortunately, these six unknown quantities
cannot be retrieved from only two measured values kA and sR.
One could vary temperature or membrane composition to
obtain the necessary additional measurement points but the
results would be of dubious value because we assumed an ideal
mixture which is most likely an oversimplication. For
a rigorous treatment, one would need to determine the full
phase diagram. Unfortunately, the experimental effort to do so
is prohibitive.

Moreover, we have assumed a dened Gibbs free energy for
eachmolecule in the 3D phase, m0,3Di . However, the energetics of
the three dimensional phase must be size-dependent because
Kolasinac et al.6 report structures of a well-dened size. Because
our measurement technique cannot resolve sizes on the nano-
meter scale this effect was ignored here.

What we can learn from eqn (6) despite all limitations is that
at least one molecular species, say i, must prefer the lamellar
(2D) phase, ai > 1 and at least another one, say j, must prefer the
non-lamellar (3D) one, aj < 1. This results by simple arithmetic
from the fact that b is a positive number by denition.

From this we can estimate the order of magnitude of the free
enthalpies of transfer as follows. Because vesicles from fuso-
genic lipid mixtures, FL-GUVs, do not exist at small membrane
24124 | RSC Adv., 2022, 12, 24114–24129
tensions, a tension of sR is necessary to fulll the above
condition. Moreover, a normal lipid with unsaturated chains
occupies an area of about 0.7 nm2 in the lamellar phase.31 As
the lamellar phase is formed by a molecular bilayer, the
membrane area increases by half this value upon insertion of
one molecule. In all possible 3D phases, the visible membrane
consists of much more than two monolayers, therefore the area
increase upon addition of one molecule must be much less.
These considerations imply that the mechanical work delivered
by the micropipette upon insertion of one molecule in the
lamellar phase must approximately compensate the specic
free enthalpy of transfer for at least one species. Thus the free
enthalphy of transfer, Dm0, must be on the order of 2.1 mN m�1

� 0.35 nm2z 0.7� 10�21 J which corresponds to a mere h of
the thermal energy, kBT, at room temperature. This very low
value is further supported by our calorimetry experiments, cf.
Fig. 1, where no transitions could be observed.

Overall, we arrive at a scenario where transfer of molecules
between both phases is accompanied by extremely small free
energies and can therefore be strongly inuenced by mechan-
ical tension of the membrane.

A related mechanism for membrane soening has been
observed for lipid bilayers in aqueous solutions of bile acid by
Evans et al.,32 in solutions of oleic acid by Mally et al.,33 and for
lipid bilayers that contained lysolipid by Zhelev.34 These authors
used a similar tension dependent term in the chemical poten-
tial of the detergent (bile acid, oleic acid or lysolipid) in the
bilayer and calculated the partition coefficient between
membrane and solution. However, in those experiments the
aqueous solution of detergent served as innite reservoir of
molecules which resulted in a constant chemical potential of
the detergent set by its concentration. Thus these systems are at
constant chemical potential whereas in our case the overall
molecule number was xed which complicated the analysis
substantially. Nevertheless, close to the critical micelle
concentration Evans et al. report an elastic area expansion
modulus of almost the same small size as we observed here.32

We believe that this is not just a coincidence because the
molecular areas of bile acid and the lipids studied by us are
© 2022 The Author(s). Published by the Royal Society of Chemistry
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similar which results in the end in similar membrane area
increase upon tension increase.
4 Conclusions

In this work, we report that the membranes of fusogenic lipo-
somes exhibit highly unusual material behavior. They are under
permanent mechanical tension that cannot be removed without
destroying the liposomes. Moreover, they are remarkably so
against area expansion. We developed a framework for the
analysis of such material behavior with micropipette aspiration
that can be applied to all pretensed, large liposomes with uid
membranes. The material behavior is interpreted as the result
of a mechanically driven phase transition. Remarkably, the
lamellar phase, that is, the planar membrane, is metastable and
stabilized only by the presence of signicant mechanical
surface tension.
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Appendix—explicit calculations
Calculation of the number of particles within the vesicle

For putting up the volume balance we need to calculate the
number of osmotically active particles enclosed in the vesicle.
Even before aspiration, FL-GUVs are tensed. According to the
equation of Laplace, the pressure difference DP across the
membrane of a sphere of radius RR exhibiting a membrane
tension of sR amounts to DP ¼ 2sR/RR. This pressure difference
must be balanced by an equal difference in osmotic pressures of
the solutions DPosm. We use van't Hoff's law, Posm ¼ kBTc, where
kB is Boltzmann's constant, T the absolute temperature, and c
the number density of osmotically active particles, in our
experiments, sugar molecules. Van't Hoff's and Laplace's laws
together imply that the osmolality of the enclosed medium
must be higher than the one of the outer medium. For the sake
of simplicity, and in accord with our experiments, we assume
that all measurements are done in the same buffer with
a number density of osmotically active particles of cR and arrive
at the following expression for the number Ni of particles
enclosed in the vesicle:

Ni ¼ 4p

3
RR

3

�
cR þ 2sR

kBTRR

�
: (7)
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Calculations for Geometry 2

Because Geometry 2 is composed of simple geometrical shapes,
it is straightforward to calculate surface area, A, and enclosed
volume, V.

A ¼ 2pRP
2 + 2pRP(h � RP) + 2pR0(h0 + R0) (8)

V ¼ 2p

3
RP

3 þ pRP
2ðh� RPÞ þ p

6
ðh0 þ R0Þ

h
3RP

2 þ ðR0 þ h0Þ2
i

(9)

where h0 denotes the distance between the center of the outer
spherical part and the mouth of the pipette, cf. Fig. 6.

We use the following shorthand notation:

R0 ¼ ð1� 3ÞRR; r ¼ RP

RR

; h ¼ h

RR

; w1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3Þ2 � r2

q
:

(10)

Please note, with the normalization of all lengths to the
radius of the vesicle before aspiration, h and 3 are variables,
while r is just a xed parameter. Moreover, with this denition
3 � 1 (cf. Fig. 4). For the normalized area, FA,1 ¼ A/(4pRR

2), we
obtain

FA;1 ¼ 1

2

h
rhþ ð1� 3Þ2 þ ð1� 3Þw1

i
(11)

and for the normalized volume, FV,1 ¼ 3V/(4pRR
3),

FV ;1 ¼ �r3

4
þ 3r2h

4
þ r2w1

4
þ ð1� 3Þ3

2
þ ð1� 3Þ2w1

2
: (12)

In the next step, we have to calculate the forces acting on
membrane (tension) and inner medium (pressure). Membrane
tension, s, is set by the Laplace equation and the pressure
balance. For the hemispherical cap within the pipette this reads
2s/RP ¼ Pin � PP and for the spherical cap outside 2s/R0 ¼ Pin �
Pout. With the aspiration pressure, DP ¼ Pout � PP, this yields:

s ¼ DPRP

2

1� 3

1� 3� r
: (13)

This result has been used extensively in micropipette
aspiration.8,21,22

At this point, a material law is needed to set the area balance.
The simplest material law for a membrane in which two ther-
modynamic phases coexist would be constant membrane
tension. However, this assumption is contradicted by the
experimental observation of an almost constant radius of the
free part of the membrane, for an example see Fig. 4C. This can
be seen as follows. From eqn (13) we get R0 ¼ [1/RP � DP/(2s)]�1.
If s were xed, we would have to conclude from the observation
of an almost constant R0 that s [ DPRP/2. On the other hand,
measurements were typically done at r z 1/3 and 3 z 0.
Inserted into eqn (13) this gives s z DPRP3/4 which contradicts
the above conclusion s [ DPRP/2. Thus membrane tension
must vary during aspiration.
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We use the usual assumption of linear elasticity with an area
expansion modulus kA, sometimes also called area compress-
ibility modulus:

A� 4pRR
2 ¼ 4pRR

2 s� sR
kA

: (14)

This material law can be regarded as a linearization of
a more general material law around the reference state. Based
on this we can now give the area of the tensed vesicle, also
normalized by the area of the reference state

FA;2 ¼ 1þ RPDP

2kA

1� 3

1� 3� r
� sR

kA
(15)

and the area balance, FA,1 ¼ FA,2, simplies to nd the root of
a function FA of the two variables 3 and h.

FA ¼ FA;1 � FA;2 ¼ 0 (16)

For putting up the volume balance we need to consider
volume changes upon aspiration. To do so we follow the
approach of Evans and Waugh35 who considered water ow
through the membrane under the combined action of osmotic
pressure difference, DPosm, and hydrostatic pressure, DPhydro,
across the membrane. These are local pressures, both dened
outside minus inside. Following these authors, we assume
water ow to occur only at free parts of the membrane, that is at
the hemispherical cap within the pipette, area Ain, and at the
spherical cap outside, area Aout. Based on a linear mass ow, ṁ
¼ k(DPhydro � DPosm) a stationary condition is reached if the
water ux that enters the pipette through the hemispherical cap
is exactly balanced by the inux of water through the spherical
cap outside the pipette.

Ain(Pin � PP + kBTcR � kBTcin)

+ Aout(Pin � Pout + kBTcR � kBTcin) ¼ 0. (17)

In this equation we have used again van't Hoff's law for the
osmotic pressure. Again the hydrostatic pressure differences
can be replaced by 2s/R where R is the radius of curvature of the
respective membrane part. The resulting equation can be solved
for cin which together with Nin/V ¼ cin and eqn (7) yields the
volume of the tensed vesicle, again scaled by the volume of the
vesicle before aspiration

FV;2 ¼
kBTcR þ 2sR

RR

kBTcR þ DPr
1� 3

1� 3� r

rþ 1� 3þ w1

r2 þ ð1� 3Þð1� 3þ w1Þ
: (18)

The volume balance, FV,1 ¼ FV,2, can again be written as the
root of a function FV

FV ¼ FV,1 � FV,2 ¼ 0. (19)

Eqn (16) and (19) are two independent equations for the two
unknown variables 3 and h. These equations depend on
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a number of parameters, namely kA, RR, T, cR, DP, and sR that we
can combine into three dimensionless parameters p, a, and b.

p ¼ RRDP

kA
; a ¼ sR

kA
; b ¼ kA

RRkBTcR
: (20)

With these the area balance is given by

FA ¼ 1

2

h
rhþ ð1� 3Þ2 þ ð1� 3Þw1

i
�
�
1þ r

p

2

1� 3

1� 3� r
� a

�

¼ 0

(21)

and the volume balance by

FV ¼ �r3

4
þ 3r2h

4
þ r2w1

4
þ ð1� 3Þ3

2
þþð1� 3Þ2w1

2
� Fosm ¼ 0

(22)

with

Fosm ¼ 1þ 2ab

1þ pbrð1� 3Þ
1� 3� r

rþ 1� 3þ w1

r2 þ ð1� 3Þð1� 3þ w1Þ
: (23)

In cases where the osmotic correction to the volume can be
neglected Fosm ¼ 1.

From the measured material parameters (see Table 1 in
Section 3.5) and the osmolality used throughout (150 mM kg�1

or kBTcR ¼ 366 kPa), the relative area expansion in the reference
state, a ¼ sR/kA, takes a value of 0.033, the osmotic correction
factor, b ¼ kA/(RRkBTcR), amounts to 0.032, and the dimen-
sionless aspiration pressure, p ¼ RRDP/kA, was in all experi-
ments in the range between 0 and 0.51.

Because both, area balance, eqn (21), and volume balance,
eqn (22), are linear in h, one of these equations can be solved for
h, the result inserted into the other, and the resulting highly
non-linear equation in only one variable solved numerically.
However, this procedure requires numeric values for the
dimensionless parameters p, a, and b which we cannot give
because the material parameters kA and sR are exactly the
quantities to be determined. To obtain those values an explicit
expression for h as function of all other parameters is needed.
Unfortunately, we could not derive an exact and manageable
closed-form solution. Instead, we resorted to an approximation
that relies on the smallness of 3, see Fig. 4C. For convenience we
also used that the osmotic volume correction is small, i.e. b� 1.

In detail, we expanded area (eqn (21)) and volume balance
(eqn (22) and (23)) to rst order in 3 and b. Terms proportional
to b � 3 are of second order and were therefore neglected. Both
equations are linear in h and were solved for it. The intersection
of the resulting functions hA(3) and hV(3) was calculated. The
resulting 3 was inserted into the expression for h which was, for
simplicity, linearized again in 3. With these operations we
achieved an explicit expression for h as function of the param-
eters p, a, and b. We do not reproduce this function hfoa(p, a, b)
here because the expression is very long. If needed it can be
easily produced by a computer algebra system, see Fig. 12.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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At this point it was necessary to decide upon a scheme for
measurement analysis. Because experimental artifacts were less
frequent at higher suction pressures, we chose to base our
analysis scheme on the linear part of the measured aspiration
curve. As two parameters were unknown, we needed to calculate
two quantities that could be easily extracted from the measured
data and decided on the slope of the aspiration curve h(DP) and
the interpolated aspiration pressure at which h¼ RP. Translated
into our scaled variables, we had to calculate the scaled pressure
pL at which h(pL) ¼ r and the derivative of h with respect to p at
this scaled pressure.

The equation h(p) ¼ r is quadratic with two real solutions of
which only one is positive for realistic parameters. We selected
this one for pL and calculated also the derivative of h with
respect to p at this scaled pressure. Again, the resulting equa-
tions turned out to be too long for reproduction. A Maple code
to produce the full equations is shown in Fig. 12. Here, we give
the rst terms of a series expansion in r ¼ RP/RR.

pL ¼ 2a

r
� 2a

�
1þ 2

3
b

�
þ


1

2
� 2

3
b
h
ða� 2Þ2 � 3

i�
r

�


7

6
� b

9

h
6ða� 1Þ2 þ 5

i�
r2

þ1

3

�
19

8
� aþ b

6

�
3a2 � 2aþ 1

��
r3

�1

4

�
1

2
� a

2
� b

9

�
2a2 þ 41a� 41

��
r4 þ.

(24)

vh

vp

����
p¼pL

¼
�
1þ 4b

3

�
þ 2

3
½3þ bð5þ aÞ�r

þ
�
3þ a

2
þ 2b

3
ð7þ 5aÞ

�
r2

þ
�
4þ 2aþ b

6

�
37þ 48aþ 2a2

��
r3

þ
�
127

24
þ 5aþ a2

4
þ b

18

�
142þ 273aþ 39a2

��
r4 þ.

(25)

Typically r was about 1/3 and vesicle lysis occurred at aspi-
ration lengths of two to three times the pipette radius. To test
for linearity of the exact curve, we also calculated the slope of
h(p) at h ¼ 2r. We found that the leading term of a series
expansion of the slope at 2r minus the one at r, eqn (25), was
a mere�r4/2, i.e. of fourth order in r with an added term in r3�
b that is for reasonable values of b effectively of h or sixth
order in r. For this reason eqn (24) and (25) are of sufficient
accuracy for most purposes.

For analysis of experiments, we inserted the denitions of
the scaled parameters, eqn (20), into the series expansions in r

for pL, eqn (24), and the slope, eqn (25). The resulting equations
can be best solved numerically. Neglecting osmosis (b ¼ 0) the
following compact, yet rough, closed-form analytical approxi-
mation for sR and kA can be given from the rst terms of the
expansion in r
© 2022 The Author(s). Published by the Royal Society of Chemistry
sR z
RPDPL

2

1

1� RP=RR

kA z
RP

2
�
1þ 2RP=RR þ 3RP

2
�
RP

2
�

vh

vDP

����
h¼RP

:
(26)

here, DPL stands for the aspiration pressure DP at which the
aspiration length h reaches the pipette radius RP. This rough
approximation for sR has a simple physical interpretation: A
hemispherical cap is formed once the membrane tension in the
reference state is overcome.
Calculations for Geometry 1

This case turned out to be more cumbersome. On one hand, the
mathematical treatment was much more complicated and, on
the other hand, experiments were more prone to artifacts at
these much lower aspiration pressures. Therefore, we describe
the approach to this geometry in less detail.

For aspiration lengths below RP, the aspirated membrane
assumes a form of two spherical caps connected at the mouth of
the pipette, see Fig. 6. The radius of curvature of the membrane
part outside the pipette is called R0, the one inside R1. Because
the suction force of the pipette is in the end balanced against its
opening, the outer part must bulge beyond the edge of the
pipette or, in more mathematical terms, R0 > RP. Moreover, for
geometrical reasons R0 > R1 and R1 > RP. As in Geometry 2 we
scaled all lengths by the radius of the vesicle before aspiration,
RR, and introduce dimensionless variables. We keep the
abbreviations eqn (10) and add

R1 ¼ ð1� dÞR0 ¼ ð1� dÞð1� 3ÞRR;

w2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� dÞ2ð1� 3Þ2 � r2

q
:

(27)

Please note, whereas both dimensionless variables must be
positive, only 3 � 1 while d can almost reach 1 � r which in
typical experiments amounts to about 0.7.

From the law of Laplace applied to this geometry, we derive
the membrane tension

s ¼ RRDP

2

ð1� 3Þð1� dÞ
d

: (28)

As for Geometry 2, we derive functions for volume balance and
area balance from geometry and either the material law for area
expansion, eqn (14), or osmotically determined enclosed volume of
the tensed vesicle. For the osmotic volume correction (compare
eqn (18)) we assume that all membrane area is permeated by water
because the membrane is pressed against the glass pipette only
along a line at the mouth of the pipette, cf. Fig. 6.

From these considerations we obtain for the area balance:

fA ¼ 1

2

h
ð1� 3Þ2ð1� dÞ2 þ ð1� 3Þ2 þ ð1� 3Þw1 � ð1� 3Þð1� dÞw2

i

�1þ a� pð1� 3Þ 1� d

2d
:

(29)
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and for the volume balance

fV ¼ 1

2
ð1� 3Þ3ð1� dÞ3 � 1

4

h
2ð1� 3Þ2ð1� dÞ2 þ r2

i
w2

þ1

2
ð1� 3Þ3 þ 1

4

h
2ð1� 3Þ2 þ r2

i
w1 � fosm

fosm ¼ ð2abþ 1Þ½ð1� 3Þð1� dÞpþ 2ð1� aÞd�
pbð1� 3Þð1� dÞ½ð1� 3Þ þ w1 þ ð1� 3Þð1� dÞ � w2� þ/

/½pð1� 3Þð1� dÞ þ 2ð1� aÞd�
(30)

In these equations we use the dimensionless variables a, b,
and p as dened in eqn (20). As in the case of Geometry 2, the
two variables, here 3 and d, are found by solving the equations

fA ¼ 0
fV ¼ 0:

(31)

Unfortunately, both functions are nonlinear in 3 and d.
Therefore, we linearize both functions in 3 and still receive
complicated equations for all cases where d became sizable. At
very small suction pressure we derive the following
approximation

vh

vDP

����
DP¼0

z
RP

2

4sR
: (32)

Here, terms of order r4 or more were neglected. Unfortu-
nately, eqn (32) is of little practical use because the extremely
small aspiration lengths at very low suction pressures were
difficult to measure and experimental artifacts were especially
frequent at these ultra-low pressures. Please note that for small
aspiration pressures d fDP and therefore eqn (28) does not
diverge but will approach sR, the membrane tension in the
reference state before aspiration.
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