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Phylodynamic reconstructions rely on a measurable molecular footprint of epidemic processes in pathogen genomes. Identifying

the factors that govern the tempo and mode by which these processes leave a footprint in pathogen genomes represents an

important goal towards understanding infectious disease evolution. Discriminating between synonymous and non-synonymous

substitution rates is crucial for testing hypotheses about the sources of evolutionary rate variation. Here, we implement a codon

substitution model in a Bayesian statistical framework to estimate absolute rates of synonymous and non-synonymous substitu-

tion in unknown evolutionary histories. To demonstrate how this model can provide critical insights into pathogen evolutionary

dynamics, we adopt hierarchical phylogenetic modelling with fixed effects and apply it to two viral examples. Using within-host

HIV-1 data from patients with different host genetic background and different disease progression rates, we show that viral popu-

lations undergo faster absolute synonymous substitution rates in patients with faster disease progression, probably reflecting

faster replication rates.We also re-analyse rabies data from different bat species in the Americas to demonstrate that climate pre-

dicts absolute synonymous substitution rates, which can be attributed to climate-associated bat activity and viral transmission

dynamics. In conclusion, our model to estimate absolute rates of synonymous and non-synonymous substitution can provide a

powerful approach to investigate how host ecology can shape the tempo of pathogen evolution.

Keywords: Codon substitution model; Hierarchical phylogenetic modeling; Intrahost HIV; Bat Rabies; Bayesian inference;

Evolutionary rate variation.

Abbreviations: HPM, hierarchical phylogenetic model; CTMC, continuous-time Markov chain; MG94, codon substitution

model according to Muse & Gaut (1994); MCMC, Markov chain Monte Carlo; HPD, highest posterior density interval;

BF, Bayes factor.
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Data Summary

1. Supplementary BEAST XML files have been deposited in
figshare: 10.6084/m9.figshare.3385906

Introduction

A complex interplay of processes that impact the generation
and fixation of mutations in their genomes determines the
tempo and mode of pathogen evolution. For rapidly evolving

pathogens, including many RNA viruses, these processes can
leave a molecular footprint on relatively short timescales. In
fact, the central premise of phylodynamic inference is that the
timescale of epidemic spread is commensurate with the
evolutionary timescale of pathogens. This implies that rapidly
evolving pathogen populations demonstrate measurable
evolution and that time of sampling can be incorporated as a
source of calibration in molecular clock models. This has
proven extremely useful to reconstruct epidemic histories in
calendar time units (Pybus & Rambaut, 2009), but identifying
the factors that govern the speed of evolution is also of critical
importance because it can lead to a better understanding ofReceived 6 February 2016; Accepted 24 March 2016
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within-host evolution (Lemey et al., 2007), transmission
dynamics (Vrancken et al., 2014) and viral emergence
(Holmes, 2009).

Rates of evolution can vary dramatically among distantly
related pathogen populations, such as different viral families.
Both viral genomic features and ecological factors can explain
such differences (Streicker et al., 2012a; Hicks & Duffy, 2014).
Mutation rates are determined by genome architecture and
size (Belshaw et al., 2008) and the ability to recombine may
also contribute to high rates of evolution. Ecological factors
such as target cell, transmission mode and host range, by
contrast, can be responsible for heterogeneity in generation
times and/or selective pressure. For example, vector-borne
transmission of RNA viruses is associated with strong purify-
ing selection in surface structural genes (Woelk & Holmes,
2002). More recently, Hicks & Duffy (2014) have shown that
cell tropism, probably through its influence on virus genera-
tion time, predicts rates of mammalian RNA virus evolution.
These examples indicate the importance of discriminating
between synonymous and non-synonymous substitutions in
explaining the source of evolutionary rate variation.

Among closely related viruses, variation in evolutionary rates
may be more subtle, and hence more difficult to quantify
accurately, as well as more challenging to explain because
many of the factors mentioned above will be less variable at
this scale. Nevertheless, recent studies demonstrate the inter-
est in and the importance of assessing rate heterogeneity
within closely related viral populations. Through the analysis
of host-associated lineages of rabies virus in American bats,
Streicker et al. (2012a) provide evidence for host ecology
shaping the tempo of viral evolution, and at the within-host
evolutionary level, HIV-1 substitution rates have been associ-
ated with disease progression (Lemey et al., 2007; Edo-Matas
et al., 2011). Also in these cases, the explanations invoke
different contributions of neutral evolution and selective
dynamics. To quantify selective forces, much attention has
been devoted to estimating the ratio of non-synonymous and
synonymous rates. Indeed, natural selection operates most
strongly at the protein level, implying that synonymous and
non-synonymous mutations are fixed at very different rates
due to substantial differences in selective pressure (Yang,
2006). When the focus also includes variation in the rate at
which mutations are being generated, comparing changes in
absolute synonymous and non-synonymous substitution
rates can be more insightful. Although such an approach has
been proposed for fixed topologies (Seo et al., 2004), the
computational burden associated with high-state space codon
substitution models has hampered their development in
popular Bayesian phylogenetic software accommodating phy-
logenetic uncertainty.

Sampling restrictions and stochastic error in the process of
divergence accumulation may further complicate the difficulty
in identifying more subtle evolutionary rate differences within
viral populations. The range of sequence isolation times may
be limited for many viruses, and the availability of samples
generally decreases as we go back in time, which imposes a

substantial departure from the ideal sampling design (Seo
et al., 2002). An overdispersed molecular clock represents an
important source of stochastic error that will contribute to the
uncertainty of independent evolutionary rate estimates for dif-
ferent viral lineages at various evolutionary scales. All these
factors will considerably complicate formal testing of the
association between evolutionary rate variation and covariate
data. To maximize statistical efficiency, it may prove useful to
integrate external covariate data into the phylogenetic infer-
ence procedure. This strategy has recently been pursued by
Bayesian hierarchical modelling with fixed effects in the
context of HIV-1 evolution in different patient groups (Edo-
Matas et al., 2011). Specifically, a Bayesian hierarchical phylo-
genetic model (HPM, Suchard et al., 2003) was used to pool
information across patients and improve estimate precision
for patient-specific viral populations. By introducing fixed
effects, evolutionary rate differences between specific popula-
tions could be formally assessed. In this case, patient assign-
ment to specific patient groups representing different host
genetic background or disease progression constituted the
binary covariate data. A similar need for hypothesis testing
emerged in the study on the evolutionary consequences of
host switching in bat rabies viruses in the Americas (Streicker
et al., 2012a).While considerable variation in rabies evolution-
ary rates was noticeable among lineages associated with differ-
ent hosts, accurate quantification remained difficult due to
limited sequence samples and their variation across different
host species. Using the same Bayesian modelling approach

Impact Statement

The tempo and mode of pathogen evolution can be
shaped by a complex interplay of different factors
impacting the generation and fixation rates of muta-
tions in their genomes. Disentangling the neutral and
selective contributions to evolutionary rate variation,
and identifying their correlates, is a key challenge to
gain insights into pathogen evolution and ecology. Here
we develop a Bayesian evolutionary inference procedure
to estimate absolute synonymous and non-synonymous
substitution rates in rapidly evolving pathogens. By
parameterizing these absolute codon substitution rates
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tempo of pathogen evolution. We analyse within-host
HIV-1 evolution in multiple patients and a multi-host
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gression impacting absolute synonymous substitution
rates in within-host HIV-1 evolution and for an
association between host geography and absolute syn-
onymous substitution rates in bat rabies lineages. Our
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absolute synonymous and non-synonymous rates
approach.
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that integrates physiological, environmental and ecological
traits as covariate data, Streicker et al. (2012a) were able to
provide strong evidence for climate predicting rates of viral
evolution, which is probably associated with seasonal activity
of the bat host.

Here we focus on identifying covariates that may have a
significant influence on different aspects of the evolutionary
process. To this end, we adopt hierarchical phylogenetic
modelling with fixed effects in a novel procedure to estimate
absolute synonymous and non-synonymous substitution
rates. We use the approach of Edo-Matas et al. (2011), which
allows us to parameterize evolutionary rate parameters as log
linear functions of various potential covariates and perform
Bayesian model averaging over all possible combinations of
covariates. We demonstrate how we can more directly test
hypotheses about evolutionary rate variation using examples
of within-host HIV-1 evolution and bat rabies dynamics.

Methods

Our Bayesian evolutionary inference approach is based on a
standard codon substitution model (MG94, Muse & Gaut,
1994) with rate variation among sites modelled using a discre-
tized gamma distribution (Yang, 1996). The MG94 codon
model posits that substitutions between nucleotide triplets
along a branch of the evolutionary history occur according to
a continuous-timeMarkov chain (CTMC) process with infini-

tesimal rate matrix Q ¼ qij
� 	

with non-negative off-diagonal

elements qij for i; j ¼ 1; :::::::;N where is the number of

non-stop codons in the genetic code. We parameterize qij
following Hasegawa et al. (1985) such that k is the nucleotide
transition/transversion rate ratio and introduce the absolute
synonymous substitution rate a and the absolute non-synony-
mous substitution rate b. Specifically, we set:

qij ¼

a
cS
kPn; i! j isaone � nucleotidesynonymous

transitiontocodonPn
a
cS
Pn; i! j isaone � nucleotidesynonymous

transversiontocodonPn
b

CN
kPn; i! j isaone � nucleotidenon � synonymous

transitiontocodonPn
b

CN
Pn; i! j isaone � nucleotidenon � synonymous

transversiontocodonPn

0; multiple substitutionsneeded
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where cs is the number of possible synonymous changes
and cN is the number of possible non-synonymous changes
in the genetic code and Pn is the empirical frequency in the
data of codon n ¼ 1; :::;N . Note that a=cS and b=cN are
per-codon rates. Typical nucleotide and codon substitution
models are normalized so that one change per base or
codon is expected in one unit of time (Felsenstein, 2004).
We here apply a different standardization that corresponds
with aþ b expected rate changes per time unit. The pro-
gram BEAST (Drummond et al., 2012) allows estimating
time-measured trees and we hence express the total

substitution rates of our MG94 model in units of time�1

used to specify the sampling dates of the data sequences.

We employ an HPM with fixed effects (Edo-Matas et al.,
2011) on each absolute rate of synonymous and
non-synonymous substitution and hence parameterize each
of those absolute rates as a log linear function of their
potential predictors. All continuously valued predictors are
log-transformed and standardized prior to specifying them
as potential covariates. For each predictor k ¼ 1; :::;K , with
K the total number of potential predictors, our HPM
parameterization with fixed effects includes a coefficient �k ,
which quantifies the contribution or effect size of the pre-
dictor (in log space), and a binary indicator variable dk ,
which allows the predictor to be included or excluded from
the model. We estimate the inclusion variables using a
Bayesian stochastic search variable selection (BSSVS) (Kuo
& Mallick, 1998), resulting in an estimate of the posterior
inclusion probability or support for each predictor. We
assume a multivariate normal prior, centred at zero, on the
coefficients �k , with a diagonal precision matrix with all
entries equal to 2. We also assume a vague (or diffuse) nor-
mal prior, centred at zero, on the intercept of the HPM,
with precision equal to 10�3. We consider vague (or diffuse)
priors as prior distributions that are not very informative
and therefore have a minimal effect on posterior estimates.
We assign independent Bernoulli prior probability distribu-
tions on dk and use a small prior probability on each predic-
tor’s inclusion that reflects a 50 % prior probability on no
predictors being included (Lemey et al., 2014).

Analogous to Edo-Matas et al. (2011) and Lemey et al.
(2014), we can use Bayes factors (BFs) (Kass & Raftery,
1995) to express how much the data change our prior opin-
ion about the inclusion of each predictor. These BFs are cal-
culated by dividing the posterior odds for the inclusion of a
predictor with the corresponding prior odds. Kass & Raftery
(1995) provide guidelines for assessing the strength of the
evidence against our prior opinion: BFs between 1 and 3 are
not worth more than a bare mention, while values between
3 and 20 are considered positive evidence against our prior
opinion. BFs in the ranges 20–150 and >150 are considered
to be strong and very strong evidence against our prior
opinion, respectively. In our results, we also report the
mean and 95 % highest posterior density interval (HPD)
for the conditional effect size for each predictor, which is
the effect size conditional on the predictor being included
in the model (�k=dk ¼ 1) .

In the analyses we perform in this paper, a and b are stra-
tum-specific (e.g. patient-specific, lineage-specific in a tree
or any other independent realization of the evolutionary
process) parameters, whereas Pn and k are global parame-
ters shared among all strata. We assume a stratum-specific
distribution to model site rate heterogeneity and use g to
denote the shape parameter of the underlying gamma distri-
bution. We adopt hierarchical modelling (Suchard et al.,
2003), which enables pooling information across data parti-
tions to improve estimate precision in individual partitions,
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on these stratum-specific g parameters that describe the
rate variation among sites. We assume an underlying log-
normal distribution, with a vague normal prior centred at
zero on its mean and a vague gamma prior on its precision.
We assume independent constant population size models
for each stratum.

For our bat rabies data set (see the Data section below),
we also explore the use of a stratum-specific two-epoch
constant–constant coalescent model (Edwards et al.,
2006) and specify hierarchical priors on both constant
population size parameters. We consider the difference
between the time to the most recent common ancestor
(TMRCA) and the transition time, which is the time
between the two epochs in the coalescent model, as the
‘lag time’, which we use as a predictor in the generalized
linear model parameterization. Given that using this lag
time in turn as a predictor in the HPM for our absolute
synonymous and non-synonymous rates can lead to
identifiability issues, we employ an empirical tree distri-
bution and include a proposal mechanism in our Mar-
kov chain Monte Carlo (MCMC) analysis that randomly
draws a new tree from this empirical distribution (Pagel
et al., 2004; Lemey et al., 2014).

Posterior distributions were obtained using Bayesian infer-
ence through MCMC as implemented in BEAST v1.8.3
(Drummond et al., 2012). MCMC chains were run for
sufficiently long to ensure stationarity and adequate
effective sample sizes > 100 as diagnosed using Tracer 1.6
(http://tree.bio.ed.ac.uk/software/tracer/). Phylogenetic
likelihood computations for large state-space models such
as codon substitution models impose considerable compu-
tational burden. We effectively deal with this by evaluating

the phylogenies on graphics processing units (GPUs)
through the use of BEAGLE (Ayres et al., 2012) in combina-
tion with BEAST, making use of the large number of proc-
essing cores on GPUs to efficiently parallelize calculations
(Suchard & Rambaut, 2009).

As a first data set, we revisit a within-host HIV-1 data set
containing nucleotide sequences for the gp120 (C1–C4)
from virus populations in 18 men who have sex with
men (MSM) participants, 11 with a WT genotype and
seven with a CCR5 wt/D32 genotype. Nine individuals
were classified as long-term non-progressors (LTNP) and
the remaining nine individuals progressed to AIDS during
the study period and were classified as progressors (P).
For more details on this data set, readers are referred to
Edo-Matas et al. (2011). We use the following predictors
in the HPM with fixed effects for both the absolute syn-
onymous and non-synonymous substitution rates: pro-
gressor status (P/LTNP), genotype (WT/CCR5 wt/D32
genotype), and sampling characteristics including the log
of the number of sequences and log of the sampling time
intervals.

As a second data set, we analyze the bat rabies data set of
Streicker et al. (2012a), containing 648 sequences from the
coding region of the N gene, collected between 1972 and
2009 from 21 bat species or sub-species. Streicker et al.
(2012a) collected information on the overwintering activity
patterns, migratory behavior, roosting behavior and meta-
bolic rates – basal (BMR) and during seasonal torpor
(TMR) – of the bat species that served as reservoir hosts
for the rabies viruses included here from the primary litera-
ture and existing databases. We use the following predictors
in the HPM with fixed effects on the absolute synonymous

LTNP

delta32

ln(#seqs)

ln(time)

0.0 0.1 0.2 0.3 0.4 0.5

Inclusion probability (E[δ])

-1 0 1

In coefficient (βIδ=1)

0.0 0.1 0.2 0.3 0.4 0.5

Inclusion probability (E[δ])

-1 0 1

In coefficient (βIδ=1)predictors

Synonymous rates Non-synonymous rates

Fig. 1. Predictors of the absolute synonymous and non-synonymous substitution rates of the MG94 codon model for the within-host HIV-
1 data set. The inclusion probabilities are defined by the indicator expectations E½d� because they reflect the frequency at which the predic-

tor is included in the model and therefore represent the support for the predictor. An indicator expectation corresponding to a BF support
value of 3 is represented by a thin vertical line. The contribution of each predictor, when included in the model (b=d ¼ 1), where b is the
coefficient or conditional effect size, is represented by the mean and credible intervals of the HPM coefficients on a log scale.
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and non-synonymous substitution rates: climate region
(temperate/subtropical), log of the mass-independent
BMR, log of the mass-independent TMR, colonial aggrega-
tion (solitary/colonial), winter activity pattern (hibernation/
aseasonal), long distance migration (none/long distance),
and sampling characteristics including the log of the num-
ber of sequences and log of the sampling time intervals.

Results

Intrahost HIV-1 evolution

We evaluate the contribution of several potential predictors
to the variation in absolute synonymous and non-synony-
mous substitution rates among patients (Fig. 1). Our analy-
sis reveals that only disease progression status is associated
with absolute synonymous substitution rate under the
MG94 model. We find positive evidence that disease pro-
gression status contributes to the synonymous substitution
process of our within-host HIV-1 data set. This is reflected
in the conditional effect size of this covariate [�0.35 on a
log scale; accompanying 95 % HPD: (-0.64; �0.07)] and
the statistical support for its inclusion in the model (poste-
rior probability = 0.37 and BF = 3). CCR5 genotype of the
host, the number of sequences and the time interval of sam-
pling do not yield appreciable support. None of the predic-
tors yield appreciable support for an association with
absolute non-synonymous substitution rates. We explicitly
included the numbers of sequences and the number of time
points per patient to test whether sampling bias may impact
the estimates.

Multi-host bat rabies evolution

We evaluate the contribution of physiological, environmen-
tal and ecological predictors on absolute synonymous and
non-synonymous substitution rate variation among host-
associated bat virus lineages (Fig. 2). Our analysis reveals
that only the environmental climatic trait contributes to
absolute synonymous substitution rate variation among the
bat rabies lineages. This is reflected in the conditional effect
size of this covariate (0.90 [0.50; 1.29], reflecting a 2.5-fold
increase of the synonymous substitution rate for those bats
in subtropical regions as compared with those in temperate
regions) and the very strong statistical support for its inclu-
sion in the model (posterior probability = 0.98 and BF =
591). None of the other predictors yields appreciable sup-
port for an association with absolute synonymous substitu-
tion rates. We also find some support for a number of
predictors on absolute non-synonymous rate variation. Cli-
mate region, winter activity pattern and the number of
sequences yield a BF of 4, 5 and 7, respectively, and they all
result in positive conditional effect sizes (0.69 [0.16; 1.21],
0.61 [0.05; 1.14] and 0.39 [0.15; 0.66], respectively).

The association between climatic region of the host and viral
absolute synonymous substitution rates agrees with the
finding of Streicker et al. (2012a) of slower molecular clock
ticking at the third codon position of rabies viral gene

sequences sampled from temperate bat species as compared
with those sampled from tropical and subtropical host spe-
cies. The authors also argue against a metabolism-mediated
relationship between environmental temperature and viral
replication, but claim that generation times between viral
infections probably differed among climatic regions. Specifi-
cally, year-round transmission and replication may increase
the annual number of viral generations in tropical and sub-
tropical bats relative to seasonal pulses of transmission in
temperate species, thereby accelerating evolution in these
hosts. In this respect, it may be surprising that winter activ-
ity pattern, as a more direct measure of reduced seasonality,
is not included in the model as a covariate of absolute syn-
onymous rate variation. However, Streicker et al. (2012a)
argue that seasonal activity is poorly understood for many
bat species (Dunbar & Brigham, 2010), and overwintering
records frequently have to generalize from a few observa-
tions to an entire species range, which can span wide areas.
Climate may therefore serve as a better proxy for seasonality
than current overwintering records.

To investigate this in more detail, we perform the same
analysis without the climate region predictor (Fig. 3). This
analysis reveals that winter activity pattern is now associated
with both synonymous and non-synonymous absolute sub-
stitution rates. We estimate a conditional effect size for the
winter activity predictor of 0.71 [0.17; 1.29] and 0.69 [0.07;
1.32], respectively, and a BF support for its inclusion of 11
and 6, respectively. The fact that the winter activity predic-
tor is included in the model in the absence of climate, but
with much lower support and somewhat lower conditional
effect size than climate, is in line with the argument that cli-
mate is a better proxy of seasonal activity.

Finally, we also consider an additional predictor for absolute
substitution rates motivated by a study on the adaptive
dynamics underlying bat virus host shifts giving rise to host-
associated viral lineages (Streicker et al., 2012b). Their study
showed that lineages involving greater numbers of positively
selected substitutions have longer delays between cross-spe-
cies transmission and enzootic viral establishment. This
delay or lag time is estimated using a two-epoch coalescent
model (Edwards et al., 2006). Here, we incorporate this coa-
lescent model in our Bayesian framework and include the
lag time estimate as a potential covariate for the substitution
rates. Due to the specific setup of this model (see Methods),
we present this as a separate analysis. The analysis does not
yield any evidence for a contribution of lag time to the abso-
lute rates of synonymous and non-synonymous substitution
in our MG94 model (Fig. 4), and produces results that are
otherwise highly similar to those without the additional pre-
dictor (Fig. 2).

Discussion

Here we present a novel implementation of the MG94
codon model (Muse & Gaut, 1994) in BEAST, allowing us to
estimate absolute synonymous and non-synonymous sub-
stitution rates and parameterize each of those absolute rates
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as a log linear function of their potential predictors. This
MG94 parameterization leads to separate absolute rate esti-
mates whereas the alternative GY94 codon model
(Goldman & Yang, 1994) only allows estimating the non-
synonymous/synonymous rate ratio. To be able to estimate
absolute rates, our adaptation of the MG94 model deviates
from the standard assumption of one expected change per
base per unit of time. Because of its availability in BEAST

(Drummond et al., 2012), our MG94 codon model can take
full advantage of the computationally efficient codon

implementation in the BEAGLE library (Ayres et al., 2012) to

speed up the likelihood calculations.

In this paper, we show that our model can be combined

with the HPM with fixed effects approach of Edo-Matas

et al. (2011) to test specific evolutionary hypotheses. Our

approach of mixed effects modelling on absolute synony-

mous and non-synonymous substitution rates offers a more

direct and refined way of testing hypotheses concerning the

tempo and mode of evolution as compared with the earlier

climate
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colonial aggregation
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Inclusion probability (E[δ]) In coefficient (βIδ=1) Inclusion probability (E[δ]) In coefficient (βIδ=1)predictors

Synonymous rates Non-synonymous rates

Fig. 2. Predictors of the absolute synonymous and non-synonymous substitution rates of the MG94 codon model for the bat rabies data
set. The inclusion probabilities are defined by the indicator expectations E½d� because they reflect the frequency at which the predictor is
included in the model and therefore represent the support for the predictor. Indicator expectations corresponding to BF support values of

3, 20 and 150 are represented by thin, medium thick and thick vertical lines, respectively. The contribution of each predictor, when included
in the model (b=d ¼ 1), where b is the coefficient or conditional effect size, is represented by the mean and credible intervals of the HPM
coefficients on a log scale.

Inclusion probability (E[δ]) In coefficient (βIδ=1) Inclusion probability (E[δ]) In coefficient (βIδ=1)predictors
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Fig. 3. Predictors of the absolute synonymous and non-synonymous substitution rates of the MG94 codon model for the bat rabies data

set. The inclusion probabilities are defined by the indicator expectations E½d� because they reflect the frequency at which the predictor is
included in the model and therefore represent the support for the predictor. Indicator expectations corresponding to BF support values of
3, 20 and 150 are represented by thin, medium thick and thick vertical lines, respectively. The contribution of each predictor, when included

in the model (b=d ¼ 1), where b is the coefficient or conditional effect size, is represented by the mean and credible intervals of the HPM
coefficients on a log scale.
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uses of mixed effects modelling (Edo-Matas et al., 2011;
Streicker et al., 2012a). Edo-Matas et al. (2011) used an
HPM with fixed effects to test for differences in the overall
rate of viral evolution between HIV-1-infected patients with
different CCR5 host genetic background and disease pro-
gression. The authors found a weak association between
evolutionary rate and disease progression, but to argue that
this difference was due to differences in viral replication
rates and hence generation time, they had to perform an
additional analysis to show that these differences could not
be attributed to selective dynamics. The results we obtained
by directly and independently modelling these patient group
effects on the absolute synonymous and non-synonymous
substitution rates under our MG94 model adaptation cor-
roborate the findings of Edo-Matas et al. (2011). We note
that differences in generation time due to differences in
replication rates are also expected to impact absolute non-
synonymous substitution rates. Selection, however, may act
as a confounding factor to detect such differences, in partic-
ular in the gene region targeted by neutralizing antibodies
that we analyse here. Together with the fact that the statisti-
cal support was only moderate for absolute synonymous
rates, it is therefore not surprising that we did not find any
impact of disease progression on non-synonymous absolute
substitution rate variation.

In their multi-host bat rabies analysis, Streicker et al.
(2012a) used an HPM with fixed effects on the evolutionary
rate parameters at the third codon position, as a proxy for
synonymous evolution. Our method avoids the use of such
proxies and makes use of the full data. Using the covariate
modelling approach of Edo-Matas et al. (2011), Streicker
et al. (2012a) modelled evolutionary rate parameters for 21
bat rabies virus lineages as a function of the aforementioned

predictors, which allowed them to simultaneously estimate
(conditional) effect size and posterior inclusion probability
(and hence BF support) for the individual predictors. The
authors found strong support for accelerated viral evolution
in the tropics and subtropics relative to viruses restricted to
the temperate zone, with negligible support for all other
predictors. By modelling covariate effects directly and inde-
pendently on the absolute rates of synonymous and non-
synonymous substitutions in a codon substitution model,
we corroborate the findings of Streicker et al. (2012a) and
reinforce their interpretation of the rate difference. In this
case, the viral generation time effect of reduced seasonality
also has an impact on the absolute non-synonymous rates,
albeit less strongly so. In agreement with the argument that
climate may be a more accurate descriptor for seasonality
than current overwintering records, we also found positive
support for winter activity pattern on both absolute rates
when climatic region was removed as a potential predictor,
but with weaker support (BF = 11 vs. BF = 591). Climatic
region may be particularly more appropriate as a proxy for
seasonality for species that demonstrate geographically vari-
able overwintering behaviours (McNab, 1974).

In addition to the original covariates, we also include sam-
pling characteristics as potential predictors of the absolute
substitution rates in our analyses as it may be argued that
the more sequences sampled, and especially the longer the
timespan over which they are sampled, the better the tem-
poral signal will be, and the more accurately the substitution
rate will be estimated (Seo et al., 2002). For example, if
lower temporal signal would lead to rate underestimation,
sampling could bias our hypothesis testing for both absolute
synonymous and non-synomous rates. This does not appear
to be the case in our analyses, but the number of sequences

Inclusion probability (E[δ]) In coefficient (βIδ=1) Inclusion probability (E[δ]) In coefficient (βIδ=1)predictors

Synonymous rates Non-synonymous rates

0.00 0.25 0.50 0.75 1.00 -1.5 -0.5 0.5 1.5 0.00 0.25 0.50 0.75 1.00 -1.5 -0.5 0.5 1.5

climate

ln(mass-independent bmr)

ln(mass-independent tmr)

colonial aggregation

winter activity pattern

long distance migration

ln(#seqs)

ln(date range)

ln(lag time)

Fig. 4. Predictors of the absolute synonymous and non-synonymous substitution rates of the MG94 codon model for the bat rabies data
set. The inclusion probabilities are defined by the indicator expectations E½d� because they reflect the frequency at which the predictor is
included in the model and therefore represent the support for the predictor. Indicator expectations corresponding to BF support values of

3, 20 and 150 are represented by thin, medium thick and thick vertical lines, respectively. The contribution of each predictor, when included
in the model (b=d ¼ 1), where b is the coefficient or conditional effect size, is represented by the mean and credible intervals of the HPM
coefficients on a log scale.
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is to some extent positively correlated with absolute non-

synonymous substitution rates in the bat rabies analysis.

This may reflect the impact of deleterious mutational load

on the tip branches, which comprises a substantial propor-

tion of the amino acid variation observed in natural popula-

tions of RNA viruses (Pybus et al., 2007). In a separate

rabies analysis, we also tested whether lag time, or the delay

between cross-species transmission and enzootic viral estab-

lishment, as measured based on the transition time in a

two-epoch coalescent model (Edwards et al., 2006), had an

effect on the absolute non-synonymous rates. Longer lag

times were previously associated with a higher number of

positively selected sites (Streicker et al., 2012b). It may not

be surprising that we did not detect an effect of lag times in

our analyses as the number of positively detected sites

involved in host species adaptation was found to be limited

to six codons in the coding N gene region we analyse [of

which there were indications that these were false positives

(Streicker et al., 2012b)] and hence unlikely to impact over-

all non-synonymous substitution rates. In addition, our

analysis is based only on the coding N gene region that was

studied in the original multi-host rabies evolutionary rate

analysis (Streicker et al., 2012a), whereas the selection analy-

sis was based on the N, G and L genes, leaving us with less

data to capture the signal of adaptation (Streicker et al.,

2012b).

Our implementation of the MG94 model with absolute

rates paves the way for further codon model extensions in a

Bayesian framework. An important avenue of future

research would be to allow for site-specific and lineage-spe-

cific variation of both the absolute synonymous and non-

synonymous substitution rates (e.g. Pond & Muse, 2005).

Not only would this allow us to detect positive selection at

specific sites or branches, but it would also more appropri-

ately model long-term purifying selective pressure and result

in more accurate deep divergence dating for viruses (Wer-

theim & Pond, 2011). The additional model complexity

may, however, be associated with substantial computational

burden, but massively parallel likelihood computations on

multi-core architecture using an efficient framework such

as BEAGLE (Ayres et al., 2012) may offer a solution to this.
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