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This article overviews ideas as to how to incorporate the range of prior knowledge and
instantaneous sensory information from experts, sensors and actuators for use in
computer-assisted interventions, as well as learning how to develop a representation of
the surgery or intervention among a mixed human-AI team of actors. In addition, the
design of interventional systems and associated cognitive shared control schemes for
online uncertainty awareness when making decisions in the OR or the IR suite is
discussed, and it is noted how this is critical for producing precise and
reliable interventions.
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ABSTRACT | Data-driven computational approaches have

evolved to enable extraction of information from medical

images with reliability, accuracy, and speed, which is already
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transforming their interpretation and exploitation in clinical

practice. While similar benefits are longed for in the field

of interventional imaging, this ambition is challenged by a

much higher heterogeneity. Clinical workflows within inter-

ventional suites and operating theaters are extremely com-

plex and typically rely on poorly integrated intraoperative

devices, sensors, and support infrastructures. Taking stock of

some of the most exciting developments in machine learning

and artificial intelligence for computer-assisted interventions,

we highlight the crucial need to take the context and human

factors into account in order to address these challenges. Con-

textual artificial intelligence for computer-assisted intervention

(CAI4CAI) arises as an emerging opportunity feeding into the

broader field of surgical data science. Central challenges being

addressed in CAI4CAI include how to integrate the ensemble of

prior knowledge and instantaneous sensory information from

experts, sensors, and actuators; how to create and commu-

nicate a faithful and actionable shared representation of the

surgery among a mixed human–AI actor team; and how to

design interventional systems and associated cognitive shared

control schemes for online uncertainty-aware collaborative

decision-making ultimately producing more precise and reli-

able interventions.
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I. I N T R O D U C T I O N

Contemporary progresses in machine learning and arti-
ficial intelligence have permitted the development of
tools that can assist clinicians in exploiting and quan-
tifying clinical data including images, textual reports,
and genetic information. State-of-the-art algorithms are
becoming mature enough to provide automated analy-
sis when applied to well-controlled clinical studies and
trials [1], [2], but adapting these tools for patient-specific
management remains an active research area, with the
bulk of the research community having focused on fully
automated machine learning tools. These considerations
become especially critical in the highly heterogeneous con-
text of surgery and interventional procedures that require
patient- and team-specific decision support tools being able
to draw information from nonstandardized interventional
devices integrated into diverse interventional suites. Com-
pared to computational tasks in radiology, the domain
of computer-assisted intervention further creates unique
methodological challenges, such as imposing stringent
time constraints in the interventional suite, requiring
knowledge of procedural data, and needing methods that
deal with dynamic environments.

In this article, keeping a focus on imaging data,
we review existing work and share insights on future
developments of machine learning strategies that deci-
pher, support, augment, and integrate into various sur-
gical and interventional workflows while providing the
flexibility required by clinical management. Flexibility is,
for example, mandated to be able to deal with missing
input sources, react to real-time user feedback, adapt to
the patient risk aversion and preferences, handle uncer-
tain or contradictory information, learn from potentially
small and heterogeneous data, and so on. All of them
are common in computer-assisted interventions. Imaging
sources of particular interest for surgery and interven-
tion include a wide range of well-known interventional
modalities, such as surgical microscopy, video endoscopy,
X-ray fluoroscopy, and ultrasound, more emerging biopho-
tonics imaging modalities, such as hyperspectral imaging,
endomicroscopy, and photoacoustic imaging, and also span
classical radiology modalities, such as MRI and CT, that
remain the main sources of imaging data for preoperative
intervention planning and postoperative assessment. We
argue that the stringent need to consider the context
when analyzing surgical and interventional data coupled
with the heterogeneity of information sources and domain
knowledge in computer-assisted intervention applications
calls for the development of novel domain-specific con-
textual artificial intelligence solutions, a domain that we

coin as the contextual artificial intelligence for computer-
assisted intervention (CAI4CAI). Feeding into the broader
field of surgical data science [3]–[5], CAI4CAI will focus on
the underpinning machine learning methodology exploit-
ing contextual information and human interaction to
enable the required responsiveness to deliver the clinical
impact on surgery and interventional sciences.

To support our claim, we highlight some of the transfor-
mative machine learning research results and methodolo-
gies currently being developed across the spectrum of tasks
in computer-assisted interventions. The impact of machine
learning in intervention planning is discussed in Section II,
intraoperative data fusion in Section III, intelligent intra-
operative imaging in Section IV, surgical and endoscopic
vision in Section V, and clinical workflow monitoring and
support in Section VI. In these sections, we will highlight
how flexible deep learning-based tools are becoming crit-
ical for the design of effective and efficient intervention
planning solutions. During surgery, navigation solutions
are often used to map preoperative information in the
context of the intervention. However, navigation does
not account for intraoperative changes. Learning how to
coregister images is now leading to intraoperative reg-
istration solutions that are able to cope with the highly
challenging task of aligning preoperative to intraopera-
tive images coming from different imaging modalities.
Concurrently, AI methodology is advancing to go beyond
traditional navigation-based data fusion and image overlay
to exploit information coming from complex or synergistic
data sources. This is giving rise to what we refer to as
intelligent intraoperative imaging. Data-driven modeling
strategies coming from the computer vision community are
acting as instrumental starting points to achieve semantic
information extraction from interventional data sources,
including endoscopic videos, with applications ranging
from automated polyp detection to surgical activity recog-
nition. To deliver improved clinical outcomes through AI,
all these building blocks are increasingly being integrated
at the level of the complete surgical workflow with appli-
cations spanning the full breadth of surgical data science.
In this area, starting from the data-driven mapping of
clinical workflow and skills assessment, AI is now helping
make contextual decision support tools and conditionally
autonomous intervention a reality. Finally, closing thoughts
are provided and further budding applications of CAI4CAI
are discussed in Section VII.

II. I N T E RV E N T I O N P L A N N I N G

A. Clinical Adoption of Intervention
Planning Tools

Once a decision is made for a patient to undergo an
interventional procedure, for any nontrivial operation,
patient-specific planning of the intervention is required.
The steps involved usually necessitate the acquisition
of reference preoperative imaging data, semantic
segmentation of anatomical structures in these images,
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determination of the surgical approach, and elaboration
of an intraoperative plan leading to optimal outcomes for
the patient. Such a plan might encompass establishing
a surgical path and target, designing, or selecting a
patient-specific implant or assistive adjunct tool such as
a drill or saw guide [6]. In the majority of cases, such
intervention planning is performed by a team of healthcare
professionals, each with their own expertise, known as the
multidisciplinary team (MDT). Relatively, little computer
assistance is currently available for interventional planning
in the clinic. Notable exceptions can be found in the field
of neurosurgery, oral and maxillofacial surgery, and
orthopedic surgery. What these specialties share is a
relatively static surgical scene due to the proximity of rigid
bone structures. Computed tomography (CT) provides a
rich source of 3-D imaging information in this context.
Indeed, due to the quantitative nature of CT images and
the good contrast of bone, automated segmentation of
bone has proved to be clinically reliable. Because of the
seminal work of the Retrospective Registration Evaluation
Project (RREP) [7], it is also clear that preoperative rigid
registration of different imaging modalities, such as MR
and CT, provides a robust means of fusing soft tissue
contrast information with accurate bone delineation for
neurosurgical planning. Such technical advances have
supported the adoption of stereotactic surgery as a means
of accurately targeting and guiding instrument toward
deep-seated brain structures for procedures, such as brain
biopsies for tumor grading and electrode implantation for
the treatment of movement disorder or the localization of
epileptic seizure onset zones. While computer-assisted sur-
gical planning and subsequent surgical navigation become
standard of care in neurosurgery and a few other disci-
plines, even in these fields, there is major scope to make
the workflow more efficient through the development of
further machine learning-enabled computer assistance.

B. Machine Learning in Interventional Planning

Commercial surgical planning products are still lim-
ited in the automation they support, with many of the
most advanced ones essentially relying on classical image
analysis methods, such as atlas-based segmentation [9],
to delineate soft-tissue structures of interests for a patient
showing no gross pathological brain changes. Clinicians
are often left with manual or generic interactive methods
to delineate other structures of interest and define their
surgical plan. When interventional planning only relies
on the clinician getting a volumetric representation of
the patient anatomy from preoperative data, advanced
visualization techniques, such as cinematic rendering [10],
can be considered as alternatives to explicit segmenta-
tion of structures. These may produce results that are
less sensitive to noise and data variability but do not
enable more quantitative planning. Developments of deep
machine learning segmentation algorithms dedicated to
medical imaging [11], [12] are rapidly changing to a level
of accuracy at which automated segmentation of structures

of interest can be done in a population of patients even
in the presence of gross pathological changes [13]. How-
ever, many challenges remain for these tools to become
of practical use for intervention planning purposes. Poor
generalization, when faced with slight domain changes,
is a recognized problem in the entire medical imaging
community including on the diagnostic side. Expanding
the size of the data sets on which deep learning algo-
rithms are trained would certainly mitigate generalization
issues by providing a much larger variety of training
cases. Collaborative efforts within the community are
notably focusing on providing open-access large annotated
data sets for machine learning training purposes in some
specific use cases [1]. However, collecting task-specific
large annotated databases for medical imaging purposes
faces its own challenges, given the time and expertise
required to provide detailed annotations as well as the
legal, privacy, and storage questions pertaining to sharing
large patient data sets across multiple sites. Federated
learning for multi-institutional collaboration in medical
imaging [14], [15] provides a potential technical solution
to this problem. Implementing such solutions at scale will
require concerted efforts reaching far beyond the method-
ological research community. Furthermore, changes such
as device upgrades or challenges posed by new clinical
indications will not be captured by increasing the pool
of retrospective training data. Active research to address
such inevitable but unpredictable domain gaps is rooted
in domain adaptation techniques [16]. These advances are
necessary for automated machine learning tools to make
an impact on the clinical setting. Prospective randomized
clinical trials (RCTs) are widely seen as the only source
of trustworthy clinical evidence, yet studies implementing
RCTs with systems relying on deep learning tools for med-
ical imaging currently remain noteworthy exceptions [17].

C. Importance of Flexible Contextual
Machine Learning

What distinguishes segmentation in surgical planning
from segmentation in diagnostic imaging is, nonetheless,
that the objective is not necessarily always that of reaching
the best performance in getting the structures delineated
with subvoxel accuracy. Surgical planning needs to respect
the patient-specific needs and preferences of the surgeon.
This requires putting the clinical team at the center and
promoting flexible tools that integrate into the surgical
workflow. Interactive deep learning methodologies are
emerging to combine rich prior knowledge embedded in
retrospective data from previous patients with as-sparse-
as-possible annotations provided by clinicians [8], [18].
As illustrated in Fig. 1, deep interactive segmentation
allows the clinical expert to refine the results from an
initial automated step and, most importantly, to adapt the
inferred results on the fly based on contextual information.
Furthermore, given the heterogeneity and evolving nature
of the surgical practice, additional flexibility is required to
handle potentially missing input modalities. Recent work
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Fig. 1. Interactive algorithms are required to deliver

context-aware artificial intelligence. In this example, using the

algorithm presented in [8], brain tumor segmentation is initially

performed automatically using a pretrained algorithm. As a part of

the surgical planning, the user may want to refine the segmentation

by providing scribbles to denote areas that should be excluded

(green region) or included (pink region) irrespective of the initial

segmentation. The algorithm then adapts its output to respect the

user input.

in deep machine learning is focusing on dealing with such
dynamic heteromodal context while exploiting heteroge-
neous sources of data for the training process [19], [20].
Bringing flexible machine learning tools to maturity will
certainly play an important role in supporting the clinical
adaption of AI in surgery.

As highlighted earlier, segmentation of structures from
preoperative images is often the foundation of computer-
assisted surgical planning, and this currently remains
the state of the art in many commercial solutions. Such
static segmentation, when combined with intraoperative
registration already, provides useful surgical navigation
information for relatively static surgical scenes as is the
case in neurosurgery. Nevertheless, computer assistance for
intervention planning has the potential to provide impact
much beyond the ability to automate the creation of 3-D
anatomical models and overlay of functional data. Patient-
specific simulation of given surgical plans has, for example,
been introduced in orthopedic surgery with a long history
in acetabular fracture surgery [21]. State-of-the-art ortho-
pedic surgery planning systems allow to design patient-
specific implants and patient-specific surgical guides by
enabling the simulation of the effect of different implants
and implantation strategy on key outcome-related parame-
ters, such as the range of motion of articulation or the
limb length [22]. However, these tools often ignore the
effect of soft tissue in the simulation process and still
require very labor-intensive work for the surgical team
to design patient-specific plans. Expert systems capable
of automatically optimizing the surgical plan for a given

orthopedic surgery are now being developed [23] and
promise to make surgical planning more efficient [24].
In the context of deep brain insertion of instruments,
machine learning approaches capable of automatically
planning trajectories of multiple instruments, to maximize
the efficacy of the surgery while minimizing intraoperative
risks and avoiding collisions between instruments, have
demonstrated a significant reduction in planning time
for the implantation of stereoelectroencephalography elec-
trodes for epilepsy treatment [25] and for laser interstitial
thermal therapy [26]. Contextual and flexible machine
learning for surgical planning promises to push the bound-
aries of interventional planning by exploiting data-driven
approaches and real-time user feedback to efficiently plan
for complex situations. An instrument bending model was,
for example, trained in [27] to predict the deviation
between an original surgical plan assuming rigid elec-
trodes and the actual electrode paths as measured on
a postoperative CT. Provided reliable uncertainty esti-
mates on the prediction can be achieved, embedding such
deflection models in the trajectory planning is expected
to improve the safety and accuracy of stereoelectroen-
cephalography electrode implantation planning.

Effectively, planning is moving away from the extraction
of information captured in existing data and representative
of a given (preoperative) time point. Context-aware
learning methods are now being developed to also
predict therapy-related changes and better inform
interventional planning. By exploiting computationally
complex noninvasive cardiac electrophysiology
modeling coupled with transfer learning approaches,
Giffard-Roisin et al. [28] notably achieved online per-
sonalized predictions of electrophysiology cardiac resyn-
chronization therapy responses, thereby paving the way
for better patient selection and patient-specific therapy
optimization. In nonquasi-static environments, surgical
planning is currently further limited by our capabilities to
predict intraoperative anatomical changes. In abdominal
surgery, for example, segmentation of structures from
preoperative images may inform the clinician about
the relative spatial organization of lesions and vascular
structures. However, at the onset of a minimally invasive
procedure, gas insufflation is typically performed to create
the surgical workspace. This has a serious impact on the
geometry of the anatomy and challenges any attempt of
intraoperative use of a 3-D model of the anatomy gen-
erated from preinsufflation images. Current approaches
typically rely on focusing on smaller regions where rigidity
assumptions between preoperative and intraoperative
data may still hold [29], thereby limiting the scope of
surgical planning. Data-driven prediction of anatomical
changes relating to gas insufflation in laparoscopic surgery
was proposed in [30]. Still, in the context of liver surgery,
a system able to take into account nonimaging patient data
and factual knowledge gathered from quotable sources,
such as clinical guidelines, was proposed to support
individualized treatment planning [31]. While relying on
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handcrafted features and exploiting models with limited
expressiveness, this article paved the way for more holistic
interventional planning. It is expected that the context-
aware interventional planning will be informed by refined
prediction models to suggest therapeutic plans cognizant
of clinical experience as well as potential intraoperative
changes and associated risks but also flexible enough to
take into account any further input from the interventional
team interacting with a responsive planning system.

III. I N T R A-O P E R AT I V E D ATA F U S I O N

A. Navigation and Image Registration Challenges

No matter how refined and capable interventional plan-
ning becomes, its full value for procedural guidance and
intraoperative decision-making support remains contin-
gent on appropriate geometric alignment with intraoper-
atively acquired data. This alignment is achieved using
registration methods that either rely on dedicated exter-
nal hardware, such as optical or electromagnetic track-
ing systems [32], or operate directly on intraoperative
images [33].

Image-based registration in the interventional context
has received substantial academic attention [34], [35].
This is because external navigation, while improving
surgical accuracy, is associated with increased procedural
time and complex and manual intraoperative calibration
procedures that may lead to a high level of surgeon
frustration [36]. It is widely believed that image-based
registration will better integrate with procedural workflow,
mitigating many negative aspects of external tracking
approaches while providing similar accuracy. Furthermore,
since no additional hardware is required, there is great
potential for widespread adoption and deployment of
these purely software-driven methods. This suggests
that navigated surgery may also become available in
remote and rural hospitals that could not afford dedicated
equipment otherwise.

Despite the clear opportunity, image-based registration
is not yet widely used in interventional clinical practice.
This is because, depending on the clinical context, sev-
eral challenges of image-based registration have not yet
been solved reliably. During surgery, the anatomy under-
goes highly complex deformations, including the loss of
mass or topological changes during resections. Accurately
recovering bio-mechanically plausible transformations that
represent an anatomical change from preoperative to intra-
operative state that is measured with different imaging
modalities is the subject of the ongoing research. Here,
we will focus on two of the associated challenges:
1) modeling image similarity between the images of the
same anatomy but acquired with different modalities and
2) estimating initial transformation parameters that are
good enough for registration algorithms to succeed.

On a high level, image registration seeks to find a trans-
formation that, when applied to the moving image, aligns
it with the target image such that the locations in both
images are in correspondence. Quantifying correspondence

is achieved using image similarity metrics that, usually,
operate on the image intensity values. A straightforward
comparison of intensity values, e.g., using a simple sum
of squared differences, is generally unrewarding since the
underlying assumption on image formation is prohibitively
strong, even when moving and target images are acquired
with the same imaging modality. For interventional image
fusion, the problem is more challenging since images of
different modalities must be aligned. In this case, the
additive Gaussian noise assumption underpinning the sum
of squared differences is certainly violated. Even worse,
due to the different physical processes that govern image
formation, there is no guarantee that the same anatomical
structures are visible in both images, thereby challenging
the adequacy of co-occurrence-based similarity metrics,
including correlation and mutual information. Nonethe-
less, despite these limitations, model-based image similar-
ity criteria currently remain the state-of-the-art performers
in many interventional image-registration tasks, includ-
ing ultrasound to MRI registration for neurosurgical
guidance [37], [38].

B. Contextual Learning for Image Registration

Using deep learning to go past some of the limita-
tions of classical image registration is an active area of
research. However, due to the fundamental challenge of
gathering ground-truth data for image registration, many
of the most successful learning-based registration methods
for diagnostic images exploit unsupervised learning and
optimize a classical image similarity metric-based loss
[39], [40]. This approach remains unsuitable for most
interventional purposes where more flexible solutions are
required. A prominent example highlighting the need to
take the interventional context into account is a transrectal
ultrasound (TRUS)-guided prostate biopsy. Conventionally,
the biopsy target is segmented on preoperative 3-D MR
images, and this must then be registered to intraoperative
3-D TRUS volumes. Since MR and TRUS images exhibit
a substantially different image appearance, contrast, and
artifact level, this suggests that no good mathematical
model exists to describe image similarity between these
two modalities. Data-driven approaches that do not explic-
itly model intensity correlations to test for image cor-
respondence but optimize a surrogate measure thereof
now achieve state-of-the-art performance. One candidate
surrogate measure can be defined by enforcing segmen-
tations of the same structures to exhibit maximal overlap
after registration [41]. Remarkably, learning to optimize
for such losses does not require access to ground truth
for the spatial transformation and leverages application-
specific annotations that are considered as weak annota-
tions. Further contextual information can be captured by
learning data-driven spatial transformation models or reg-
ularization terms [42]. Related physics-based deformation
models have been trained to predict shape changes in
segmented organs from sparse annotations, which could
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be used for augmented reality purposes [43], [44]. Taking
account of the interventional context one step further,
Hu et al. [45] noticed that in many cases, including
MR-TRUS-guided biopsy, the main purpose of interven-
tional data fusion is to propagate a patient-specific target
defined on a preoperative image to its interventional coun-
terpart and proposed to replace the registration step by a
conditional segmentation one.

Even in scenarios where data-driven similarity metrics
may be learned, finding the transformation that optimally
aligns a pair of images can remain nontrivial. This is
because image similarity is well defined, i.e., informa-
tive, only in a narrowly circumscribed vicinity around the
true transformation, emphasizing the need for appropriate
initialization, such that the initial mismatch falls within
the capture range of the image similarity metric and opti-
mization algorithm [46]. While adequate initialization is
challenging in all registration scenarios, it is considered to
be most detrimental in slice-to-volume applications. Such
applications are common in image-guided interventions,
with the most prominent examples being the bijective
alignment of 2-D B-mode ultrasound to 3-D MR or CT
volumes or the projective registration of preoperative
3-D MR or CT volumes, or CAD models to intraoperative
2-D X-ray or endoscopy images.

In cases where the 3-D imaging protocol context is
well defined, i.e., one is guaranteed to observe the same
extent of anatomy, direct approaches to initialization are
possible. These methods only accept the 2-D image as
input and directly estimate its initial pose relative to a 3-D
canonical atlas coordinate system that is implicitly defined
by the choice of 3-D image database [47], [48] or tool
model [49]. These approaches are attractive, mainly due
to two reasons. First, run times are short since only 2-D
images must be processed. Second, they lend themselves
well for scenarios where 2-D slices are acquired succes-
sively to reconstruct a full 3-D volume. However, due to the
complexity of the problem and canonical atlas assumption,
their performance is often limited in practice.

When a canonical space cannot be defined, alternative
approaches typically mimic the external tracking work-
flow where relative poses are inferred analytically. While
external tracking devices require attachment or implan-
tation of artificial fiducial markers to get position infor-
mation readouts, AI-based approaches seek to establish
correspondence directly from the images or from sparse
but corresponding image locations. In [50], by learn-
ing from a data set of tracked ultrasound, the authors
demonstrated that without inference-time reliance on the
tracker, deep learning approaches can estimate the 3-D
motion occurring in between consecutive 2-D ultrasound
images with an accuracy far exceeding that of conventional
speckle decorrelation techniques and matching that of the
external tracker. This allows for a sensorless 3-D freehand
ultrasound and creates new opportunities in computer-
assisted interventions. Another complementary powerful
concept for trackerless image alignment is the detection

and identification of anatomical landmarks. These are
particularly appealing since they carry semantic mean-
ing and, consequently, define point correspondence across
modalities and domains. Reliably detecting anatomical
landmarks is complicated because of changing appearance
based on viewpoints but has recently become possible due
to powerful convolutional neural network-based image
analysis for anatomical landmarks, as shown in the pelvis
[46], [51] and knees [52]. The same concept of point
correspondence naturally extends to tools and implants
where, rather than relying on anatomical landmarks,
keypoints on the CAD model are used [53]–[55]. The
aforementioned approaches aim at discovering the well-
defined points; however, finding the same arbitrary point
in multiple images is equally appropriate to establish cor-
respondence. In this formulation of the problem, an AI-
based algorithm is trained to produce a pose invariant
latent representation of point appearance. Then, query
points can be randomly sampled in one image that is then
rediscovered in the target image [56], thereby establishing
correspondence. This approach is appealing since it does
not impose any prior on the imaged object; however, learn-
ing a pose invariant latent representation so far has only
been demonstrated for comparably small pose differences.

IV. I N T E L L I G E N T I N T R A-O P E R AT I V E
I M A G I N G

A. From Data Fusion to Intelligent Imaging

Intelligent intraoperative imaging refers to augmenting
the value of intraoperative images for clinical decision-
making by providing additional information that is tailored
to the context of the intervention. In increasingly gran-
ular order, the context here describes the interventional
requirements specific to a certain procedure, step in the
surgical workflow, decision, or even surgeon’s preferences.
So far, efforts in this direction are dominated by data
fusion methods that seek to enrich intraoperative images
with procedural planning information that exists from
preoperative data. While this approach, even when relying
on classical CAI tools, has been deployed successfully
for several types of procedures [33], it is fundamentally
limited in its capabilities of fully leveraging all acquired
data. This is because the value of intraoperative images
is reduced to a proxy to support, e.g., image-based reg-
istration or as a means for overlay, while all intelligent
information that really augments the decision-making is
propagated solely from preoperative images. In addition to
underexploiting intraoperative images, this strategy only
allows for displaying information derived from preoper-
ative data that become outdated as surgery progresses.
This calls for the development of intelligent intraoperative
imaging that fully leverages the information contained
in interventionally acquired data in real-time. Augment-
ing decision-making in this way offers clear opportunities
by: 1) automating quantitative measurements required
for precision medicine and 2) extracting information that
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Fig. 2. Realistic simulation of X-ray image formation from preoperative CT is one possibility to create large quantities of well-annotated

images. Pipeline represents the simulation approach described in [57].

is otherwise not easily accessible, which may allow the
development of new surgical techniques. Still, contextual
and intelligent interventional image analysis is not yet
the mainstream technology because, compared to diag-
nostic image analysis, the environment for developing
AI solutions is even more hostile. From our experience
working with clinical collaborators across different sites
and specialties, we believe that this is primarily due
to three reasons. First, while hundreds of images are
acquired for procedural guidance, only very few, if any, are
archived [58]–[60], thereby suggesting a severe lack of
meaningful data for researchers to work with. Second,
learning targets beyond segmentation are not well estab-
lished or defined. Third, images of the anatomy are
acquired from multiple viewpoints, the exact poses of
them are not reproduced nor known. Finally, the overall
variability in the data is further amplified by surgical
modification of anatomy and the presence of tools. Overall,
the accessible data are heavily unstructured and exhibits
enormous variation, which challenges meaningful data
augmentation strategies. As a consequence, in order to
train AI algorithms on interventional images, solutions to
the data set curation and annotation problem must be
found first. Overcoming these hurdles seems challenging
and is reflected in the observation that only very little
work has considered learning in this context. It is worth
mentioning that the lack of annotated and/or paired data
equally affects other methods presented in this article.

B. Simulation-Based Training

Initial steps in addressing the data problem have been
taken, serving as a stepping stone for the transformative
technology that is intelligent imaging. While the large-
scale acquisition of highly structured data is tractable for

some interventional applications, particularly ultrasound
[61], [62], most other approaches rely on synthetic data
generation from physical models of the scene. This par-
adigm is attractive because all quantities of interest are
precisely known by design; however, if the simulation is
performed naïvely, AI models trained on synthetic data will
not generalize to clinically acquired images because of the
large domain mismatch paired with poor generalizability
of today’s models [57]. Three complementary ways have
recently been shown to mitigate this problem. First, if the
clinically acquired data are available in addition to the
well-annotated synthetic data, style transfer algorithms
can be trained that alter the appearance of real data to
close the domain gap, as shown for the ophthalmic surgical
microscopy [63], [64]. Using such enhanced simulated
data for training of more complex tasks has been applied
successfully to endoscopy [65] and X-ray imaging [66].
Second, if too little clinical data are available, learning
a style transfer algorithm is impossible. In these cases,
a powerful alternative is increasing the realism of syn-
thetically generated images in a model-based approach.
Doing so requires accurate models of all physical principles
that govern image formation; however, approximations are
usually required to reduce simulation time to acceptable
levels. Realistic simulation works well for X-ray-based
modalities, as illustrated in Fig. 2 and demonstrated in
[57] and [67]. It has also been proposed in endoscopic
imaging [68]. However, the level of required realism likely
depends on the application and learning target since it
has been shown that even less realistic simulations could
be adequate, e.g., in some ultrasound applications [69].
The aforementioned approaches aim at reproducing the
real data appearance that is very complicated in practice.
If closely matching real data appearance is found to be
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impossible, domain randomization can be used to improve
the robustness of the trained model to partially unseen
data. Rather than perfectly matching real data character-
istics, the goal of domain randomization is to generate
multiple versions of the same sample with all but the
important characteristics randomized. When training AI
algorithms on such data sets, the models are assumed to
become robust to these types of domain changes. Domain
randomization can be seen as image formation-based data
augmentation and has recently been applied to X-ray
imaging [70] as well as colonoscopy [68], where achieving
realistic image appearance is very complicated due to fine
texture and specular reflectance of the tissue. It is worth
mentioning that all the above-mentioned techniques for
synthetic data usage are similar in that AI algorithms
never process real data during training. This characteristic
is associated with a notable drop in performance when
applied to real data due to residual domain mismatch. Con-
sequently, assessing algorithmic performance only on a
synthetic test set will severely overestimate the AI models
accuracy during deployment and quantitative experiments
on clinical data are required. Ultimately, training the AI
directly on real data is preferable, highlighting the need
for further research on unsupervised and self-supervised
learning to leverage large quantities of unlabeled data.

C. Intelligent Imaging in Interventional
Biophotonics

Although conventional interventional imaging, such as
X-ray fluoroscopy, surgical microscopy, endoscopy, and
ultrasound, will benefit from being augmented by con-
textual AI, another interesting area in which the intelli-
gent imaging paradigm is expected to make an important
impact is that of the interventional biophotonics imag-
ing. The initial focus in biophotonics has been on devel-
oping optimal, task-specific, contrast agents that would
be merely be directly visualized, e.g., in tumor-specific
fluorescence imaging. The biophotonics community has,
however, faced stringent challenges in identifying versa-
tile contrast agents suitable for use in patients and real-
ized that tissue differentiation would remain challenging
with such an approach. Advanced high-dimensional opti-
cal imaging techniques are currently seen as promising
solutions for intraoperative tissue characterization, with
the advantages of being noncontact, nonionizing, and
noninvasive or minimally invasive. However, because of
the high-dimensional nature of the generated data, direct
visualization by the clinical team becomes impractical. This
calls for automated learning-based information extraction
before display. As in the previous examples of intelligent
imaging, many of the most advanced AI-supported inter-
ventional biophotonics imaging devices currently exploit
model-based learning or unsupervised learning. Point-
based measurement devices able to measure the Raman
scattering have recently been translated into commercial
products [71] with support from supervised classifica-
tion [72] or unsupervised dimensionality reduction [73].

Addressing the lack of wide-field information in point-
based systems, the community has looked into modalities
such as hyperspectral imaging [74] with an increasing
use of machine learning to solve some of the intrinsic
challenges of high-dimensional data. Indeed, while bearing
rich information, the raw 2-D -space + wavelength +

time data that hyperspectral imaging produce are difficult
to interpret for clinicians as it generate a temporal flow
of 3-D information that cannot be simply displayed in
an intuitive fashion. Innovative use of invertible neural
networks in combination with model-driven simulation
has been used to train neural network-based regressors
that are capable of real-time operation and can provide
uncertainty estimates for oxygen saturation measurement
from hyperspectral data [75]. Unsupervised deep mani-
fold embedding for hyperspectral imaging was proposed
in [76], and deep learning was used for reconstruction
from sparse hyperspectral data [77]. Intelligent imaging
concept with simulation- or model-based trainings are
also being progressed with other emerging biophotonics
imaging modalities, such as for superresolution in endomi-
croscopy [78], [79], and artifact suppression in photoa-
coustic imaging [80].

D. Toward Prospectively Planned Intelligent
Imaging

With the availability of training data, via either ded-
icated data collection or synthetic generation, AI algo-
rithms can be developed to analyze intraoperative images
in near real time and supply contextual information to
improve decision-making. Omitting applications to endo-
scopic video sources that are discussed in depth in
Section V and focusing first on the interventional X-ray
imaging, benefits of real-time machine learning range from
segmentation of tools [53], [81], [82], anatomical land-
mark detection [51], [52], anatomy localization [83], and
denoising [84], [85], to surgical phase recognition [81].
Corresponding developments can be found for ultrasound
imaging [86]–[88].

While the above-mentioned list of applications
merely hints at the potential that AI-based analysis of
interventional images has to offer, there is an interesting
observation: the majority of intelligent imaging algorithms,
including all the aforementioned methods, try to
provide richer information by the automated analysis
of traditionally acquired images, with little or no
knowledge of the image acquisition workflow. This raises
an interesting question: if it is known what information
is desired or desirable at any given point during the
surgery, is it possible to prospectively acquire an image
that is most informative in that particular context? Initial
steps in this direction have recently been reported,
exploiting ultrasound image formation to suppress
scatter [89] or beamforming a B-mode image [90], [91]
together with producing its segmentation [69].
Zaech et al. [92] use an AI-based algorithm to recommend
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task-optimal and patient-specific C-arm X-ray trajectories
during cone-beam CT of spinal fusion surgery, and similar
ideas arise for ultrasound transducer positioning [93].

The domain of real-time interventional image analysis is
fairly untapped as of yet but offers great opportunities for
workflow analysis, surgical progress monitoring, including
anticipation and adverse event detection, and supplying
rich information for human-in-the-loop decision-making.
In addition, task-aware and autonomous imaging modal-
ities may benefit interventional imaging already one step
before the image is analyzed and may, thus, give rise to
disruptive technology and novel surgical approaches.

V. S U R G I C A L A N D E N D O S C O P I C V I S I O N

A. Recognizing Endoscopic Activity

Standard endoscopic imaging is certainly the modality
most closely relating to natural images. It should, there-
fore, not be surprising that machine learning tools for
interventional images have developed most rapidly in this
field. As a proxy for the eyes of the surgeon inside the
patient, the endoscopic camera is the privileged source
of digital information to understand the activities per-
formed during endoscopic procedures. Endoscopic videos
usually capture most of the activities performed within
the patient. Recognizing and understanding these activities
are essential to develop novel assistance systems that
are reactive to the context, e.g., that can provide timely
instructions to operating room (OR) staff, enforce safety
checkpoints, or log automatically relevant information
within the surgical report. Surgical activity recognition
from endoscopic videos is, however, a highly challenging
task due to the variability existing across patients, surgical
treatments, and surgical teams.

In the recent years, a large body of work has focused
on recognizing the surgical steps of a procedure directly
from the videos [94]–[99]. This has notably been the
case in cholecystectomy, a common procedure consisting
in removing the gallbladder, which is frequently used in
research due to its high frequency of occurrence and well-
standardized protocol [100]. There, the steps include, for
instance, “the Calot triangle dissection, cystic duct and
artery clipping and cutting, gallbladder dissection, and
gallbladder packaging.” Recognition of these steps allows
for the automated understanding of the progress of the
surgery. To perform recognition, models of the underlying
workflow of the procedure are learned from data sets of
exemplary videos, annotated manually with the different
steps. In [97], the model consists, for example, of a visual
feature extractor relying on a deep neural network that
feeds a temporal recognition model, such as a hierarchi-
cal hidden Markov model or an LSTM model. Several
types of procedures have been successfully studied for
step recognition besides cholecystectomy. Examples are
cataract surgery [95], [96] and laparoscopic sleeve gas-
trectomy [98]. As the current recognition methods show
very promising results and real-time capabilities, they can

potentially be directly embedded in the endoscopic tower
to deliver contextual support. Other interesting prediction
tasks have been tackled with success using deep learning
methods. In [101] and [102], the remaining duration of
the procedure is predicted in real time using deep recurrent
models trained directly from video data. In [97], [103],
and [104], the presence of the instruments in the surgical
scene is automatically detected. Additional applications
include bleeding and smoke detection [105], [106], as well
as surgery type identification at the beginning of the
procedure [107].

Beyond the recognition of the surgical steps indicating
the progress of the surgery and the recognition of events,
such as bleeding, many potential applications, such as
safety monitoring and human–robot cooperation, require
a finer level of understanding of the surgical activities.
Future research, therefore, needs to demonstrate accurate
recognition of the detailed interactions between the tools
and the anatomy. To have an impact beyond a single
OR, recognition methods will also need to scale up to
different types of surgeries, ORs, and hospitals without
requiring the manual annotations of large data sets for
each situation. Recent methods exploiting nonannotated
videos through self-supervision or weak-supervision [104],
[108]–[111] or exploiting synthetically generated surg-
eries [64] may prove very useful to train the next gener-
ation of surgical recognition systems.

B. Understanding Image Semantics

Understanding the surgical scene from the endoscopic
images is fundamental for context-aware intelligent
computer-aided assistance. During augmented reality visu-
alization, precise pixel-based segmentation of the tools
is necessary for handling occlusions and providing the
user with the correct perception. Implementing safety
warnings, such as no-go zones, requires the detection
of critical anatomy. When another imaging modality is
used, its registration to the endoscopic video may require
the localization of anatomical landmarks [113]. Similarly,
implementing degrees of autonomy during robotic surgery
requires the localization and recognition of the neighbor-
ing tools and anatomy.

Recently, a large body of work has targeted the detection
and segmentation of surgical instruments [114]. Deep
learning methods have been proposed for both bounding
box or articulated tool detection [115]–[117] and for
pixel-based tool segmentation [118], [119]. Their supe-
riority has been confirmed on laparoscopic and surgical
microscopy data sets in two international challenges
organized in 2015 and 2017 at the MICCAI conferences
[120], [121]. Still, the data sets used for evaluation
are limited in size and variability. They are far from
representing the diversity of surgical scenes, which
can indeed be very challenging due to the presence of
occlusions, smoke, bleeding, specularity, motion blur,
and deformation. Furthermore, the aforementioned
approaches are fully supervised and, therefore, impose
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Fig. 3. Endoscopic video (top), monocular depth estimate (middle), and rendering of a photorealistic reconstruction (bottom). Results

were achieved using the self-supervised method described in [112].

an important burden on the collection of representative
training data sets. New approaches are needed that can
generalize easily to various types of procedures and
be trained using weaker information for training, such
as image-level tool presence [104], point annotation
[122], or scribbles [123].

Far less work has addressed the much needed anatomy
detection and segmentation, certainly due to the lack of
available public data sets. The community is, however,
putting large efforts in this direction, as illustrated by
the recent generation of the CaDIS data set [124], which
contains pixel-level annotations for 36 semantic classes in
cataract surgery videos. Progress has also been achieved
in specific areas, such as liver segmentation [125], lesion
detection and characterization during gastroscopy [126],
or polyp detection during colonoscopy [17], [127]. Here,
again, deep learning is the state of the art, as demonstrated
for polyp detection in a challenge organized at MICCAI
2015 [128]. Due to the real-time capabilities of deep
learning approaches, the intraoperative benefits of such
systems already start to be evaluated in RCTs [17].

C. Reconstructing Anatomic Geometry
Endoscopy mimics the surgeon’s eyes within the body,

but due to the monocular construction of endoscopes,
it lacks one important visual cue: depth. This short-
coming has implications: it has recently been shown
that the availability of 3-D anatomic geometry benefits
several clinical tasks, including the detection of criti-
cal anatomy, such as polyps [129], and the registration
of preoperative 3-D data to endoscopy video to enable
navigation [130]. In addition, analyzing 3-D represen-
tations of anatomy would allow for the introduction of
quantitative measurements, enabling the standardization
of clinical reporting across sites. Recovering anatomic
3-D geometry, e.g., to augment endoscopic video with
depth cues or to provide dense 3-D reconstruction, has

gained considerable traction and is now an emerging
discipline with developments often orthogonal to those for
complementary tasks, e.g., segmentation. This is because
deep learning-based algorithms are able to exploit image-
level features to provide dense depth estimates even
from monocular video, complementing traditional optical
endoscopy with depth sensing as “pseudomodality.” How-
ever, training depth estimation algorithms on endoscopic
sequences is complicated in practice because no paired
depth measurements exist naturally. While paired data
can be generated in silico via simulation from CT [65],
[68], [131], the resulting trained models will need to
overcome the domain mismatch to real clinical data
with methods similar to that presented in Section IV.
Recently, self-supervised training paradigms that rely on
traditional multiview stereo approaches have received
increasing attention as they can be trained directly and
solely from the endoscopic video. Multiview stereo algo-
rithms, including structure from motion [112], [130] and
simultaneous localization and mapping [132], can be
adapted to work with endoscopic video, but they cannot
provide dense 3-D reconstructions due to the lack of
photometric constancy in endoscopic video and texture
scarceness that complicate feature matching across frames.
These algorithms do, however, provide a few recon-
structed 3-D points and, more importantly, relative camera
poses that can be used to supervise monocular depth
estimation [112], [132]. A representative photorealistic
reconstruction achieved using a structure from motion
supervised depth estimation method is shown in Fig. 3.
These methods achieve state-of-the-art performance with
good generalization ability; however, the resulting recon-
structions are only up to scale. Among the biggest premises
of video-based reconstruction is the possibility of monitor-
ing anatomical change during surgery. This would require
methods to robustly handle various sorts of uncontrol-
lable variation, including bleeding, smoke, or tool pres-
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ence. Solutions to these problems are currently unknown.
Even in more controlled scenarios, widespread adoption of
learning-based reconstruction from the endoscopic video
is hindered by the lack of publicly available data sets,
making it unclear how well today’s algorithms perform
on clinical data. This challenge is further aggravated by
the lack of direct evaluation targets. When applied to real
clinical data, current reconstruction or dense estimation
algorithms can only be evaluated via surrogate tasks, such
as video-CT registration [112], [133] or polyp classifica-
tion [129].

VI. C L I N I C A L W O R K F L O W M O N I T O R I N G
A N D S U P P O R T

A. Notion of Surgical Control Tower

While imaging alone provides valuable information,
modern procedures rely increasingly on a variety of
complex devices and intricate workflows. This limits the
knowledge extraction that AI systems can do based on
imaging alone and makes it difficult for humans to properly
analyze in real time the wealth of available data. Fur-
thermore, even though the quality of care has generally
improved with the introduction of new surgical techniques
and devices, adverse events still occur, a large part of
that are preventable [135], [136]. Humans are prone to
fatigue, teams to miscommunications, devices can fail,
and for all roles, surgical tasks require an ever-increasing
level of specialization. The increased use of digital equip-
ment in the OR, however, opens up new opportunities
for support and monitoring, at the level of the whole
room, by providing artificial intelligence systems with real-
time data that capture a faithful representation of the
processes taking place during the surgery. Indeed, most
of the activities happening in the room can be captured
digitally either through interactions with equipment, such
as information systems, room control interfaces, imaging
devices and instruments, or through the use of sensors,
such as ceiling-mounted cameras, which are now becom-
ing widespread and increasingly used for documentation,
teaching, and augmented reality assistance. Consequently,
it is highly likely that in the near future, assistance systems
will be fully integrated in a digital OR that will monitor
surgical processes through AI, akin to a surgical control
tower [137], [138], that can analyze the whole digital
information in real time to provide context-aware support
and information within and outside the OR. Applications
for such a control tower are, for instance, the transmis-
sion of live information about the OR status, the adaptation
of user-interfaces to the surrounding context, the display
of instructions within the OR, the creation of an auto-
mated report, the recording of the activities for archiving
and legal purposes, the enforcement of safety checklists,
the detection of anomalies with respect to past workflows,
and improved scheduling for staff and patients. To perform
these tasks, the control tower will have access to and
crunch masses of multimodal digital data coming from
hundreds of past surgeries.

B. Endeavor Rooted in Surgical Data Science

An essential component of the control tower is the data-
driven modeling and understanding of the clinical activi-
ties, an undertaking that taps into the emerging research
field of surgical data science [3], [4]. Machine learning
has been key to generate models of procedural interven-
tions from data [139], [140], and ontologies have also
been developed to standardize the resulting models [141].
Implementations of such AI-based applications start to
emerge in various institutions, besides the ones focus-
ing on analyzing endoscopic videos already mentioned in
Section V. As video data remain one of the main sources
of information, they highly rely on deep learning. Videos
captured by the cameras mounted in the room provide
indeed a rich source of information about the activities
without disrupting the workflow. For instance, a patient
and staff radiation exposure monitoring system for hybrid
procedures illustrated in Fig. 4 was proposed in [134].
It relies on several RGB-D cameras to estimate the 3-D
pose of the persons and room layout, which can then be
used to simulate and visualize in situ X-ray propagation
around the patient table. Haque et al. [142] develop a
system to monitor hand hygiene in hospital corridors in
order to analyze and reduce the hospital-acquired infec-
tion. The approach uses a large set of depth cameras
installed to observe the hand-soap dispensers. For the
intensive care unit, Ma et al. [143] and Yeung et al. [144]
present methods based on color or depth video data for
the detection of patient mobilization activities. Key build-
ing blocks to the success of these applications are the
estimation of clinician and staff poses [145]–[147], as well
as the recognition of their activities [148]–[151]. As for
traditional visual data, deep learning-based approaches
are currently the best-performing methods for these tasks
though it should be noted that they do not necessarily
perform as well on clinical data yet. This is due to the
specificity of clinical videos, where staffs wear gowns and
masks, colors are often similar, and cameras observe the
room from restricted positions, but also from the fact
that there is no clinical COCO or Imagenet data set yet.
Srivastav et al. [152] evaluate the state-of-the-art human
pose estimation approaches, and Issenhuth et al. [153]
evaluate the state-of-the-art face detection approaches
on clinical data. Both studies show a large margin for
improvement. Since the development of large annotated
data sets of clinical videos may be difficult due to the
expertise required and the restrictions on data, other
approaches need to be developed, for instance, using the
nonannotated data for transfer learning [153].

This will also help deploy the surgical control tower
in new clinical environments, as the variability in room
layout, camera configuration, and workflow can be high.
Retraining the assistance systems using only nonanno-
tated data from the novel environment or a tiny subset
of annotated data will be crucial for the adoption of
these technologies. As even the collection of nonanno-
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Fig. 4. Capturing the 3-D context of the OR is necessary for providing AI-based decision support and monitoring risk. In this example,

the staff radiation exposure during an X-ray-based procedure is computed in situ via simulation and displayed with augmented reality in a

training scenario [134].

tated video data can be challenging due to data and
privacy regulations, it may also be required to implement
federated learning approaches or develop methods that
are able to cope with privacy-preserving data, such as
depth-only videos [142] or even low-resolution depth
videos [154]. In [154], it is shown that 2-D human pose
estimation can be achieved with reasonably high accuracy
on depth images downsampled by ten to the resolution
of 64 × 48. By using other information, such as system
events [155] or speech analysis [156], the analysis of
clinical activities will be further improved.

VII. D I S C U S S I O N A N D C O N C L U S I O N

While AI is starting to impact CAI, as described in this
article, there is a number of challenges that are specific
to surgery and intervention to overcome to deliver clinical
impact. The leveraging context within learning paradigms
will be crucial to address those in a clinically meaningful
way. The emerging field of CAI4CAI offers researchers a
large set of open problems to tackle. These notably stem
from the heterogeneity of surgical procedures and their
particular requirements for intraoperative imaging [157],
the difficulties in data acquisition, the complexity in
modeling and inferring decision-making processes, and the
intricacy of the execution of surgical tasks. Over the years,
the CAI community has defined increasingly powerful
surgical process models [158] to gain an actionable
understanding of surgical procedures while describing
interventions as a sequence of tasks and activities at
different granularity levels. At the finest level, mapping
what should be the Language of Surgery [159], researchers
currently break down surgical gestures into semantically
relevant motion units called surgemes that are further com-
posed of sequences of motion primitives named dexemes
[160]–[162]. However, this taxonomy mostly focused
on the surgical action and, in particular, on surgical

tool manipulation and could, thus, rather be considered
as mapping the Language of Surgical Dexterity. This is
already a laudable achievement and led to scientists
and engineers being able to, e.g., quantify the success
of a training program for executing different surgical
actions [163], [164]. As suggested by the study conducted
by Birkmeyer et al. [165] for bariatric surgery, surgical
skills can be highly correlated with the surgical outcome
for certain procedures. AI systems have been shown
capable of evaluating technical skills using data from
either training scenarios [166] or real procedures [167].
However, by severely underutilizing the rich information
contained in other data sources, the Language of Surgical
Dexterity is still not capturing the most complex aspects of
surgical decision-making. To address the need to capture,
understand, and support all the cognitive interactions and
processes taking place in the OR, the surgical data science
community will need to drive the deployment of real-time
multimodal data acquisition systems that will be used
routinely. At the same time, it will foster the development
of new standards and regulations aiming at increasing
the interoperability of data, devices, and models. This will
directly benefit CAI4CAI by simplifying the implementation
and training of learning algorithms involving databases
from multiple institutions while maintaining privacy, e.g.,
through federated learning. CAI4CAI in combination
with surgical data science and surgical process modeling
could, thus, aim at defining and understanding the
ultimate Language of Surgery based on a large number
of heterogeneous data sources used continuously by
surgeons and interventional teams to guarantee the best
outcomes for a given procedure. As the field blossoms,
CAI4CAI researchers will address some of the most
rewarding questions in computer-assisted intervention.
Could CAI4CAI allow us to learn how decisions are
made, or missed, throughout surgical procedures? Could
CAI4CAI support such decision-makings? Instead of going
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through the traditional path of segmentation, registration,
navigation, and visualization, could contextual machine
learning allow us to optimize these steps for each
given objective and allow for real-time computation and
feedback based on a large amount of heterogeneous data,
including preoperative and intraoperative imaging, patient
characteristics, and surgeon preferences?

With more capable and flexible learning paradigms,
synergistic collaboration is expected to happen between
humans and AI-powered actors. The field is already
seeing exciting attempts to bring the user and the
user experience at the center of our research ques-
tions. For example, novel spatially aware visualization
beyond traditional user interfaces is explored in [134]
and [168]. The challenge of improving human situ-
ational awareness in operating with solutions beyond
visualization is addressed in [169] with the use of
context-specific soundtracks. Introduction of novel mul-
timodal interaction paradigms and technologies within
ORs will require extensive use of machine learning
to optimize the user interfaces and to provide max-
imally relevant information and support while pre-
venting inattentional blindness [170]. By developing
systems that are able to learn from previous surgeries
performed by experts how to provide context-aware sup-
port and instructions directly in the OR, in the manner
of a virtual coach, as in [171], AI could have a strong
impact on improving patient care. This is another aspect

of CAI4CAI that needs particular focus from the scientific
community and requires MDTs, including clinicians, user
experience experts, and machine learning scientists,
to work together and come up with intelligent end-to-end
CAI solutions.

Finally, in this article, we did not have a particular
focus on robotics. However, both surgical robotics and
robotic imaging will play increasingly crucial roles in the
years to come. Machine learning is demonstrating convinc-
ing results in real-time tool tracking [118], [172]–[174].
This, for example, enables automatic positioning of intra-
operative OCT imaging planes within surgical microscopy
for ophthalmic surgery [119], [175]. Integration of robot-
ics within surgical suites would require them to act intel-
ligently and synergistically with the human team and
to be fully context-aware at all moments. The wish to
have real-time multimodal imaging requires full intel-
ligence and automation. It also requires direct com-
munication and collaboration between surgical robots,
imaging robots, surgeons, and surgical teams. CAI4CAI will
have the challenge of enabling such ultimate intelligence,
which requires many years of research and development
in many disciplines while remembering a past experi-
ence with the first generation of context-aware comput-
ing [176]. Not only does CAI4CAI offer numerous exciting
research directions but it also promises to revolution-
ize surgery and, therefore, the future of healthcare at
a global scale.
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