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Abstract

Background: Alu polymorphisms are some of the most common polymorphisms in the genome, yet few methods
have been developed for their detection.

Methods: We present algorithms to discover Alu polymorphisms using paired-end high throughput sequencing
data from multiple individuals. We consider the problem of identifying sites containing polymorphic Alu insertions.

Results: We give efficient and practical algorithms that detect polymorphic Alus, both those that are inserted with
respect to the reference genome and those that are deleted. The algorithms have a linear time complexity and
can be run on a standard desktop machine in a very short amount of time on top of the output of tools standard
for sequencing analysis.

Conclusions: In our simulated dataset we are able to locate 98.1% of Alus inserted with respect to the reference
and 97.7% of Alus deleted, our simulations also show an excellent correlations between the deletions detected in
parents and children. We further run our algorithms on publicly available data from the 1000 genomes project and
find several thousand Alu polymorphisms in each individual.

Introduction
We consider the problem of detecting polymorphic Alu
insertions from DNA sequence reads using high
throughput paired-end sequencing data.
Genomewide association studies (GWAS) proceed by

identifying a number of individuals carrying a disease or
a trait and comparing these individuals to those that do
not or are not known to carry the disease/trait. Both
sets of individuals are then genotyped for a large num-
ber of Single Nucleotide Polymorphism (SNP) genetic
variants which are then tested for association to the dis-
ease/trait. GWAS have been able to successfully identify
a very large number of polymorphism associated to dis-
ease (e.g. [1-3]). Studies using tens of thousands of indi-
viduals are becoming commonplace and are increasingly
the norm in the association of genetic variants to disease
[1-3].
Whole genome resequencing using next generation

sequencers is rapidly becoming the sledgehammer of
genomewide association studies. Increasingly, GWAS

are done in conjunction with the sequencing of number
of individuals [4,5] or alternatively using variants identi-
fied from the resequencing of a number of individuals
[6]. Whole genome resequencing is preferable over SNP
genotyping for association studies as it allows for the
detection of all genomic variation and not only SNP var-
iation. SNPs are the most abundant form of variation
between two individuals. However, other forms of varia-
tion exist, such as inversions, copy-number variations,
LINE (Long INterspersed Elements) and SINE (Short
INterspersed Elements) elements, including Alu
insertions.
Copy number variations, have been shown to be influ-

ential factors in many diseases [7], and a number of
methods have been proposed for the detection of struc-
tural variants (e.g. [8-12]). Despite the fact that our
computations indicate that the number of polymorphic
Alu repeats carried by an individual are on a compar-
able scale to the number of copy number variations car-
ried by an individual, apart from [13], no reliable
methods have been specifically developed for detecting
Alu repeats in multiple individuals. Polymorphic Alus
are also known to be good markers for constructing
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phylogenetics of homonid evolution [14] and determing
human diversity [15].
An Alu sequence is an approximately 300 basepair

long sequence derived from 7SL RNA gene [16]. Alu
repeats are SINE that occur frequently in the human
genome, as well as in other genomes. The Alu sequence
family has been propagated to more then one million
copies in primate genomes over the last 65 million
years. Alu repeats are the largest family of mobile ele-
ments in the human genome and the Alu family com-
prises more then 10% of the human genome. Most Alu
repeats were inserted early in primate evolution, where
it is estimated that there was approximately one new
Alu insertion in every primate birth [17].
Almost all of the recently integrated human Alu ele-

ments belong to one of several small and closely related
young Alu subfamilies, while other elements have been
found to be largely orthologous to other primates.
These largely human-specific AluY subfamilies represent
approximately 0.5% of all the Alu repeats in the human
genome. Our computations verify that AluY is the most
polymorphic Alu family in our dataset.
The current rate of Alu insertion is estimated to be of

the order of one Alu insertion in every 200 births [18].
Some members of these young Alu subfamilies have
been inserted into the human genome so recently that
they are polymorphic with respect to the presence or
absence of insertion in different human genomes. Those
relatively few elements that are present in the genomes
of some individuals and absent from others are referred
to as Alu-insertion polymorphisms. The primary goal of
this paper is the discovery of these Alu insertion
polymorphisms.
We give an algorithm targeted to finding Alu poly-

morphism from next generation paired-end sequencing
data. In what follows we will start by giving our problem
framework, followed by a description of our algorithms
and finally we show some experimental results.

Methods
Problem framework
The input to our problem is a reference genome and a
set of paired-end sequence reads from a set of indivi-
duals. The genome sequence of the reference indivi-
dual is known and will be highly similar, but not
identical, to the genome of the individual(s) being
sequenced. Paired-end sequencing reads consist of a
read of a fixed length, followed by a short spacing, fol-
lowed by another read. The spacing between the two
reads follows a probability distribution, Y. Y can be
assumed to be known a priori or to be easily estimated
from the sequence reads [19] (cf. Additional file 1 for
the estimation of Y). The two reads are substrings of
DNA sequence, with one read being read from the +

strand and the other being read from the - strand. The
fact that the two reads are read in opposite direction
ensures that; If the location of one of the reads is
known then the location of the mate (the other read)
is also known, up to Y. The genome sequence of the
individual(s) being sequenced is however not known a
priori, but is highly similar to the reference genome.
At some locations in the reference genome the gen-
omes of the reference and the individual(s) being
sequenced will diverge. Some of this divergence is due
to the insertion of Alu polymorphisms. A mechanism
exists for Alu sequences to insert themselves into a
genome while no such direct mechanism is known to
exist for Alu sequences to remove themselves from the
genome. Once inserted, the sequence will exist in the
sequence context where it was inserted.
When the polymorphic Alu is not contained in the

reference, we consider the Alu to be inserted with
respect to the reference. When the polymorphic Alu
sequence is contained in the reference genome and
some of the sequenced individuals we consider the Alu
sequence to be deleted with respect to the reference,
even though evolutionary the sequence most likely has
been inserted.
The output of our algorithm is a set of locations in

the genome where an Alu sequence is inserted in some
individual(s) as well as the sequence reads of the indivi-
duals being studied for these insertions. As each indivi-
dual contains two haplotypes a polymorphic Alu may be
inserted on one, both or neither of these haplotypes.
We formulate four versions of the problem of identify-

ing Alus, when the Alu sequences are inserted or
deleted with respect to the reference genome, both for
identifying these polymorphism on a single individual
and on multiple individuals.
Problem 1
Single Individual Deleted Alu identification problem
Input A set of paired-end sequence reads from a single
individual and a reference genome.
Output A list of locations in the genome where an

Alu is deleted with respect to the reference genome.
Problem 2
Multiple Individual Deleted Alu identification pro-
blem Input A set of paired-end sequence reads from
multiple individuals and a reference genome.
Output A list of locations in the genome where there

exists an individual with an Alu deleted with respect to
the reference genome.
Problem 3
Single Individual Inserted Alu identification problem
Input A set of paired-end sequence reads from a single
individual and a reference genome.
Output A list of locations in the genome where an

Alu is inserted with respect to the reference genome.
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Problem 4
Multiple Individual Inserted Alu identification pro-
blem Input A set of paired-end sequence reads from
multiple individuals and a reference genome.
Output A list of locations in the genome where there

exists an individual with an Alu inserted with respect to
the reference genome.
Following the identification of polymorphic regions we

need to determine which individuals are polymorphic
for each polymorphism.
Problem 5
Alu genotyping problem Input A single location in the
reference genome known to contain a polymorphic Alu.
A set of individuals and a set of sequence reads for each
individual.
Output For each individual, a genotype call, assigning

the individual 0, 1 or 2 copies of the given Alu, repre-
senting an Alu on neither, one or both haplotypes.
We start by giving the common algorithmic frame-

work for our algorithms and then proceed to giving
algorithms for each of the problems in turn. We start by
describing our approach for the detection of deleted
regions in a single individual. We then extend this to
recognizing deletions in multiple individuals simulta-
neously. We then show how these ideas can be extended
to identifying inserted Alus, first in a single individual
and finally in multiple individuals simultaneously.

Algorithm framework
Our algorithms start by mapping the sequence reads to
the reference genome and analyzing the output of such
a mapping.
Alu Mate
We start by preprocesing the sequence reads to make
them easier for manipulation. The initial step of our
algorithm is to map the sequencing reads to the human
reference genome build 37 (hg19) using the Burrows
Wheeler Aligner (BWA) [20]. The program outputs a
mapping of all sequence reads to the genome and also
outputs whether there are alternate locations in the gen-
ome with sequence alignment. An underlying assump-
tion is that most of the reads are long and accurate
enough that they will only map to a single location on
the genome. Technology where each paired end is 100
bases or greater with accuracy over 98% is readily avail-
able and in use [4,5]. In random DNA the probability of
such reads mapping to multiple places on the genome is
extremely low. Reads mapping to Alu sequences how-
ever will almost always have multiple places on the gen-
ome that have similar quality mapping. Unless its mate
is mapped to a proximal location, we will not use the
mapping of such reads as input to our algorithm, but
rather label such reads as Alu reads. We further align
each read to the set of known Alu families and label

those that align well to the database as Alu reads. Most
paired-end mates of Alu reads will map uniquely to the
genome. We note that from the mapping of the paired-
end it is easy to determine whether the Alu sequence
should be to the left or the right of the mapped
sequence.
A read pair is defined as improper if the two ends of

the pair map to locations that are inconsistent with the
read pair distance Y. We store all such improper pairs
where one end is an Alu read and refer to the mate of
those reads as Alu mates. Each of these read pairs either
gives evidence of an Alu insertion or the read is impro-
perly mapped or read. We label the Alu mate with an r
if the mapped read is to the right of the Alu sequence
and label them with a l if the mapped read is to the left
of the Alu mapped read. The first step of our algorithm
is to search for all Alu mates. At the same time we
store the position and chromosome of the Alu mate,
whether it is an l or an r read, to which Alu the Alu
read mapped, to which Alu family that Alu belongs,
where within the Alu the Alu read mapped and how
many best matches to the reference genomes for the
read where found by BWA. We term this algorithm Alu
mate and we observe that it runs in time that is on the
order of the number of reads.
Lemma 1
Algorithm Alu Mate runs in O(nr) time, where nr is

the number of reads.
Analysis of mapped reads
The output of Alu mate is a mapping of sequence reads
to the reference genome and an assignment of l and r
read labels.
Figure 1 shows the output of Alu mate and how it can

be used to identify regions where an Alu is deleted with
respect to the reference individual. Black arrows show
the location and direction of the reads and the red lines
show the insert between the reads. The location of the
Alu is shown at the bottom of each figure. The leftmost
figure shows an individual carrying the Alu on both of
his chromosomes, notice that the distance between
reads always follows the same distribution. The right-
most figure shows an individual that does not carry the
Alu on either one of his chromosome (homozygote
non-Alu), notice that the distance between the reads is
longer for those reads overlapping the Alu and that no
reads are mapped inside of the Alu. The center figure
shows an individual heterozygote for the Alu.
Figure 2 shows the mapping the output of Alu mate

and how it can be used to identify an Alu polymorph-
ism. Black arrows show the reads and their direction.
Red lines show the insert between the reads. Green
arrows show l reads and blue arrows show r reads. Left-
most figure shows an individual carrying no copy of the
Alu (homozygote non-Alu), notice the absence of l and
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r reads. The rightmost figure shows an individual homo-
zygote for the Alu insertion, notice that the l reads
occur to the left of the insertion and r reads to the right
of the insertion and that no reads overlap the insertion.
The center figure shows an individual carrying a single
copy of the Alu (heterozyte).

Detection of deleted Alus
We consider an Alu sequence deleted when it occurs in
the reference assembly, but not in the individual(s)
being sequenced. There are two primary signs of dele-
tion, some of the reads will be split, containing one part
from each side of the deletion. The second signal is that
there are reads that have one end mapping to each of
the two sides of the Alu being considered and a corre-
sponding increase in their insert length. The distance
between these reads, as measured with respect to the
reference genome will be in expectation be longer than
Y and should be distributed as Y + lAlu, where lAlu, is
the length of the deleted Alu. Detecting deleted Alus is
considerably simpler than detecting inserted Alus, as the
location of the Alu is known. For detecting Alu dele-
tions we hence only need to consider locations that
have been already annotated to contain Alus.
Genotyping deleted Alus
For each Alu annotated in the reference genome we
determine the genotypes of the polymorphism of the
individual. We let Y� be the � percentile of Y and Y1-� be
the 1 - � percentile of Y, where � is a small constant
(0.005). At each annotated Alu we consider a window of
size Y1-� to the left and right of the estimated Alu.
We construct a set T consisting of all reads where

both ends are in a window containing the Alu and Y1-�

to the left and right of the Alu. Here l and r are defined
as before, r if the Alu sequence is to the right of the

read and l if the Alu sequence is to the left. All l and r
reads falling in that window are realigned to the Alu
being considered. All reads where only one end maps
inside the window and are not Alu mates are ignored.
We then compute the probability of observing the

insert lengths in T given three different genotype mod-
els: Homozygote Alu, heterozygote and homozygote non
Alu. We note that on chromosomes where there is an
Alu sequence present then the reads mapping with one
end inside of the Alu and one to the right of the Alu
and the reads that map with one end to the left of the
Alu and one inside of it will be independent of each
other. On chromosomes where there is not an Alu
sequence present the reads to the left and the right of
the purported Alu location will be perfectly dependent.
If our model is that reads are randomly sampled from
the chromosome the reads can fulfill the criteria of
belonging to T in one of three ways, each being equally
likely; From the chromosome carrying the deletion, as a
read pair mapping with one end inside the Alu and the
other to the left of the Alu and as a read mapping with
one end inside the Alu and the other to the right of the
Alu. For the heterozygote case the probability that a
read comes from the distribution Y is then 2

3, while the
probability of coming from Z = Y + lAlu is 1

3, where lAlu
is the length of the Alu.

P(data|HomoNonAlu) = P(D|0) =
∏

t∈T

Y(t)

P(data|Hetero) = P(D|1) =
∏

t∈T

(
1
3

Z(t) +
2
3

Y(t))

P(data|HomoAlu) = P(D|2) =
∏

t∈T

Z(t)

Figure 1 Example of an Alu deletion. Example of an Alu deletion. Arrows show read directions. Black arrows show normal mapping reads, red
lines show the insert between them. The leftmost figure shows a normal individual, center an heterozygote and rightmost an individual
homozygote for an Alu deletion. The location of the Alu is shown with a thick red line in the bottom of each figure.

Figure 2 Example of an Alu insertion. Example of an Alu insertion. Arrows show read direction, black arrows show reads mapping normally,
red lines show the insert between them, green arrows show l reads and blue arrow show r reads. The leftmost figure shows a normal
individual, center an heterozygote and rightmost an individual homozygote for an Alu insertion. Red dot at the bottom of each figure shows
the location of the Alu insertion.
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Deleted Alus in Multiple Individuals
When considering multiple individuals simultaneously
we can construct a likelihood ratio statistic for the
occurance of the deletion. We let the individuals be
labeled from 1 through m, Di be the set of sequence
reads belonging to individual i. We let f0 be the fre-
quency of the homozygote Alu carriers in the popula-
tion, f1 be the frequency of the heterozygote and f2 be
the frequency of the homozygote non-Alu. Then the
joint likelihood of the data given an Alu deletion is:

∏m

i=1
(f0P(Di|0) + f1P(Di|1) + f2P(Di|2))

We apply a likelihood ratio test to test whether a dele-
tion is significantly more likely than the model on the
statistic

2
m∑

i=1

log(f0P(Di|0) + f1P(Di|1) + f2P(Di|2)) − 2
m∑

i=1

log P(Di|0)

Under the null this statistic obeys a chi square distri-
bution with two degrees of freedom [21].
If we assume Hardy-Weinberg equilibrium [22] we

can estimate the frequency of the Alu deletion, p, on a
haplotype level. Then the joint likelihood of the data
given an Alu deletion is:

∏m

i=1
((1 − p)2P(Di|0) + 2p(1 − p)P(Di|1) + p2P(Di|2))

The corresponding likelihood ratio test will then obey
a chi square distribution with one degree of freedom.
We use the one degree of freedom test in the remainder
of the paper.

Inserted Alu identification
One of the main complications in detecting Alu poly-
morphisms is the fact that members of the Alu family
are all highly similar. The Alu insertions which we are
looking for will be similar to sequences already inserted
and other sequences that also may have been inserted.
The mapping of reads not mapping to Alu regions is

generally more reliable, however a number of problems
may occur; the region being considered may be dupli-
cated, or the read may be chimeric, where due to arti-
facts in the sequencing process two parts of the read
come from different parts of the genome. This implies
that not all l and r reads will be close to an actual Alu
insertion. Some of the reads may also be close to Alus
already discovered, but the mapping was not discovered
by BWA, for a further discussion of these issues see
Additional file 1. We start by finding regions that are
likely to contain an insertion and then from that list we
compute a probabilistic model verifying the insertion
found, first for a single individual and then we extend
this to multiple individuals.

Identifying potential inserts
As described earlier, we label Alu mates as either l, if
their mapping to the reference genome implies that an
Alu is to the left of them read or r if their mapping
implies that an Alu is to the right of them. Each of the
l and r reads then gives partial information about the
location of the Alu read. Given the location of an l
read an Alu is implied in the region from lr + Y to lr +
Y + L, where lr is the right endpoint of the l read
being considered, Y is the distribution of the distances
between paired-ends and L is the length of a read.
Similarly, given the location of an r read an Alu is
implied in the region from rl - Y to rl - Y - L, where rl
is the left endpoint of the r read being considered.
Some of the reads however may not be correctly
mapped and should be considered errors. In particular,
from the mapping of the reads to the reference gen-
ome we know the number of best mappings of the
reads in question, a read that has b best mappings will
with probability 1

b be mapped correctly. This fact
means that we can in a simple manor assign weights
to sequence reads, with a read having b best mappings
getting weight 1

b.
We say that an Alu position, a, covers an l read if lr +

Y1-� ≥ a and lr + Y� ≤ a + L, where Y� and Y1-� are
defined as before. Similarly an Alu position, a covers an
r read if rl - Y1-� ≤ a and rl - Y� ≥ a - L. For each l and
r read we now want to either cover it with an Alu posi-
tion or declare it as an error read, we define a constant
k to be the relative cost between the two.
Problem 6
Alu genotyping problem Input A set L of l reads and a
set R of r reads.
Output A set A of Alu positions and E of errors.
Objective min | E | +k | A |
Constraints Each l Î L and r Î R is either in E or

covered by an a Î A.
We note that the most general version of this problem

reduces to a set covering problem, which can be shown
to be hard to even approximate [23]. However, as the
reads are linearly arranged on the chromosome the sets,
the problem reduces to set covering on interval graphs
which can be solved in polynomial time using e.g.
dynamic programming.
For our empirical evaluations we set k = 3, represent-

ing that at if three l or r reads are found that can be
covered by a single Alu insertion we prefer to insert an
Alu than to assign error labels to these reads.
Optimal algorithm To search for regions likely to con-
tain an Alu sequence we make a single pass through the
genome. For each position, p, we sum the number of r
reads within a window size Y1-� to the left p and the
number of l reads within a window size Y1-� to the right
of p.
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The time complexity of the algorithm is O(ncY1-�),
where n is the length of the genome, c is the coverage.
w chosen as the size of the largest Alu plus a maximum
distance between paired-ends under the null distance.
Regions where this indicator is above a given threshold
are considered Alu regions.
Covering multiple individuals
One way to detect Alu insertions in multiple individuals
is to pool the data into a single dataset and ignore the
fact that there are multiple individuals being sequenced.
This simple idea will however lack power to find infre-
quent Alus. A region containing multiple l and r reads
in a single individual is more likely to contain an Alu
than one that has a single l or r read in multiple indivi-
duals. We therefore do not want to determine an Alu
unless there exist some individuals that have multiple l
or r reads. We let k1 and k2 be constants, representing
the cost of introducing an Alu insertion to the popula-
tion and the cost of introducing an Alu insertion to
each individual. We let A represent the set of Alus and
for each Alu, j, we let Aj be the set of individuals con-
taining the Alu.
Problem 7
Input A set I of individuals. A set of Li of l reads and a
set Ri of r reads, for each individual i Î I.
Output A set A of Alu positions and E of errors.
Objective min | E | +k1 | A | +k2 Σj | Aj |
Constraints Each l Î Li and r Î Ri is either in E or

covered by an a Î A and i Î Aa.
We have not been able to determine the computa-

tional complexity of this problem and leave open
whether or not the problem is NP-hard.
Heuristic algorithm When tuning these parameters we
set k1 = k2 = 2, representing that we require two
sequence reads in each individual to warrant introdu-
cing a Alu insert in the population and two sequence
reads to warrant introducing the Alu to the individual.
We solve this problem using a heuristic. To prune the

number of regions that we need to consider we start by
considering each individual at a time. In each individual
we search for regions where there are at least a small
number of l and r reads within the same window of size
2Y1-�. We then merge the insert locations of two indivi-
duals if they appear to be very close to each other.
Genotyping of inserted Alus
Given the location of potential Alu insertions we run an
algorithm similar to the one that we ran for Alus that
are deleted with respect to the reference.
Until convergence

Estimate length of Alu insertion
Re-estimate positions

Insert the Alu insertion in silico in the position
determined.
Apply the algorithm for deleted from reference for

genotype calling.
Alu insertion length estimation We assume that there
is a single insertion event that occurred in all of the
individuals simultaneously. For each read pair, t, we
have given a position on the chromosome of the non-
Alu read, ct, a position within the Alu of the Alu read
at, mean distance between the two, mt and standard
deviation in distance between the two, st. The means
and the standard deviation are estimated from the reads
of each individual independently.
Assume we know a position pAlu where there is an

insertion. Now consider all Alu read pairs in the interval
[pAlu - Y1-�, pAlu + Yl-�]. Now assume that we have
aligned all Alu read pairs in this interval to the same
Alu, of length lAlu. Our model of the true length of the
Alu is that it is lAlu + l + r, where l and r are con-
stants, which can be either positive or negative. l repre-
sents a left offset in the length of the Alu and r
represents a right offset in the length of the Alu.
We now estimate l and r seperately. We start by con-

sidering all reads pairs with the non-Alu read in [pAlu -
Y1-�, pAlu] and use these to estimate l. Let dt = pAlu - ct,
then the estimate of l from t is lt = mt - dt - at, with
standard deviation st. When considering multiple reads
the maximum likelihood estimate of l is then:

λ =

∑
t
λt

s2
t

∑
t

1

s2
t

Similarly we get an estimate for r by setting
a−

t = lAlu − at. We now consider all Alu read pairs with a
non Alu read in the interval [pAlu, pAlu + Yl-�] and use
these to get an estimate of r. Let dt = ct - pAlu, then the
estimate of r from t is ρt = mt − dt − a−

t with standard
deviation st. When considering multiple reads the maxi-
mum likelihood estimate of r is then:

ρ =

∑
t
ρt

s2
t

∑
t

1

s2
t

Alu insert position reestimation
Each read gives an estimate of the location of the
inserted Alu. A joint estimate is determined from all of
the reads in a given region. This is done in the same
manor as described above, where we isolate pAlu from
the equations instead of l and r.
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In silico insertion and deleted algorithm Once the
location of the Alu insertion and the length of the Alu
is determined a new sequence is constructed containing
the Alu at the inserted location. Following the construc-
tion of this new sequence a graph, identical to the one
described for Alus deleted with respect to the reference,
containing the location of the reads in the interval is
constructed as before.
The in silico constructed genomic sequence now con-

tains the Alu that we previously considered to be
inserted. The Alu sequence is therefore deleted with
respect to this sequence and we can apply the same
algorithm as before.

Results
We run our experiments on simulated data and on data
from the 1000 genomes project.

Simulated data
We benchmark our algorithms on simulated data. We
downloaded chromosome 22 of build 37 of the human
genome, as well as the RepeatMasker track to identify
Alu sequences in the build. We downloaded a database
of Alu sequences from RepBase [24]. We selected four
Alu sequences known to be active in humans; AluYa5,
AluYb8,AluYb9,AluYk13; and AluJo, a sequence not
known to be active. At each location the Alu sequences
were mutated independently with a 3% uniform muta-
tion frequency. Each of the five Alus was inserted at ten
different locations, for a total of 50 Alus inserted. We
inserted the Alus into 100 different chromosomes. At
each location we used one of ten different frequencies
of insertion; 2, 4, 5, 10, 20, 80, 90, 94, 96, 98%. As each
Alu was inserted into a different number of chromo-
somes depending on their frequency, each chromosome
contained on average 25 Alu insertions, ranging from 21
to 33 Alus inserted into each chromosome.
The 100 chromosomes where then paired to construct

50 diploid individuals, with each individual containing
on average 50 Alu insertions. The Alu insert locations
were chosen randomly on the chromosome, with the
constraint that no Alu was added within Y1-� basepairs
of another Alu and no more than 1% of basepairs are
annotated N in a 2Y1-� basepair window surrounding
the introduced Alu. This allows us to focus our results
only on Alu insertions that are distant from other Alus
and is not meant to representative of the process in
which Alu’s are inserted. Reads were simulated using
the program SimSeq [25]. Reads were simulated inde-
pendently for each chromosome, with an average of 5x
coverage per chromosome or 10x coverage per indivi-
dual. In our experiments 97% of all reads not mapping
to Alu regions mapped uniquely to the genome, using

BWA. We simulated our data with both with no error
and with 2% error.
Alu insertion
The set of individuals were selected to have similar cov-
erage and being genotyped under similar conditions. We
benchmark our Alu insertion identification algorithm by
considering the mapping of the reads of the simulated
individuals to the reference genome, results are shown
in Table 1.
We ran our insertion algorithm on each individual

independently. When tuning our algorithms to find no
false positives we find 96.4% of all Alus inserted. The
false negatives are mostly from individuals that are het-
erozygote for the insertion and are mostly when there is
other surrounding variation.
Alu deletion
We benchmark our Alu deletion identification algorithm
by considering the mapping of the reads of the simu-
lated individuals to a simulated individual that contains
all the Alus, results are shown in Table 2. When tuning
our algorithms to find no false positives we find 97.7%
of all Alus deleted. We find deleted Alu’s in 1390 of the
1422 locations known to contain an Alu.
In Additional file 1 we investigate the effects of higher

error rate on our algorithm.

Verification on triad data
We investigated whether the the deletions that we
detected were transmitted to the children. We simulated
fifty trios where we independently simulated two chro-
mosomes with randomly inserted Alus for each parent.
We then randomly selected one chromosome from each
parent to use for the child. We found very high concor-
dance between parent and the child, as shown in Table 3.

1000 genomes
We run our experiments on twenty individuals from
LWK: Luhya in Webuye, Kenya population of the 1000
genomes project [6,26,27].
We find an average of 1418 Alus that are deleted with

respect to the reference. This corresponds to a rate of
approximately 1

1000 Alus in the human genome being
deleted with respect to the reference, a rate comparable
to the SNP polymorphism rate. A table showing the
number of Alus deleted with respect to the reference in

Table 1 Alus inserted with respect to the reference

Expected Found(%)

Error free 1512 1483 (98.1%)

2% error 1512 1446(95.6%)

Number of Alus found inserted with respect to the reference in simulated
genotype data.
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each individual in the LWK population is shown in
Additional file 1.
We find an average of 5990 Alus that are inserted

with respect to the reference. A table showing the num-
ber of inserted Alus in each individual in the is shown
in Additional file 1.
dbRIP [28] is database containing 2083 Alus known to

be polymorphic in the human population. On average
each one of our individuals contains 280 of the Alus
represented in dbRIP.
Stewart et al. [29] found a total of 1730 Alus that were

deleted with respect to the reference and 4499 Alus that
were inserted with respect to the reference when, con-
sidering a subset of the 1000 genomes population. The
individuals considered by Stewart et al. were not the
same as the ones considered by us. We note that this
number is lower than we are finding, we have not inves-
tigated the source of this difference and it may be due
to the fact that our method is more sensitive or gives
more false positives. When comparing a single indivi-
dual to the set of deletions found by Stewart et al we
find that on average 73.4% of the deleted that we find
were found in some of the individuals studied by Stew-
art et al. We find that 7.2% of the inserted Alus that we
find are found in some of the individuals studied by
Stewart et al. The high concordance for the deleted case
is promising. The comparatively lower concordance with
the inserted Alus may be due to the fact that our algo-
rithm has a high false positive rate, but also may be due
to the fact that Alu insertions are of low frequency and
the population that we study is distantly related from
the population studied by Stewart et al.
When we compare the deleted Alus of two individuals

we found that 61.5% of the deletions found in one indi-
vidual are also found in another individual. For inserted
Alus this number is 15.6%. The reason for this differ-
ence is the fact that Alus generally have a low

frequency, the deleted Alus are generally the ones that
have been inserted into the reference genome and hence
they will not be present in a large number of the other
individuals, while the inserted have only been inserted
into a subset of the population.
Timing
We ran our computations on desktop machine using a
single 3.06 GHz Intel i5 processor. On average each
individual of the 1000 genomes data took 1hr and 44
minutes to analyze regions that are deleted with respect
to the reference and 2hrs and 1 minute to analyze
regions that are inserted with respect to the reference.

Alu families
We investigate which Alu families are deleted. We esti-
mate the Alu family from the repeat masker annotations
(cf. Table 4). Using these annotations 82.15% of the
deletions are found to belong to the AluY family. This
family is believed to be the family most polymorphic in
humans [15]. We also find that 11.48% of the deletions
that we find belong to the AluS family and 6.38% belong
to the AluJ family.

Conclusions
A number of improvements can be made to the the algo-
rithm that we have presented. Broken reads, those where
one part maps to the reference genome and one part maps
to an insertion or where one part maps to one side of an
deletion and one part to the other, can be used to improve
the algorithms described here. In our algorithm we study
only the single best mapping of each sequence read. An
alternative would be to study multiple mapping of reads to
the reference genome. We will attempt to explore such
solutions, however our experimental results suggests that
this will provide little gain for most regions of the genome
with considerable added algorithmic complexity. Our
future goals are to extend the methods developed here to
find other types of structural variations.

Additional material

Additional file 1: Supplementary material contains a more detailed
description of our methods, additional simulation results and
results on the 1000 genomes data.

Table 3 Trio results

Found in child Matches parents

Homozygote deleted 997 997 (100%)

Heterozygote 368 362 (98.4%)

The number of deletions found in child that were also found in a consistent
manor in its parents. The first line shows when the child is homozygote for
the deletion. The second line shows the results when the child carries only a
single copy of the deletion.

Table 4 Estimated Alu families

Total

AluY 22660(82,15%)

AluS 3167(11,48%)

AluJ 1758(6,38%)

Estimated Alu families of Alus deleted with respect to the reference genome
using 1000 Genomes data.

Table 2 Alus deleted with respect to the reference

Expected Found(%)

Error free 1422 1390(97.7%)

2% error 1422 1385(97.4%)

Number of Alus found deleted with respect to the reference in simulated
genotype data.
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