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Abstract: In this paper, a double pulse gas metal arc welding (DP-GMAW) for an AA6061-T6
aluminum alloy based on fewer basic welding parameters than the traditional DP-GMAW is proposed.
This study compared the difference in pulse base currents (∆Ib) and the difference in the pulse peak
currents (∆Ip) by analyzing the electrical signal and morphology properties of welded samples.
The results indicated that changing ∆Ip caused welding defects or even welding failure easily. The
welding stability after changing ∆Ib was much better than that after changing ∆Ip. The individual
fish-scale width of the weld joint remained unchanged when ∆Ib was at different values. In addition,
the average absorbed work, tensile strength, yield strength and elongation of the weld joints obtained
by different ∆Ib values reached 31.1%, 60.2%, 52.9% and 37.9% of the base metal, respectively.

Keywords: current waveform; DP-GMAW; aluminum alloy; basic welding parameters; welding
stability; mechanical properties; pores

1. Introduction

Double pulse gas metal arc welding (DP-GMAW) is an efficient and novel welding
technology developed on the basis of conventional pulse gas metal arc welding (P-GMAW)
for the aluminum alloy [1,2]. DP-GMAW is extensively used in automobile, vessel, high-
speed railway, aircraft and other industrial fields due to its special advantages, such as a
beautiful weld surface, low porosity, fine grain structure and little crack incidence [3–5]. If
the welding parameters are set properly, a high welding efficiency of DP-GMAW can be
achieved under the premise of ensuring welding quality [6]. Therefore, DP-GMAW is one
of the best solutions for aluminum alloy welding and it has gradually become a hot spot in
the welding field [7,8].

However, when the DP-GMAW of an aluminum alloy is carried out, there are two
important problems which should be faced and solved. On the one hand, the welding heat
of aluminum alloy diffuses rapidly, which can easily lead to deformation and defects. On
the other hand, the DP-GMAW has more welding parameters than P-GMAW, because the
DP-GMAW is composed of two sets of P-GMAW that periodically alternate with each other.
If the welding parameters are not well matched, it can cause a sharp deterioration in the
welding effect in DP-GMAW. Therefore, reasonably matching various welding parameters
is very important to form a unified adjustment expert database. Liu et al. [9,10] explored
the influence of a low frequency on aluminum alloy weld formation. The results showed
that the formation of aluminum alloy fish scale welds was closely related to the mutual
coupling between low frequencies and droplet transfer. Jin et al. [11] investigated the effect
of heat input on the properties of aluminum alloy joints in DP-GMAW by increasing the
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welding current. Sen et al. [12] evaluated the correlations between DP-GMAW process
parameters and the bead geometry. They found that at a constant low frequency, the weld
width widened and the reinforcement increased with the increase in the welding current.
Wu et al. [13] made a comparative study on the microstructures and mechanical properties
of weld joints produced by P-GMAW and DP-GMAW. Wu et al. [14,15] also analyzed the
influence of current phase on weld seam formation and metal transfer behavior under
different pulse phases in double-wire DP-GMAW. Soltani et al. [16] studied the effect of
thermal frequency and current amplitude on the weldability, microstructural evolution
and mechanical properties of AA7075 alloy joints welded by DP-GMAW. Liu et al. [17]
believed that increasing the base current amplitude or the thermal frequency of the current
effectively enhanced the oscillation of the molten pool in the DP-GMAW of an AA6061-
T6 aluminum alloy. Yao et al. [18] explored the effect of a low frequency on DP-GMAW
weld formation and proposed an empirical formula for the width of fish scales on the
welding speed and low frequency. Mvola et al. [19] reported that the improvement in the
microstructure of DP-GMAW was due to the improved heat input and energy distribution
by the current waveform control. Furthermore, Wu et al. [20] compared three different
thermal frequencies by changing the pulse numbers at the same heat input.

To date, there are relatively few reports on the difference in the pulse current in the
DP-GMAW of an aluminum alloy. In this paper, the difference in pulse base currents
and the difference in the pulse peak currents are the research objects. The influence on
the difference in the pulse current on weld formation and the mechanical properties of
AA6061-T6 aluminum alloy joints welded by DP-GMAW is explored.

2. Materials and Methods
2.1. Methods

DP-GMAW is a method to achieve a welding process by selecting a suitable thermal
frequency to modulate the high frequency. The representative welding current waveform
of DP-GMAW is shown in Figure 1a, which contains 10 basic welding parameters in a unit
current waveform cycle: the strong pulse peak current/time (Ips/tps), the strong pulse base
current/time (Ibs/tbs), the weak pulse peak value current/time (Ipw/tpw), the weak pulse
base current/time (Ibw/tbw) and the number of strong/weak pulses (N1/N2, also called
thermal peak/thermal base). These basic parameters can be composed of several derived
parameters, such as the thermal frequency ( fthermal, also called low frequency flow), the
high frequency ( fhigh), the average current I and the strong/weak pulse group average
current (Is/Iw). In this article, the difference in pulse base currents and the difference in
the pulse peak currents were set to ∆Ib and ∆Ip. The definitions of the parameters such as
fthermal and fhigh are shown in the following formulas [17].

fthermal =
1(

tps + tbs
)

N1 +
(
tpw + tbw

)
N2

(1)

fhigh =
1

tp + tb
(2)

I =

(
Ipstps + Ibstbs

)
N1 +

(
Ipwtpw + Ibwtbw

)
N2(

tps + tbs
)

N1 +
(
tpw + tbw

)
N2

(3)

Is =
Ipstps + Ibstbs

tps + tbs
(4)

Iw =
Ipwtpw + Ibwtbw

tpw + tbw
(5)

∆Ib = Ibs − Ibw (6)

∆Ip = Ips − Ipw (7)
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Figure 1. The welding current waveform of DP-GMAW: (a) the representative welding current wave-
form; (b) the simplified welding current waveform 1; (c) the simplified welding current waveform 2.

Two simplified current waveforms of DP-GMAW are shown in Figure 1b,c, respectively.
In the simplified welding current waveform 1, Ips = Ipw = Ip, tps = tpw = tp, tbs = tbw = tb.
Similarly, in the simplified welding current waveform 2, Ibs = Ibw = Ib, tps = tpw = tp,
tbs = tbw = tb. Therefore, in both Figure 1b,c, the simplified welding current waveform of
DP-GMAW has only 7 basic welding parameters. The fewer basic welding parameters, the
more favorable it is to build a welding expert database.

In order to achieve the ideal welding quality, the current parameters of DP-GMAW
generally abide by the following rules [1,10]:

1. Ips ≥ Ipw, Ibs ≥ Ibw, Is ≥ Iw;
2. The point (Ips, tps) and the point (Ipw, tpw) are located in the droplet transfer zone of

one droplet per pulse;
3. The pulse base current Ib is mainly used to maintain the arc combustion, and the

pulse peak current Ip is mainly used to melt the filler wire.

In the P-GMAW process of an aluminum alloy, there are mainly three kinds of droplet
transfer mode [21], i.e., one droplet per several pulses, one droplet per pulse and several
droplets per pulse. Each droplet transfer mode corresponds to a specific welding arc
shape [22]. Generally, one droplet per pulse is recognized as the most ideal droplet transfer
mode in P-GMAW, which is the guarantee that the welded joint has a good weld forma-
tion and good mechanical properties [23–26]. Therefore, according to the morphological
characteristics of the welding arc shape, one droplet per pulse zone of ER4043 welded
by P-GMAW is obtained when the average welding current is 100 A and the welding
frequency is 83.3 Hz, as shown in Figure 2.
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Figure 2. P-GMAW droplet transfer interval of one droplet per pulse at 100 A and 83.3 Hz.

2.2. Experiment Conditions

The welding system of DP-GMAW is shown in Figure 3 and the physical map of the
welding system is located in the lower left corner of Figure 3. The power system and the
wavelet analyzer were the core parts of the welding system. The DP-GMAW experiments
were carried out by a self-developed power system named Pulse NBC220 (Guiyang, China).
Pulse NBC220 had an Al–Mg–Si alloy welding database with the current range of 50–220 A,
and its welding current waveforms included P-GMAW, DP-GMAW and SP-GMAW [27].
After the current and voltage signals were processed by the wavelet analyzer (developed
by the research group, Guiyang, China), concise spectrum results and statistical analysis
results were obtained by the monitoring and control system (developed by the research
group, Guiyang, China), so that the stability of the DP-GMAW process could be evaluated
and analyzed [17].
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Figure 3. The welding system of DP-GMAW.

The base material was an AA6061-T6 aluminum alloy with dimensions of 300 mm ×
60 mm × 3 mm. ER4043 with a 1.2 mm diameter was used as the filler wire. The chemical
composition of the base material and the filler wire is presented in Table 1. All DP-GMAW
experiments were flat plate butt welding experiments without preheating, and before each
welding experiment, the starting and ending points of welding were fixed by spot welding
to prevent the gap in the butt weld from changing during the welding process. The second
step was to remove the stains and oxide film on the surface of the base metal with an
electric wire brush, then the surface of the base metal was cleaned with acetone, and finally
it was dried for welding. The shielding gas was argon with a purity of 99.99%, and the flow
rate was 15 L/min. The welding speed of the DP-GMAW experiments was 40 cm/min
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and the thermal frequency was 5 Hz. Other welding parameters of DP-GMAW are shown
in Table 2. It can be seen that the strong pulse peak current was equal to the weak pulse
peak current in specimens A01–A07 and the ∆Ib of specimens A01–A07 was set to 10 A,
20 A, 30 A, 40 A, 50 A, 60 A and 70 A, respectively. Similarly, the strong pulse base current
was equal to the weak pulse base current in specimens B01–B07 and the ∆Ip of specimens
B01–B07 was set to 10 A, 20 A, 30 A, 40 A, 50 A, 60 A and 70 A, respectively. The values of
Ip and tp were located in one droplet per pulse and several droplets per pulse regions of
ER4043. Specimens A01–A07 were focused on the effect of ∆Ib, while specimens B01–B07
were focused on the effect of ∆Ip.

Table 1. Chemical constituents (wt.%) of AA6061-T6 and ER4043.

Materials
/Elements Si Fe Cu Mn Ti Mg Al

AA6061-T6 0.52 0.25 0.01 0.96 0.01 1.0 Bal.
ER4043 6.0 <0.60 <0.30 <0.15 <0.15 <0.20 Bal.

Table 2. Welding parameters of DP-GMAW.

No. I (A) Ips (A)/tps (ms) Ibs (A)/tbs (ms) N1 Ipw (A)/tpw (ms) Ibw (A)/tbw (ms) N2 ∆Ib/A ∆Ip/A

A01 100 288/2.6 53/9.4 8 288/2.6 43/9.4 8 10 0
A02 100 288/2.6 58/9.4 8 288/2.6 38/9.4 8 20 0
A03 100 288/2.6 63/9.4 8 288/2.6 33/9.4 8 30 0
A04 100 288/2.6 68/9.4 8 288/2.6 28/9.4 8 40 0
A05 100 288/2.6 73/9.4 8 288/2.6 23/9.4 8 50 0
A06 100 288/2.6 78/9.4 8 288/2.6 18/9.4 8 60 0
A07 100 288/2.6 83/9.4 8 288/2.6 13/9.4 8 70 0
B01 100 305/2.6 44.6/9.4 8 295/2.6 44.6/9.4 8 0 10
B02 100 310/2.6 44.6/9.4 8 290/2.6 44.6/9.4 8 0 20
B03 100 315/2.6 44.6/9.4 8 285/2.6 44.6/9.4 8 0 30
B04 100 320/2.6 44.6/9.4 8 280/2.6 44.6/9.4 8 0 40
B05 100 325/2.6 44.6/9.4 8 275/2.6 44.6/9.4 8 0 50
B06 100 330/2.6 44.6/9.4 8 270/2.6 44.6/9.4 8 0 60
B07 100 335/2.6 44.6/9.4 8 265/2.6 44.6/9.4 8 0 70

After all the DP-GMAW experiments in Table 2 were completed, the metallographic
sample, tensile sample and Charpy impact sample were obtained from each butt weld
using the electric spark cutting machine stdx600 (Huafang, Taizhou, China), as shown in
Figure 4.

The observation surface of the metallographic sample was located in the center of the
weld, while the tensile samples and the Charpy impact samples were perpendicular to the
center of the weld. The metallographic sample was embedded in an annular plastic mold
with an epoxy resin adhesive. After the resin was cured, the metallographic sample was
polished to a mirror surface after rough grinding, fine grinding and polishing. The metallo-
graphic sample was continuously corroded with Keller reagent for 35 s, then washed with
deionized water and dried with a blower. Finally, the microstructure of the metallographic
sample was analyzed by the stereomicroscope microscope (Bresser, Rhede, Germany) and
the optical microscope (OM) (Carl Zeiss AG, Heidenheim, Germany). The equipment
selected for the tensile test was an AG-IC universal electronic testing machine (Shimadzu,
Kyoto, Japan). After the tensile test was finished, the morphological characteristics of the
fracture were observed and analyzed by a scanning electron microscope (Hitachi, Tokyo,
Japan). The Charpy impact samples were tested by a pendulum impact testing machine
(Labsans, Shenzhen, China). Before the Charpy impact test, the front reinforcement and
back reinforcement of the test sample need to be removed, so that the thicknesses of the
whole test samples were 3 mm. The Charpy impact test was carried out according to
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the standard ISO 5173:2000 and the tensile test was carried out according to the standard
ASTM E8.
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3. Results and Discussion
3.1. The Analysis of Electrical Signals and Weld Bead Shapes

The wavelet analysis results of specimen A07 (Figure 5a,c) and specimen B07
(Figure 5b,d), specimens A01–A07 (Figure 5e) and specimens B01–B07 (Figure 5f) are
shown in Figure 5.

In this study, all the experiments were carried out in the same humidity and temper-
ature environment. Figure 5a,b were voltage–current waveforms during the DP-GMAW
process. In Figure 5a, the thermal pulse and thermal base of specimen A07 in both voltage
waveform and current waveform were periodically generated alternately with significant
DP-GMAW characteristics, which showed that the droplet transfer in the welding process
had a good stability. By contrast, the current waveform in Figure 5b had a good periodicity,
but the voltage waveform presented large fluctuations, indicating that the specimen B07 led
to the droplet transfer of the multi-pulse one drop during the welding process. Compared
with the electrical signal statistics of specimen B07 in Figure 5d, the electrical signal statistics
of specimen A07 in Figure 5c were tighter and more regular and there were relatively few
burrs, indicating that the DP-GMAW process of specimen A07 was more stable than that
of specimen B07. Figure 5e,f show the welding voltage probability density function (pdf)
results of specimens A01–A07 and specimens B01–B07, respectively. Voltage probability
density has been widely used to evaluate the quality of arc welding [28–31]. It can be clearly
seen that specimens A01–A07 and specimens B01–B07 had the highest voltage probability
density when the welding voltage was about 19 V. The voltage probability density of
specimens A01–A07 was closer and concentrated, which indicated that that specimens
A01–A07 had fewer welding defects and a better welding quality. Therefore, the analysis
results of the electrical signals indicate that the welding process stability of specimens
A01–A07 was much better than that of specimens B01–B07 under the same welding current,
low frequency and welding speed.
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specimen A07 was more stable than that of specimen B07. Figure 5e,f show the welding 
voltage probability density function (pdf) results of specimens A01–A07 and specimens 
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Figure 5. The analysis results of electrical signals: (a) voltage–current waveform of specimen A07;
(b) voltage–current waveform of specimen B07; (c) the electrical signal statistics of specimen A07;
(d) the electrical signal statistics of specimen B07; (e) welding voltage PDF results of specimens
A01–A07; (f) welding voltage PDF results of specimens B01–A07.

The weld formation of specimens A01–A07 and specimens B01–B07 is shown in
Table 3. The weld bead shapes of specimens A01–A07 were well formed with few defects.
In addition, there were beautiful fish scale ripples on the weld surface. When ∆Ib was 10 A,
the surface of specimen A01 had faint fish scale ripples. The individual fish scale ripple
width of specimen A01 was 1.33 mm. When ∆Ib was 20 A, 30 A and 40 A, the surface
of specimens A02–A04 also had fish scale ripples and the clarity of the fish scale ripples
increased as the ∆Ib increased. When ∆Ib was 50 A, the fish scale ripples of specimen A05
were better clarified than those of other specimens. The clarity of the fish scale ripples
reduced as the ∆Ib increased when ∆Ib was 60 A and 70 A. Although specimens A02–A07
were better clarified than specimen A01, the individual fish scale ripple width of specimens
A02–A07 was equal to that of the specimen A01. When ∆Ip was changed, there were
irregular fish scale ripples in specimen B01 and specimen B04 and the weld appearance of
specimen B01 and specimen B04 had no obvious welding defects except spatters. There
were obvious arc breaks and spatters in specimen B02 and specimen B05. When ∆Ip was
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30 A, 60 A and 70 A, specimen B03 and specimens B06–B07 had lots of welding defects,
such as arc breaks, spatters, infusions, large drops and discontinuity of the weld. Among
the above welding defects, spatters and infusion were present with specimens B01–B07. It
should be emphasized that the fish scale ripples of specimens A01–A07 had two interesting
phenomena: phenomenon 1 was that the clarity of the fish scale ripples first increased and
then decreased with the increase in ∆Ib. When ∆Ib was 50 A, the clarity of the fish scale
ripples was the clearest. Phenomenon 2 was that the individual fish scale ripple width of
specimens A01–A07 was equal to 1.33 mm, which had nothing to do with ∆Ib. If 1.33 mm
was divided by the thermal period, the result was approximately equal to the welding
speed, as shown in the following formula:

1.33 mm ÷ 0.2 s = 6.65 mm/s = 39.9 cm/min ≈ 40 cm/min (8)

Table 3. Weld bead shape of different ∆Ib values and ∆Ip values.

No. Weld Appearance No. Weld Appearance

A01
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The reason for phenomenon 1 was that the oscillation of the high-temperature liquid 
molten pool increased with the increase in ∆𝐼ୠ , so the clarity of the fish scale ripples of 
specimens A01–A04 became clearer with the increase in  ∆𝐼ୠ. However, when the turbu-
lence of the molten pool was too great, it caused the disorder of the liquid metal; there-
fore, the clarity of the fish scale ripples of specimens A04–A07 became more blurred with 
the increase in  ∆𝐼ୠ. The reason for phenomenon 2 was that when the droplet transition of 
DP-GMAW was in one droplet per pulse, a fish scale pattern was formed in a thermal 
period [9,10]. 

Compared with specimens A01–A07, the weld formation of specimens B01–B07 was 
poor. There were a lot of welding defects, such as spatters, infusions, large drops and 
discontinuity of the weld. Combining the results of the electrical signal analysis in Figure 
5 and the weld formation in Table 3, it could be considered that changing ∆𝐼୮  was likely 
to damage the welding stability and welding quality. Changing ∆𝐼୮  was not suitable for 
constructing the expert database of DP-GMAW for aluminum alloys. Therefore, the fol-
lowing test and analysis were only for the mode in which  ∆𝐼ୠ was changed 

3.2. Properties of the Metallographic Samples 

The pore distribution in the weld bead center of specimens A01–A07 is shown in 
Table 4. Table 4 shows that the penetration depths of specimens A01–A07 were 6–7 mm, 
which was bigger than the thickness of the base material, indicating that specimens A01–
A07 were fully penetrated. 

Table 4. Distribution of porosity on the longitudinal section of different ∆𝐼ୠ values. 

No. The Pore Distribution in the Weld Bead Center 
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in ∆Ib. The reason for phenomenon 2 was that when the droplet transition of DP-GMAW
was in one droplet per pulse, a fish scale pattern was formed in a thermal period [9,10].

Compared with specimens A01–A07, the weld formation of specimens B01–B07 was
poor. There were a lot of welding defects, such as spatters, infusions, large drops and
discontinuity of the weld. Combining the results of the electrical signal analysis in Figure 5
and the weld formation in Table 3, it could be considered that changing ∆Ip was likely
to damage the welding stability and welding quality. Changing ∆Ip was not suitable
for constructing the expert database of DP-GMAW for aluminum alloys. Therefore, the
following test and analysis were only for the mode in which ∆Ib was changed.

3.2. Properties of the Metallographic Samples

The pore distribution in the weld bead center of specimens A01–A07 is shown in
Table 4. Table 4 shows that the penetration depths of specimens A01–A07 were 6–7 mm,
which was bigger than the thickness of the base material, indicating that specimens
A01–A07 were fully penetrated.

It can clearly be seen from Table 4 that there were a certain number of pores with
different sizes in specimens A01–A07. Pore counts were performed on each specimen over
a 20 mm representative middle section in the longitudinal direction. The pore sizes were
measured using Axio Vision SE64 software. The pore statistics of specimens A01–A07 are
shown in Figure 6. In this paper, pores with a diameter of 100–200 µm were defined as the
small pores, the pores with a diameter of 200–300 µm and larger than 300 µm were defined
as the middle pores and the big pores, respectively. Specimen A02 had the most middle
pores and big pores, and specimen A05 had the greatest number of small pores and the
smallest number of big pores. There were fewer pores in other specimens.
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Figure 6. The pore distribution in the center of specimens A01–A07.

The metallographic results of specimens A01–A07 are shown in Figure 7. It can be
seen from Figure 7 that the weld was a typical equiaxed dendritic as-cast structure. The
gray-white α(Al) interdendritic spaces were (α + Si) eutectic and a small amount of Mg2Si.
The rapid crystallization of the molten pool caused the α(Al) dendrites to divide the liquid
metal, resulting in a network of black (α + Si) eutectic crystals [32].
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Table 4. Distribution of porosity on the longitudinal section of different ∆Ib values.

No. The Pore Distribution in the Weld Bead Center

A01
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Figure 6. The pore distribution in the center of specimens A01–A07. 
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Figure 7. Microstructure photograph of the metallographic samples: (a) specimen A01; (b) specimen
A02; (c) specimen A03; (d) specimen A04; (e) specimen A05; (f) specimen A06; (g) specimen A07.

3.3. Mechanical Properties

Absorbed energy results of the base metal and specimens A01–A07 are shown in
Table 5. The average absorbed energy value and the absorbed energy standard deviation
of the base metal were 7.08 J and 0.14 J, respectively. The average absorbed energy of
specimens A01–A07 was 2.20 J, which was 31.1% of the base metal. The average absorbed
energy value of specimen A02 was 2.03 J, which was the lowest value among specimens
A01–A07 and only 28.7% of the base metal. This was because specimen A02 had more
middle pores and big pores than specimen A01 and specimens A03–A07. The average
absorbed energy value of specimen A05 was 2.23 J, which was slightly greater than that
of specimens A01–A07. However, according to the results of pore distribution in Figure 6,
specimen A05 had the greatest number of small pores and the lowest number of big pores
among specimens A01–A07, which did not result in a decrease in the average absorbed
energy value of the weld joint. Absorption energy results of specimen A02 and specimen
A05 illustrate that the average absorbed energy of the welded joint was only affected when
the number and size of the pores reached a certain level.

Table 5. Absorbed energy results of the base metal and specimens A01–A07.

No.
Absorded Energy, Akv (J)

1 2 3 Average Value Standard Deviation

BM 7.25 7.00 7.00 7.08 0.12
A01 2.18 2.25 2.20 2.21 0.03
A02 2.06 1.97 2.05 2.03 0.04
A03 2.23 2.29 2.21 2.24 0.03
A04 2.42 2.03 2.25 2.23 0.16
A05 2.13 2.29 2.23 2.22 0.07
A06 2.16 2.32 2.30 2.26 0.07
A07 2.45 2.00 2.22 2.22 0.18

Figure 8 shows the tensile test results of the base metal and specimens A01–A07.
Figure 8 shows that the tensile strength and the yield strength of the base material were
329 MPa and 244 MPa, respectively, and the elongation was about 16.9%.
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Figure 8. Tensile properties of the base metal and specimens A01–A07. 
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were weaker compared to the base metal. The average tensile strength, the yield strength 
and the elongation of specimens A01–A07 were 198 MPa, 129 MPa and 6.4%, respec-
tively, which were 60.2%, 52.9% and 37.9% of the base metal. In particular, when  ∆𝐼௕was 
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Figure 8. Tensile properties of the base metal and specimens A01–A07.

The tensile strength, the yield strength and the elongation of specimens A01–A07
were weaker compared to the base metal. The average tensile strength, the yield strength
and the elongation of specimens A01–A07 were 198 MPa, 129 MPa and 6.4%, respectively,
which were 60.2%, 52.9% and 37.9% of the base metal. In particular, when ∆Ib was 20 A,
the tensile properties of specimen A02 were the weakest among the specimens A01–A07.
The tensile strength, the yield strength and the elongation of specimen A02 were 191 MPa,
122 MPa and 6.0%, respectively and only 58.1%, 50.0% and 35.5% of the base metal. This
result could be due to the distribution of pores in Table 4 and Figure 6. When ∆Ib was
20 A, the number of middle pores and big pores in the weld was the greatest, which
reduced the actual cross-sectional area of the weld and weakened the tensile properties
of the joint. The tensile strength, the yield strength and the elongation of specimen A05
were 196 MPa, 130 MPa and 6.5%, respectively, which were slightly greater than those of
specimens A01–A07. Therefore, the tensile properties of specimens A01–A07 were similar
to the absorbed energy results. At the same time, it was noted that when ∆Ib was 10 A, 30 A,
40 A, 50 A, 60 A and 70 A, the weld formation was beautiful, and the absorbed energy, the
yield strength, tensile strength and elongation of the welded joints were fine and changed
little. These results indicate that changing ∆Ib was suitable for DP-GMAW with a wide
matching range. Namely, ∆Ib could realize stable DP-GMAW welding in a large variation
range; meanwhile, the joints had excellent mechanical properties.

After the tensile test, the fracture morphology of specimens A01–A07 was tested by
a scanning electron microscope. The specific results are shown in Figure 9. It can be seen
that the SEM fracture section of the tensile sample was distributed with a large number
of small and deep dimples. Meanwhile, some inclusions or second-phase particles were
clearly observed at the bottom of the dimples and there was no significant difference in the
size of the dimples between the different samples. The above SEM results indicate that the
fracture mode of the joint was a ductile fracture.
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4. Conclusions

The pulse amplitude is one of the key welding parameters of DP-GMAW, which
significantly affects the construction efficiency and welding quality of the DP-GMAW
expert database. This study compared the effects of ∆Ib and ∆Ip on weld formation,
porosity and the mechanical properties of welded butt joints, and the conclusions are
as follows:

(1) When the average current, the thermal frequency and welding speed were equal and
the point (∆Ip, tp) was located in the zone of one droplet per pulse, the DP-GMAW
experiments were carried out for specimens A01–A07 and specimens B01–B07. The
electrical signals of DP-GMAW were collected by the wavelet analyzer. By comparing
the results of their electrical signals, it was observed that the welding process of
specimens A01–A07 was more stable than that of specimens B01–B07.

(2) The weld bead shape is significantly influenced by the basic welding parameters of
DP-GMAW. Specimens A01–A07 had different values of ∆Ib and their weld forma-
tions were wonderful, showing beautiful fish scale ripples. Specimens B01–B07 had
different values of ∆Ip, while their weld formations were much worse with many
welding defects, such as spatters, infusions, large drops and discontinuity of the weld.

(3) There were some differential pores in specimens A01–A07. When ∆Ib was 20 A, the
weld joint had the most middle pores and big pores among specimens A01–A07. The
impact performance of specimen A02 was the worst, at only 28.7% of the base metal.
Meanwhile, specimen A02 had the weakest tensile properties among specimens A01–A07:
its tensile strength, yield strength and elongation were only 58.1%, 50% and 35.5% of
the base metal.

(4) When ∆Ib was 10 A, 20 A, 30 A, 40 A, 50 A, 60 A and 70 A, the weld formation was
beautiful and the absorbed energy, the yield strength, tensile strength and elongation
of the welded joints were relatively close. The average absorbed work, maximum
tensile strength, yield strength and elongation of specimens A01–A07 were 31.1%,
60.2%, 52.9% and 37.9% of the base metal, respectively.

(5) Changing ∆Ip can easily lead to welding instability, which is not suitable for construct-
ing the DP-GMAW expert database of aluminum alloy. Moreover, changing ∆Ib can
obtain beautiful weld formations and excellent joint performances, which are suitable
for constructing the DP-GMAW expert database of aluminum alloys.
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