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Abstract: Polymyxin B is the last line of defense in treating multidrug-resistant gram-negative bacterial
infections. Dosing of polymyxin B is currently based on total body weight, and a substantial intersubject
variability has been reported. We evaluated the performance of different population pharmacokinetic
models to predict polymyxin B exposures observed in individual patients. In a prospective
observational study, standard dosing (mean 2.5 mg/kg daily) was administered in 13 adult patients.
Serial blood samples were obtained at steady state, and plasma polymyxin B concentrations were
determined by a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method.
The best-fit estimates of clearance and daily doses were used to derive the observed area under the
curve (AUC) in concentration–time profiles. For comparison, 5 different population pharmacokinetic
models of polymyxin B were conditioned using patient-specific dosing and demographic (if applicable)
variables to predict polymyxin B AUC of the same patient. The predictive performance of the models
was assessed by the coefficient of correlation, bias, and precision. The correlations between observed
and predicted AUC in all 5 models examined were poor (r2 < 0.2). Nonetheless, the models were
reasonable in capturing AUC variability in the patient population. Therapeutic drug monitoring
currently remains the only viable approach to individualized dosing.
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1. Introduction

Over the past decade, a rapid rise in the prevalence of multidrug-resistant bacteria has rendered
many first-line antibiotics ineffective, which has also been associated with increased morbidity and
mortality [1,2]. Polymyxin B has been used as the last line of defense in treating multidrug-resistant
gram-negative bacterial infections. Dosing of polymyxin B is currently based on total body weight,
and a substantial intersubject variability can be expected [3]. However, a high prevalence of
nephrotoxicity (up to 60%) has also been reported when therapeutic doses of polymyxin B are
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given [4–6]. The lack of a commercial assay makes customized dosing in real time a clinical challenge.
Therefore, a more reliable dosing guide would be desirable to the advance medical care of our patients.

Population pharmacokinetic modeling has been commonly used to characterize drug disposition in
general or specific patient cohorts. In addition to point estimates of parameters of interest, the variability
(i.e., dispersion) and distribution (i.e., shape) of the pharmacokinetic parameters are also explicitly
examined. Moreover, the correlations of selected parameters (e.g., clearance) to common demographic
variables (e.g., age, gender, body weight, and renal function) are often explored to further explain the
observed variability in a population. If a significant relationship exists, a pharmacokinetic parameter
can be expressed as a function of these demographic variables (i.e., covariates). This would allow more
accurate prediction of drug exposure to facilitate customized dosing, given that key demographics
are available for an individual patient. To explore the feasibility of customized dosing without
real-time drug concentration measurements, the objective of the study was to evaluate the performance
of different population pharmacokinetic models in predicting polymyxin B exposures observed in
individual patients. If a reliable model is identified, it can also be used as the Bayes prior for maximum
a posteriori probability (MAP) Bayesian estimation.

2. Materials and Methods

2.1. Study Design, Sites, and Patient Selection

This was a prospective observational study. The study was conducted from March 2016 to March
2018 at two major teaching hospitals in Singapore: Tan Tock Seng Hospital (TTSH) and Singapore
General Hospital (SGH). Adult patients (21 years of age or greater) who received intravenous polymyxin
B (USP) for the treatment of suspected or confirmed bacterial infections were enrolled. The dose,
dosing interval, and infusion duration of polymyxin B administration were as prescribed by the
respective attending medical teams. Patients who were pregnant, on dialysis, with burns or spinal
cord injury were excluded.

2.2. Pharmacokinetic Assessment

For each subject, four blood samples were obtained serially over one dosing interval at steady
state (presumably after the third day of therapy). Since the dosing regimens were not standardized,
a sampling scheme spanning the samples over the dosing interval was adopted to accommodate
different scenarios. Sample 1 was obtained within 0.5 h prior to the next scheduled dose, sample 2 was
obtained 0.5–1 h after the end of drug administration, sample 3 was obtained 3–8 h after the end of drug
administration, and sample 4 was obtained within 4 h prior to the next scheduled dose. All samples
were specifically timed in relation to drug administration. Blood samples were centrifuged to obtained
plasma and stored at −70 ◦C until analysis. Polymyxin B concentrations in plasma samples were
determined using a validated liquid chromatography tandem mass spectrometry method [7]. The intra-
and inter-day assay precision (CV%) were reported to be <5.1%. The 4 most abundant polymyxin B
components (i.e., polymyxins B1, B2, and B3 and isoleucine B1) were assayed individually, summed
up, and reported as the total polymyxin B concentration [8]. The concentration–time profiles observed
were characterized using different pharmacokinetic structural models (i.e., one- and two-compartment
models with zero-order infusion input) using the ADAPT 5 software (University of Southern California).
The weighted least squares (WLS) estimation option was used. We assumed a random error around the
observations, and the parameters in the variance model was not estimated. For each subject, the best-fit
estimates of total clearance (CL) were used to derive the observed area under the concentration–time
profile over 24 h (area under the curve (AUC) = daily dose/CL).

2.3. Predictive Performance

Population pharmacokinetic models of polymyxin B published within the last 10 years were
retrieved from the literature. The models were conditioned using patient-specific dosing and
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demographic (if applicable) variables to predict polymyxin B AUC at steady state (Table A1).
Creatinine clearance was estimated using the Crockcroft–Gault formula. For consistent comparison,
the correlation between observed and predicted AUC for each individual patient was determined using
the same structural model. The predictive performance of the models was assessed at the individual
level by the coefficient of correlation, % bias ((predicted AUC − observed AUC) × 100/observed AUC)
and % precision (|(predicted AUC – observed AUC)| × 100/observed AUC), respectively. To evaluate
the dependability of the models in capturing overall drug exposure in a population, the comparisons
were repeated using the mean estimate of CL ± one standard deviation (SD). The reliability of the
model prediction was assessed by the percentage of observed AUC that fell within the predicted range
(i.e., between the 68% upper and lower limits).

2.4. Ethical Approval

This study was approved by the Singapore National Healthcare Group Domain Specific Review
Board (DSRB/2013/00991) and Singhealth Centralized Institutional Review Board (CIRB/2014/409/F).
Written informed consent was obtained from each patient (or their legal representative) prior to
study enrollment.

3. Results

3.1. Demographics

Thirteen patients (12 male) were enrolled; none had cystic fibrosis. The mean ± SD age and body
weight were 51.5 ± 13.4 years and 69.7 ± 20.2 kg, respectively. The mean ± SD of estimated creatinine
clearance was 84 ± 47 mL/min. All patients were given polymyxin B every 12 hours. The dose ranged
from 50 mg to 100 mg (1.7 to 3.0 mg/kg daily, mean 2.5 mg/kg daily), and each dose was administered
over 0.5 to 4 h.

3.2. Pharmacokinetics

The concentration–time profiles were reasonably well characterized by both one-compartment
(r2
≥ 0.85) and two-compartment (r2

≥ 0.94) models. Using the one-compartment model, the observed
AUC ranged from 47.0 to 135.0 mg.h/L, and the best-fit elimination half-life ranged from 3.4 to
14.8 h (median 6.8 h). A typical fitted pharmacokinetic profile is shown in Figure 1. Using the
two-compartment model, the observed AUC ranged from 52.2 to 187.0 mg.h/L.
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3.3. Predictive Performance

Five population pharmacokinetic models of polymyxin B were identified, and pertinent
characteristics are as shown in Table 1. The estimates of clearance were practically identical in
3 studies (2.4, 2.5., and 2.6 L/h) and no demographic variables were linked to total clearance [9–11].
In contrast, body weight was linked to total clearance in a study using a two-compartment model [12].
Finally, creatinine clearance had been linked to total clearance of polymyxin B in cystic fibrosis
patients [13].

Table 1. Characteristics and summary of population pharmacokinetic models of polymyxin B.

Study Reference Sandri [12] Manchandani [9] Kubin [10] Avedissian [13] Miglis [11]

Year published 2013 2017 2018 2018 2018
Sample size 24 35 43 9 52

Compartment model 2 1 1 2 2
% Male 54.2 65.7 70.0 N/A 64.0

Mean/Median age (years) 61.5 58.7 58.0 55.5 47.0
Patient origins Brazil U.S., Thailand, Singapore U.S. U.S. U.S.

Patient type Intensive care N/A N/A Cystic fibrosis Acutely ill
Clearance covariate Body weight None None Creatinine clearance None

Mean % Bias −0.7 −16.6 −12.0 −5.2 −30.0
Mean % Precision 28.5 22.3 20.5 43.6 31.2

% subject AUC captured * 76.9 84.6 84.6 84.6 ** 84.6

Note: * using mean CL ± SD; ** variation around CLmax; N/A: not available.

At the individual patient level, the correlations between observed and predicted AUC in all
5 models examined were poor (r2 < 0.2), regardless of whether demographic variables were incorporated
in the prediction (Figure A1). The Sandri model [12] was found to be the least biased, and the Kubin
model [10] was the most precise. As shown in Table 1, the intersubject variability was reasonably
captured (>75%) by all 5 models using the reported dispersion of total drug clearance.

4. Discussion

Polymyxin B is increasingly used clinically, but there is no consensus on its optimal dosing [3].
Bactericidal activity of polymyxin B has been linked to AUC/minimum inhibitory concentration
(MIC) ratios [14,15], so it is deemed reasonable to use AUC as a surrogate of dosing adequacy in
conjunction with prospective susceptibility data. The pharmacokinetics of polymyxin B has been
reported in different patient cohorts. Conventional (weight-based) dosing could be limited as it may
not fully account for factors that affect drug exposure. The focus of this study was to explore if prior
(published) knowledge of drug behavior could be used to guide customized dosing. As anticipated,
there was a significant intersubject variability. Approximately a 3-fold range in AUC was observed
with standard dosing. Unfortunately, common demographic variables were not found to be useful in
predicting polymyxin B exposures at the individual patient level, regardless of the structural model
used (Table A2). This was consistent in 3 out of 5 models evaluated, which did not report a significant
covariate of drug clearance.

The predominant disposition pathway of polymyxin B is not well established. Renal elimination in
the unchanged form is unlikely [16,17], and renal metabolism is postulated to be involved (unpublished
data). If substantiated, incorporating polymorphism in the drug metabolism could potentially create
a framework for correlating predicted polymyxin B exposure and clinical outcomes. A similar approach
has been reported in the past using estimated creatinine clearance to predict trough concentrations of
cefepime and subsequently correlating drug exposures to clinical success in bacterial pneumonia [18].

There were several limitations in our study. Only a limited number of (primarily male) patients
were enrolled with standard clinical dosing and dosing frequency. The robustness of our conclusion
would be enhanced with a larger sample size and a wider range of dosing regimens. Also, the observed
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AUC values for comparison were based only 4 data points over a single dosing interval. Given that
the expected elimination half-life of polymyxin B ranges from 6–12 h and that the drug is almost
always given every 12 hours in the local context, the sampling schedule was deemed to be reasonably
informative, balancing various factors such as the logistic feasibility of conducting the study in an acute
care setting and therapeutic drug-monitoring practice. More accurate AUC can be estimated with
a greater number of samples, but we maintain that our observations are of value to clinician readers
managing individual patients.

5. Conclusions

Polymyxin B exposure predicted by the pharmacokinetic models examined did not correlate well
to those observed. Further investigations are warranted on how the therapeutic benefit of polymyxin
B can be maximized in various patient populations while minimizing toxicity. If available, therapeutic
drug monitoring currently remains the only viable approach to individualized dosing.
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Appendix A

Table A1. An example of polymyxin B area under the curve (AUC) prediction by different models.

Model Sandri Manchandani Avedissian

Equation 0.0276 × 75 N/A (8.65 × (657.84))/((657.84) + (141.247.84)) + 1.43
Predicted clearance (L/h) 2.07 2.5 1.45

Predicted AUC24 (mg.h/L) 150/2.07 = 72 150/2.5 = 60 150/1.45 = 103

A 75-kg patient was given polymyxin B 75 mg q12h (daily dose 150 mg), estimated creatinine clearance = 65 mL/min.

Table A2. Summary of AUC correlation (r2) using different compartment models.

Model Sandri
(2 comp)

Manchandani
(1 comp)

Kubin
(1 comp)

Avedissian
(2 comp)

Miglis
(2 comp)

1- Compartment 0.01 0.16 0.16 0.06 0.16
2- Compartment 0.20 0.004 0.004 0.04 0.004

Comp—compartment.
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